Nested Effects Models at Work

Size: px
Start display at page:

Download "Nested Effects Models at Work"

Transcription

1 21/06/2010 Nested ffects Models at Work Tutorial Session: Network Modelling in Systems Biology with R Prof. Dr. Holger Fröhlich Algorithmic Bioinformatics Bonn-Aachen International Center for Information Technology (B-IT)

2 Learning From Perturbation ffects P1 P2 P3 P4 effects effects effects effects Microarrays RNAi-Screening Reverse Phase Protein Arrays mass spec RNAseq... Page 2 Holger Fröhlich Algorithmic Bioinformatics

3 Break a system to learn, how it works Page 3 Holger Fröhlich Algorithmic Bioinformatics

4 Pathways from RNAi Data an xample Page 4 Holger Fröhlich Algorithmic Bioinformatics

5 Pathways from RNAi Data an xample Computational approach: Bayesian Networks - Nested ffects Models Markowetz et al., 2005, 2007 Fröhlich et al., 2007, 2008a, b, 2009 Tresch and Markowetz, 2008 Zeller et al, 2008 Vaske et al, 2009 Anchang et al., 2009 Page 5 Holger Fröhlich Algorithmic Bioinformatics

6 Principle Idea of Nested ffects Models Distinguish between: Perturbed genes Observed effects S 1 S 2 S 3 S 4 Φ θ Measure downstream effects of each knockdown Network reconstruction is based on observed effects under different perturbations Observed effects Perturbed genes S1 S2 S3 S4 Markowetz et al., 2005 Page 6 Holger Fröhlich Algorithmic Bioinformatics

7 Nested ffects Models (NMs) are transitively closed graphs, which explain the nested structure of downstream effects. Page 7 Holger Fröhlich Algorithmic Bioinformatics

8 Likelihood of the Signaling Graph (Φ) Two different approaches: Bayesian: Integrate over effects linkage graphs Θ assuming P( Θ Φ ) = P( Θ) : P( D Φ ) = P( D Φ, Θ) P( Θ) Θ Markowetz et al., 2005; Fröhlich et al., 2007, 2008 Take MAP/ML estimator for Θ: Θ ˆ = arg max P( D Φ, Θ) P( Θ) (, ˆ ˆ P D Φ Θ) P( Φ) P( Φ D, Θ ) = P( D) Θ Tresch et al., 2008 Page 8 Holger Fröhlich Algorithmic Bioinformatics

9 Likelihood of the Signaling Graph (Φ) Two different approaches: Bayesian: Integrate over effects linkage graphs Θ assuming P( Θ Φ ) = P( Θ) : P( D Φ ) = P( D Φ, Θ) P( Θ) Θ Markowetz et al., 2005; Fröhlich et al., 2007, 2008 Take MAP/ML estimator for Θ: Θ ˆ = arg max P( D Φ, Θ) P( Θ) (, ˆ ˆ P D Φ Θ) P( Φ) P( Φ D, Θ ) = P( D) Θ Tresch et al., 2008 Page 9 Holger Fröhlich Algorithmic Bioinformatics

10 Calculation of ffect Likelihoods Factorization of the likelihood under i.i.d. assumption: P( D Φ ) = P( D Φ, Θ) P( Θ) Θ = P( D Φ, Θ = 1) P( Θ = 1) k ε s S t S tk sk sk ~ P( D m = Φ ) k ε s S t S tk tk ts 1. Model for binary data D with fixed error probabilities α and β: Dtk = 1 Dtk = 0 P( D ) 1 if mtk 1 tk mtk = α α = β 1 β if mtk = 0 Markowetz et al., 2005 Page 10 Holger Fröhlich Algorithmic Bioinformatics

11 Modeling Continuous Data 2. Data D are computed as p-values for significant change, when comparing interventions to non-interventions. Under the null hypothesis (i.e. expecting no effect) p-values are distributed uniformly Under the alternative hypothesis (i.e. expecting an effect) there is a high density for small p-values and a strong decrease for increasing p-values [Pounds et al., 2003]. f ( D ) = π + π Beta( D, α,1) + π Beta( D,1, β ) tk 1k 2k tk t 3k tk t -> fit via M algorithm P( D m ) tk tk f ( Dtk ) f (1) 1 f (1) if mtk = 1 = 1 if mtk = 0 Fröhlich et al., 2008 Page 11 Holger Fröhlich Algorithmic Bioinformatics

12 Using NMs in R library(nem) load( raw_pvaluesboutros2002.rda ) D = getdensitymatrix(pvalues) Page 12 Holger Fröhlich Algorithmic Bioinformatics

13 How to Infer the Network Structure? Choose candidate graph S 1 S 2 S 3 S 4 Calculate score, e.g. using Bayesian statistics (average over -Gene positions) Likelihood model Propose different topology Complete enumeration of all topologies Markowetz et al., 2005 Page 13 Holger Fröhlich Algorithmic Bioinformatics

14 How to Infer the Network Structure? Choose candidate graph S 1 S 2 S 3 S 4 Calculate score, e.g. using Bayesian statistics (average over -Gene positions) Combinatorial explosion: Combinatorial explosion: n = 4: 355 possible networks n = 10: ~10 27 possible networks Likelihood model Propose different topology Complete enumeration of all topologies Markowetz et al., 2005 Page 14 Holger Fröhlich Algorithmic Bioinformatics

15 Heuristics for Large Networks (> 4 S-Genes). MCMC sampling time consuming neighborhood relation in transitively closed graphs difficult Greedy hill climbing Fröhlich et al., Bioinformatics, 2008 Module networks Fröhlich et al., BMC Bioinformatics, 2007 Fröhlich et al., Bioinformatics, 2008 Triplets inference Markowetz et al., Bioinformatics, 2007 Alternating MAP optimization Tresch and Markowetz, Stat. Appl. Mol. Biol., 2008 Page 15 Holger Fröhlich Algorithmic Bioinformatics

16 Large Scale Networks: Module Networks Problem: complete enumeration of all network hypotheses only possible for small networks (< 5 S-genes) Solution: Divide and conquer 1. Highest scoring subnetworks for modules of S-Genes 2. stimate connections between modules Page 16 Holger Fröhlich Algorithmic Bioinformatics

17 Large Scale Networks: (a) Module Networks S 3 S 4 S 2 S 5 S 9 Log-likelihood S 6 S 7 S 1 S Network S 8 Fröhlich et al., 2007, 2008 Page 17 Holger Fröhlich Algorithmic Bioinformatics

18 Network Inference with the nem-package control=set.default.paramet ers(unique(colnames(d)), type="contmllbayes") mynem = nem(d, inference= ModuleNetwork, control=control, verbose=fals) plot.nem(mynem, SCC=FALS, D=D, draw.lines=tru) Page 18 Holger Fröhlich Algorithmic Bioinformatics

19 Automated Selection of Relevant -Genes (Feature Selection) Motivation: Irrelevant -genes can degrade network estimation accuracy 1. Select -Genes having a positive contribution to the model s log-likelihood only. 2. Re-estimate the network with the new set of -Genes 3. Iterate the process until convergence Page 19 Holger Fröhlich Algorithmic Bioinformatics Fröhlich et al., 2008

20 Network Inference with the nem-package D2 = BoutrosRNAiDiscrete[,9:16] control=set.default.parameters (unique(colnames(d2)), selgenes=tru) mynem2 = nem(d2, inference= triples, control=control, verbose=fals) plot.nem(mynem2, D=D2, draw.lines=tru) Page 20 Holger Fröhlich Algorithmic Bioinformatics

21 Incorporation of Prior Knowledge Bias scoring such that known interactions are considered Bayesian prior on network structure P( Φ ) = P( Φ ) i, j ij ) 1 Φij Φij P( Φ ij ν ) = exp 2ν ν Φ= Signaling Graph Φ = Prior Belief ν = Hyperparameter of Laplace Distribution Complete trust in prior P( Φ ) = P( Φ ν ) P( ν ) dν Page 21 Holger Fröhlich Algorithmic Bioinformatics ij 0 ν ~ InvGamma(1, 0.5) P( Φ ) = ij ν (scale of prior) ij 1 ) ( 1+ 2 Φij Φij ) 2 Complete trust in data Fröhlich et al., 2008

22 Using Prior Knowledge with the nem-package control=set.default.parameters (unique(colnames(d)), selgenes=tru, type= CONTmLLMAP, Pm=diag(4)) mynem3 = nem(d, control=control, verbose=fals) plot.nem(mynem3, SCC=FALS, D=D, draw.lines=tru) Page 22 Holger Fröhlich Algorithmic Bioinformatics

23 Statistical Stability and Significance How stable the inferred network? Do small changes of -genes lead to different network hypotheses? Use non-parametric bootstrap repeat Sample n -genes with replacement Is the inferred network better than random? Randomly permute node labels and look, whether random network has a higher likelihood. R 0.7 S Q P Page 23 Holger Fröhlich Algorithmic Bioinformatics

24 Statistical Stability and Significance How stable the inferred network? Do small changes of -genes lead to different network hypotheses? Use non-parametric bootstrap repeat Sample n -genes with replacement Is the inferred network better than random? Randomly permute node labels and look, whether random network has a higher likelihood. S 0.7 R P Q Page 24 Holger Fröhlich Algorithmic Bioinformatics

25 Statistical Stability and Significance How stable the inferred network? Do small changes of -genes lead to different network hypotheses? Use non-parametric bootstrap repeat Sample n -genes with replacement Is the inferred network better than random? Randomly permute node labels and look, whether random network has a higher likelihood. P 0.7 S R Q Page 25 Holger Fröhlich Algorithmic Bioinformatics

26 Bootstrapping and Significance Calculation with the nem-package control=set.default.parameters (unique(colnames(d)), type= CONTmLLBayes, Pm=diag(4)) mynem.boot = nem.bootstrap(d, nboot=100, control=control) plot.nem(mynem.boot, SCC=FALS, plot.probs=tru) nem.calcsignificance(d, N=1000, mynem.boot) p = (label permutation test) Page 26 Holger Fröhlich Algorithmic Bioinformatics

27 Summary Inference of features of signaling pathways from high dimensional, targeted perturbation effects Different likelihood models Discretized data P-value log-densities Algorithms for inference of large networks Module Networks Triplets Greedy hillclimbing... Possibility to integrate prior knowledge Automatic selection of relevant -genes Various plotting and analysis methods Non-parametric bootstrap Label permutation p-values Page 27 Holger Fröhlich Algorithmic Bioinformatics

28 Acknowledgements Div. Molecular Genome Analyis, DKFZ Bioinformatics: - Tim Beißbarth - Christian Bender - Marc Johannes xpression Profiling - Holger Sültmann - Marc Fellmann - Ruprecht Kuner - Sabrina Belauger Proteomics - Christian Löbke - Özgür Sahin - Dorit Arlt Page 28 Holger Fröhlich Algorithmic Bioinformatics

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Inferring Protein-Signaling Networks II

Inferring Protein-Signaling Networks II Inferring Protein-Signaling Networks II Lectures 15 Nov 16, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Cluster Analysis of Gene Expression Microarray Data. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002

Cluster Analysis of Gene Expression Microarray Data. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002 Cluster Analysis of Gene Expression Microarray Data BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002 1 Data representations Data are relative measurements log 2 ( red

More information

Unsupervised machine learning

Unsupervised machine learning Chapter 9 Unsupervised machine learning Unsupervised machine learning (a.k.a. cluster analysis) is a set of methods to assign objects into clusters under a predefined distance measure when class labels

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

How data assimilation helps to illuminate complex biology

How data assimilation helps to illuminate complex biology How data assimilation helps to illuminate complex biology The dynamic elastic-net Maik Kschischo Department of Mathematics and Technology University of Applied Sciences Koblenz RheinAhrCampus Remagen Joseph-Rovan-Allee

More information

Signaling pathways from RNAi data

Signaling pathways from RNAi data Signaling pathways from RNAi data Florian Markowetz florian.markowetz@molgen.mpg.de Max Planck Institute for Molecular Genetics Computational Diagnostics Group, Germany for IPM workshop Tehran, 2005 April

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Hypothesis testing Machine Learning CSE546 Kevin Jamieson University of Washington October 30, 2018 2018 Kevin Jamieson 2 Anomaly detection You are

More information

Protein Complex Identification by Supervised Graph Clustering

Protein Complex Identification by Supervised Graph Clustering Protein Complex Identification by Supervised Graph Clustering Yanjun Qi 1, Fernanda Balem 2, Christos Faloutsos 1, Judith Klein- Seetharaman 1,2, Ziv Bar-Joseph 1 1 School of Computer Science, Carnegie

More information

Bayesian Hierarchical Classification. Seminar on Predicting Structured Data Jukka Kohonen

Bayesian Hierarchical Classification. Seminar on Predicting Structured Data Jukka Kohonen Bayesian Hierarchical Classification Seminar on Predicting Structured Data Jukka Kohonen 17.4.2008 Overview Intro: The task of hierarchical gene annotation Approach I: SVM/Bayes hybrid Barutcuoglu et al:

More information

Effects of Gap Open and Gap Extension Penalties

Effects of Gap Open and Gap Extension Penalties Brigham Young University BYU ScholarsArchive All Faculty Publications 200-10-01 Effects of Gap Open and Gap Extension Penalties Hyrum Carroll hyrumcarroll@gmail.com Mark J. Clement clement@cs.byu.edu See

More information

Comparative Genomics II

Comparative Genomics II Comparative Genomics II Advances in Bioinformatics and Genomics GEN 240B Jason Stajich May 19 Comparative Genomics II Slide 1/31 Outline Introduction Gene Families Pairwise Methods Phylogenetic Methods

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

Inferring Protein-Signaling Networks

Inferring Protein-Signaling Networks Inferring Protein-Signaling Networks Lectures 14 Nov 14, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022 1

More information

Probabilistic Soft Interventions in Conditional Gaussian Networks

Probabilistic Soft Interventions in Conditional Gaussian Networks Probabilistic Soft Interventions in Conditional Gaussian Networks Florian Markowetz, Steffen Grossmann, and Rainer Spang firstname.lastname@molgen.mpg.de Dept. Computational Molecular Biology Max Planck

More information

Gene Ontology and Functional Enrichment. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein

Gene Ontology and Functional Enrichment. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Gene Ontology and Functional Enrichment Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein The parsimony principle: A quick review Find the tree that requires the fewest

More information

Distributed detection of topological changes in communication networks. Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson

Distributed detection of topological changes in communication networks. Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson 1 Distributed detection of topological changes in communication networks Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson Thanks to... 2 The need: detecting changes in topological networks 3 The

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Graph Wavelets to Analyze Genomic Data with Biological Networks

Graph Wavelets to Analyze Genomic Data with Biological Networks Graph Wavelets to Analyze Genomic Data with Biological Networks Yunlong Jiao and Jean-Philippe Vert "Emerging Topics in Biological Networks and Systems Biology" symposium, Swedish Collegium for Advanced

More information

Mixture models for analysing transcriptome and ChIP-chip data

Mixture models for analysing transcriptome and ChIP-chip data Mixture models for analysing transcriptome and ChIP-chip data Marie-Laure Martin-Magniette French National Institute for agricultural research (INRA) Unit of Applied Mathematics and Informatics at AgroParisTech,

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Discovering molecular pathways from protein interaction and ge

Discovering molecular pathways from protein interaction and ge Discovering molecular pathways from protein interaction and gene expression data 9-4-2008 Aim To have a mechanism for inferring pathways from gene expression and protein interaction data. Motivation Why

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 15: MCMC Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Course progress Learning from examples Definition + fundamental theorem of statistical learning,

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

Bioinformatics tools for phylogeny and visualization. Yanbin Yin

Bioinformatics tools for phylogeny and visualization. Yanbin Yin Bioinformatics tools for phylogeny and visualization Yanbin Yin 1 Homework assignment 5 1. Take the MAFFT alignment http://cys.bios.niu.edu/yyin/teach/pbb/purdue.cellwall.list.lignin.f a.aln as input and

More information

Causal Graphical Models in Systems Genetics

Causal Graphical Models in Systems Genetics 1 Causal Graphical Models in Systems Genetics 2013 Network Analysis Short Course - UCLA Human Genetics Elias Chaibub Neto and Brian S Yandell July 17, 2013 Motivation and basic concepts 2 3 Motivation

More information

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017 Permuted and IROM Department, McCombs School of Business The University of Texas at Austin 39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017 1 / 36 Joint work

More information

Network alignment and querying

Network alignment and querying Network biology minicourse (part 4) Algorithmic challenges in genomics Network alignment and querying Roded Sharan School of Computer Science, Tel Aviv University Multiple Species PPI Data Rapid growth

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Inferring Transcriptional Regulatory Networks from High-throughput Data

Inferring Transcriptional Regulatory Networks from High-throughput Data Inferring Transcriptional Regulatory Networks from High-throughput Data Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Comparative Network Analysis

Comparative Network Analysis Comparative Network Analysis BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 71. Decide in each case whether the hypothesis is simple

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

ABCME: Summary statistics selection for ABC inference in R

ABCME: Summary statistics selection for ABC inference in R ABCME: Summary statistics selection for ABC inference in R Matt Nunes and David Balding Lancaster University UCL Genetics Institute Outline Motivation: why the ABCME package? Description of the package

More information

Bayesian Networks to design optimal experiments. Davide De March

Bayesian Networks to design optimal experiments. Davide De March Bayesian Networks to design optimal experiments Davide De March davidedemarch@gmail.com 1 Outline evolutionary experimental design in high-dimensional space and costly experimentation the microwell mixture

More information

Phylogenetic relationship among S. castellii, S. cerevisiae and C. glabrata.

Phylogenetic relationship among S. castellii, S. cerevisiae and C. glabrata. Supplementary Note S2 Phylogenetic relationship among S. castellii, S. cerevisiae and C. glabrata. Phylogenetic trees reconstructed by a variety of methods from either single-copy orthologous loci (Class

More information

Conditional variable importance in R package extendedforest

Conditional variable importance in R package extendedforest Conditional variable importance in R package extendedforest Stephen J. Smith, Nick Ellis, C. Roland Pitcher February 10, 2011 Contents 1 Introduction 1 2 Methods 2 2.1 Conditional permutation................................

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

O 3 O 4 O 5. q 3. q 4. Transition

O 3 O 4 O 5. q 3. q 4. Transition Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Inferring Transcriptional Regulatory Networks from Gene Expression Data II

Inferring Transcriptional Regulatory Networks from Gene Expression Data II Inferring Transcriptional Regulatory Networks from Gene Expression Data II Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Physical network models and multi-source data integration

Physical network models and multi-source data integration Physical network models and multi-source data integration Chen-Hsiang Yeang MIT AI Lab Cambridge, MA 02139 chyeang@ai.mit.edu Tommi Jaakkola MIT AI Lab Cambridge, MA 02139 tommi@ai.mit.edu September 30,

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Data Envelopment Analysis with metaheuristics

Data Envelopment Analysis with metaheuristics Data Envelopment Analysis with metaheuristics Juan Aparicio 1 Domingo Giménez 2 José J. López-Espín 1 Jesús T. Pastor 1 1 Miguel Hernández University, 2 University of Murcia ICCS, Cairns, June 10, 2014

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Post-exam 2 practice questions 18.05, Spring 2014

Post-exam 2 practice questions 18.05, Spring 2014 Post-exam 2 practice questions 18.05, Spring 2014 Note: This is a set of practice problems for the material that came after exam 2. In preparing for the final you should use the previous review materials,

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

Unravelling the biochemical reaction kinetics from time-series data

Unravelling the biochemical reaction kinetics from time-series data Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute Email: schnell@indiana.edu WWW: http://www.informatics.indiana.edu/schnell

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Consensus and Distributed Inference Rates Using Network Divergence

Consensus and Distributed Inference Rates Using Network Divergence DIMACS August 2017 1 / 26 Consensus and Distributed Inference Rates Using Network Divergence Anand D. Department of Electrical and Computer Engineering, The State University of New Jersey August 23, 2017

More information

Nonparametric Regression With Gaussian Processes

Nonparametric Regression With Gaussian Processes Nonparametric Regression With Gaussian Processes From Chap. 45, Information Theory, Inference and Learning Algorithms, D. J. C. McKay Presented by Micha Elsner Nonparametric Regression With Gaussian Processes

More information

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001).

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference:

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Comparing Bayesian Networks and Structure Learning Algorithms

Comparing Bayesian Networks and Structure Learning Algorithms Comparing Bayesian Networks and Structure Learning Algorithms (and other graphical models) marco.scutari@stat.unipd.it Department of Statistical Sciences October 20, 2009 Introduction Introduction Graphical

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM Lecture 9 SEM, Statistical Modeling, AI, and Data Mining I. Terminology of SEM Related Concepts: Causal Modeling Path Analysis Structural Equation Modeling Latent variables (Factors measurable, but thru

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary information S1 (box). Supplementary Methods description. Prokaryotic Genome Database Archaeal and bacterial genome sequences were downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/)

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Inferring Causal Phenotype Networks from Segregating Populat

Inferring Causal Phenotype Networks from Segregating Populat Inferring Causal Phenotype Networks from Segregating Populations Elias Chaibub Neto chaibub@stat.wisc.edu Statistics Department, University of Wisconsin - Madison July 15, 2008 Overview Introduction Description

More information

Beyond Uniform Priors in Bayesian Network Structure Learning

Beyond Uniform Priors in Bayesian Network Structure Learning Beyond Uniform Priors in Bayesian Network Structure Learning (for Discrete Bayesian Networks) scutari@stats.ox.ac.uk Department of Statistics April 5, 2017 Bayesian Network Structure Learning Learning

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

An Empirical-Bayes Score for Discrete Bayesian Networks

An Empirical-Bayes Score for Discrete Bayesian Networks An Empirical-Bayes Score for Discrete Bayesian Networks scutari@stats.ox.ac.uk Department of Statistics September 8, 2016 Bayesian Network Structure Learning Learning a BN B = (G, Θ) from a data set D

More information

Inferring Models of cis-regulatory Modules using Information Theory

Inferring Models of cis-regulatory Modules using Information Theory Inferring Models of cis-regulatory Modules using Information Theory BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 28 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material,

More information

Session 5B: A worked example EGARCH model

Session 5B: A worked example EGARCH model Session 5B: A worked example EGARCH model John Geweke Bayesian Econometrics and its Applications August 7, worked example EGARCH model August 7, / 6 EGARCH Exponential generalized autoregressive conditional

More information

How To Use CORREP to Estimate Multivariate Correlation and Statistical Inference Procedures

How To Use CORREP to Estimate Multivariate Correlation and Statistical Inference Procedures How To Use CORREP to Estimate Multivariate Correlation and Statistical Inference Procedures Dongxiao Zhu June 13, 2018 1 Introduction OMICS data are increasingly available to biomedical researchers, and

More information

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies 1 What is phylogeny? Essay written for the course in Markov Chains 2004 Torbjörn Karfunkel Phylogeny is the evolutionary development

More information

Permutation Test for Bayesian Variable Selection Method for Modelling Dose-Response Data Under Simple Order Restrictions

Permutation Test for Bayesian Variable Selection Method for Modelling Dose-Response Data Under Simple Order Restrictions Permutation Test for Bayesian Variable Selection Method for Modelling -Response Data Under Simple Order Restrictions Martin Otava International Hexa-Symposium on Biostatistics, Bioinformatics, and Epidemiology

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules

Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules Matteo Bersanelli 1+, Ettore Mosca 2+, Daniel Remondini 1, Gastone Castellani 1 and Luciano

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Spectral Alignment of Networks Soheil Feizi, Gerald Quon, Muriel Medard, Manolis Kellis, and Ali Jadbabaie

Spectral Alignment of Networks Soheil Feizi, Gerald Quon, Muriel Medard, Manolis Kellis, and Ali Jadbabaie Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-205-005 February 8, 205 Spectral Alignment of Networks Soheil Feizi, Gerald Quon, Muriel Medard, Manolis Kellis, and

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Concepts and Methods in Molecular Divergence Time Estimation

Concepts and Methods in Molecular Divergence Time Estimation Concepts and Methods in Molecular Divergence Time Estimation 26 November 2012 Prashant P. Sharma American Museum of Natural History Overview 1. Why do we date trees? 2. The molecular clock 3. Local clocks

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information