Numerical simulation of leakage effect for quantum NOT operation on three-josephson-junction flux qubit

Size: px
Start display at page:

Download "Numerical simulation of leakage effect for quantum NOT operation on three-josephson-junction flux qubit"

Transcription

1 Numerical simulation of leakage effect for quantum NOT oeration on three-josehson-junction flux qubit 1 Tao Wu, 1 Jianshe Liu, 2 Zheng Li 1 Institute of Microelectronics, Tsinghua University, Beijing Deartment of Electronic Engineering, Tsinghua University, Beijing 184 Suerconducting flux qubits with three Josehson junctions are romising candidates for the building blocks of a quantum comuter. We have alied the imaginary time evolution method to study the model of this qubit accurately by calculating its wave functions and eigenenergies. Because such qubits are maniulated with magnetic flux microwave ulses they might be irradiated into non-comutational states which is called the leakage effect. Through the evolution of the density matrix of the qubit under either hard-shaed π-ulse or Gaussian-shaed π-ulse to carry out quantum NOT oeration,it has been demonstrated that the leakage effect for a flux qubit is very small even for hard-shaed microwave ulses while Gaussian-shaed ulses may suress the leakage effect to a negligible level. PACS number(s): r, 3.67.Lx, C Suerconducting qubits [1, 2] are solid-state macroscoic systems conforming to the rinciles of quantum mechanics at ultra low temeratures. They can be comatibly fabricated in a microelectronic rocess line and easily maniulated by on-chi microwave currents or flux ulses, which make them romising candidates for the building blocks of a quantum comuter. [3] For suerconducting flux qubits, [4-9] the magnetic flux is the convenient arameter to mark and control their eigenstates. Flux qubits are insensitive to background charge fluctuations but relatively fragile to magnetic flux noise comared to suerconducting charge [1, 11] and hase [12, 13] qubits. Quantum suerosition in the sectroscoy [6] and Rabi oscillations of a flux qubit in the time domain [7] have been observed. Leakage effect [13-15] of a flux qubit during quantum oerations means that the qubit escaes into non-comutational subsaces. This effect of hase qubits has been discussed, [13, 14] and insired by Lin in Ref. [15] we numerically study it for a flux qubit in this letter. This work is based uon the calculation of the eigenstates of a single flux qubit using the imaginary time evolution method [16-19] and the evolution of its density matrix under magnetic flux ulse erturbation. It has been revealed that the oulations irradiated to the second and third excited states are extremely small for Gaussian-shaed ulses and also unimortant for hard-shaed ulses, thus there is no need to consider other excited states because the leakage to higher energy levels are much smaller and therefore negligible

2 A three-josehson-junction (3JJ) flux qubit is comosed of a suerconducting loo interruted by three Josehson junctions [4-6] as shown in Fig.1s. Junctions 1 and 2 have equal areas while junction 3 is α (<α<1) times smaller. The critical currents for them are I c, I c and αi c, resectively. The loo is biased by a magnetic flux fφ, where f is the flux frustration, Φ =h/(2e) is the suerconducting flux quantum, e is the electron charge, and h is Planck costant. The qubit can be reduced to a two-level system when f is in the vicinity of n+1/2 with n an integer. Neglecting the loo inductance, the Hamiltonian of the system can be written as [5] 1 rt 1 r H = M + EJ [2 + α cos( ϕ1) cos( ϕ2) αcos(2 π f + ϕ1 ϕ2)], (1) where Φ α α + r r T T M= C j, = Mϕ&, i.e., ( 1 2) = M ( & ϕ & 1 ϕ2) and 2π α 1+ α E /(2 ) J = IcΦ π is the Josehson energy for junction 1 and 2. Eq. (1) can be exressed exlicitly as 2 + α) π 2 2 2α 1 2 ( 1 2 ) + α ) C Φ 1+ α + EJ α ϕ1 ϕ2 α π f ϕ1 ϕ2 (1 2 H = + + 2(1 2 J [2 + cos( ) cos( ) cos(2 + )]. (2) It is different from the usual one as in Ref. 5 because the Hamiltonian remains in the original frame without transformation. We have utilized the fourth order imaginary time evolution method [16-19] to calculate the above Hamiltonian. TableⅠshows the eigen-energies of the qubit for f =.5 and f =.495. Figs. 2A-B illustrate the ground state and first excited state 1 for f =.5, Figs. 2C-D show and 1 for f=.495, and Figs. 2E-F show the second excited state 2 and third excited state 3 for f=.495. We choose in the comutation α=.8, E J = GHz and C J =7.765 ff. Table Ⅰ. The energies E i for the lowest four eigenstates with two values of f. The energies are in units of GHz. f E E 1 E 2 E The wave functions of and 1 for f=.5 are symmetric and anti-symmetric, resectively, and they quickly lose the symmetry when f deviates from this degenerate oint. To achieve larger suercurrents for readout, we bias the qubit at f=.495, where the wave functions of and 1 aear localized in two searate wells as shown in Figs. 2C and 2D. Based on these results, we have studied the leakage effect during a quantum NOT oeration uon one flux qubit with microwave magnetic flux ulse oerations. The interaction term W(t) between the microwave field and the qubit can be considered as a erturbation on the original Hamiltonian in Eq. (2), or an external microwave magnetic flux erturbation fµ ()cos t ( ωt) Φon the flux bias fφ threading the loo, - 2 -

3 i.e., W() t 2παE f ( t) cos( ω t) sin( 2π f + ϕ ϕ ), (3) J µ 1 2 where fµ ( t) << f and ω = ( E1 E )/ h. From now on, we denote by h ω the energy unit. In the Hilbert sace saned by the eigenstates, 1, 2 and 3, the interaction W(t) can be written as a 4 4 matrix: W = F( ) M cos( ), where = ω t /(2 π), F( ) = 2πα EJ f µ ( ), and M is a 4 4 matrix with Mi, j= i 1sin( 2π f + ϕ1 ϕ2) j 1 for i, j=1,2,3,4. Note that F() is controllable in exeriments. In the comutational sace, the oulation inversion between the ground state and the first excited state deends on the effective matrix element M 1,2 and M 2,1, i.e.,.339. A quantum NOT oeration can be achieved by a microwave π-ulse with duration, which requires ( ) 1,2 F M d = 1/2. (4) The hard-shaed ulse has constant microwave amlitude, and Eq. (4) yields F( ) = 1/(2 M1,2) for.for the Gaussian-shaed ulse, [15,16] one has 2 F( )=( 1/ 2M1,2 )( 1/ 2πw) ex( ( / 2) / 2 w) for, where w is the characteristic width of the Gaussian ulse chosen between.167 and.1. [2] The evolution of the qubit under irradiation can be described in the interaction icture by the Liouville equation: [21] 1 ( ) i ρ( ) / = 2 π[ H, ρ( )]. (5) Here H1 ( ) is a matrix with ( ) ex, ( 2 π( ) i j ) k ( E E )/ ( ω ) H = i k k W, where 1 i j i, j 3 i = i 1 h. Choosing a time ste small enough (e.g., 1 ), we can integrate the equation to obtain the density matrix for a given time. The element ρ at the end denotes the robability P i of the system in state i, i=1, 2, 3, 4. Table ii, Ⅱshows the final values of the leaking oulations for three time durations of ulses. Fig. 3 illustrates the leakage effect during the oerations for =4 (i.e., 45.5ns). Table Ⅱ. The oulations (P i ) of the lowest four levels after the microwave magnetic flux irradiations with Hard-shaed ulses (on the left of / ) and with Gaussian-shaed ulses (on the right of / ). =1 =2 =4 P 2 1.3e-5/4.6e-8 2.5e-6/1.4e-8 1.5e-6/4.2e-9 P 3 2.9e-6/5.e-8 1.e-6/1.e-8 3.3e-7/1.8e-9 It is revealed that Gaussian-shaed π-ulse inhibit leakage effects 1 better than hard-shaed π-ulse, which is as remarkable as that in the case of hase qubits. [13] Also, longer durations reduce the leakage. However, leakage is very small during this - 3 -

4 oeration even for hard-shaed ulses. In conclusion, we have solved the eigen-functions and eigen-energies of a 3JJ flux qubit by the imaginary time evolution method and studied the leakage effect during the quantum NOT oeration through the evolution of its density matrix. It has been demonstrated that the leakage effect for a flux qubit is very small even for hard-shaed microwave ulses while Gaussian-shaed ulses may suress the leakage effect to a negligible level. We gratefully areciate Johnson P R and Strauch F W in NIST for their instructions about the imaginary time evolution method. Discussions with Wang Ji-lin, Li Tie-fu, Chen Pei-yi, Yu Zhi-ing and Li Zhi-jian are acknowledged. This work is suorted by the 211 Program of Nanoelectronics of Tsinghua University (21651). References [1] Makhlin Yu, Schön G and Shnirman A 21 Rev. Mod. Phys. 73, 357 [2] Devoret M H and Martinis J M 24 Quantum Information Processing 3, 163. [3] Nielsen M A and Chuang I L 2 Quantum Comutation and Quantum Information (Cambridge: Cambridge University Press, UK) [4] Mooij J E et al Science 285, 136 [5] Orlando T P et al Phys. Rev. B 6, [6] van der Wal C H et al. 2 Science 29, 773 [7] Chiorescu I, Nakamura Y, Harmans C J and Mooij J E 23 Science 299, 1869 [8] Greenberg Y S et al. 22 Phys. Rev. B 66, ; 22 ibid 66, ; 23 ibid 68, [9] You J Q, Nakamura Y and Nori Franco 25 Phys. Rev. B 71, [1] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398, 768 [11] Vion D et al. 22 Science 296, 886 [12] Martinis J M, Nam S, Aumentado J and Urbina C 22 Phys. Rev. Lett. 89, [13] Steffen M, Martinis J M and Chuang I L 23 Phys. Rev. B 68, [14] Amin M H, cond-mat/478 [15] Tian L, Ph. D. thesis 22 MIT [16] Johnson P R et al. 23 Phys. Rev. B 67, 259 [17] Auer J, Krotscheck E and Chin S A 21 J. Chem. Phys. 115, 6841; Krotscheck E et al. 23 International Journal of Modern Physics B 17, 5459 [18] Takahashi K and Ikeda K 1993 J. Chem. Phys. 99, 868 [19] Feit M D, Flek J A, Jr. and Steiger A 1982 J. Comut. Phys. 47, 412 [2] This choice is based uon the aroximation 2 2 ( ) ex ( / 2) / 2 d 2π w w - 4 -

5 with = k w and k 6 1. [21] Blum Karl 1981 Density Matrix Theory and Alications (NewYork: Plenum Press) Figure Cations Fig. 1. One flux qubit with crosses reresenting Josehson junctions. C J1, C J2 and C J3 are the equivalent caacitances of the junctions with C J1 =C J2 =C J and C J3 =αc J. Fig. 2. (A-B)Ground state and first excited state 1 for f=.5. (C-F), 1, second excited state 2 and third excited state 3 for f =.495. Fig. 3 Poulation of (P, solid line), 1 (P 1,dashed line), 2 (P 2, solid line) and 3 (P 3, dashed line) after (A-B) the hard-shaed π-ulse and (C-D) the Gaussian-shaed π-ulse. The ulse duration is =4. Fig. 1 Fig

6 Fig

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 81 20 JULY 1998 NUMBER 3 Searated-Path Ramsey Atom Interferometer P. D. Featonby, G. S. Summy, C. L. Webb, R. M. Godun, M. K. Oberthaler, A. C. Wilson, C. J. Foot, and K.

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Influence of Pulse width and Rabi frequency on the Population dynamics

Influence of Pulse width and Rabi frequency on the Population dynamics Influence of Pulse width and Rabi frequency on the Poulation dynamics of three-level system in two-hoton absortion rocess Nam-Chol Kim,,* Myong-Chol Ko, Song-Jin Im, Zhong-Hua Hao Deartment of Physics,

More information

dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter

dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter D. S. Crankshaw, K. Segall, D. Nakada, and T. P. Orlando Department of Electrical Engineering

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms

Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms Article Atomic & Molecular Physics June 2013 Vol.58 No.16: 18761881 doi: 10.1007/s11434-013-5789-z Distribution of oulations in excited states of electrodeless discharge lam of Rb atoms TAO ZhiMing 1,2,

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Superconducting Circuits and Quantum Information

Superconducting Circuits and Quantum Information Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and

More information

Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation

Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation PHYSICAL REVIEW A 70, 05315 (4) Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation Andrew T. Sornborger, 1 Andrew N. Clel, Michael R. eller 3 1 Department

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcdf.org) This is an electronic rerint of the original article. This rerint may differ from the original in agination and tyograhic detail. Kivioja, J. M.; Nieminen, T. E.; Claudon,

More information

Designing Principles of Molecular Quantum. Interference Effect Transistors

Designing Principles of Molecular Quantum. Interference Effect Transistors Suorting Information for: Designing Princiles of Molecular Quantum Interference Effect Transistors Shuguang Chen, GuanHua Chen *, and Mark A. Ratner * Deartment of Chemistry, The University of Hong Kong,

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Spin Diffusion and Relaxation in a Nonuniform Magnetic Field.

Spin Diffusion and Relaxation in a Nonuniform Magnetic Field. Sin Diffusion and Relaxation in a Nonuniform Magnetic Field. G.P. Berman, B. M. Chernobrod, V.N. Gorshkov, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 V.I. Tsifrinovich

More information

Circuit theory for decoherence in superconducting charge qubits

Circuit theory for decoherence in superconducting charge qubits PHYSICAL REVIEW B 7, 445 005 Circuit theory for decoherence in superconducting charge qubits Guido Burkard IBM. J. Watson Research Center, P. O. Box 8, Yorktown Heights, New York 0598, USA Received 6 August

More information

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE ANALYTICAL MODEL FOR THE BYPASS ALE IN A LOOP HEAT PIPE Michel Seetjens & Camilo Rindt Laboratory for Energy Technology Mechanical Engineering Deartment Eindhoven University of Technology The Netherlands

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

Abstract. We perform a perturbative QCD analysis of the quark transverse momentum

Abstract. We perform a perturbative QCD analysis of the quark transverse momentum BIHEP-TH-96-09 The erturbative ion-hoton transition form factors with transverse momentum corrections Fu-Guang Cao, Tao Huang, and Bo-Qiang Ma CCAST (World Laboratory), P.O.Box 8730, Beijing 100080, China

More information

Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid State Circuits

Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid State Circuits Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid State Circuits The Harvard community has made this article oenly available. Please share how this access benefits you. Your story

More information

arxiv: v1 [quant-ph] 22 Sep 2010

arxiv: v1 [quant-ph] 22 Sep 2010 Landau-Zener-Stückelberg Spectroscopy of a Superconducting Flux Qubit Shuang Xu and Yang Yu National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 9,

More information

Controlled-NOT logic gate for phase qubits based on conditional spectroscopy

Controlled-NOT logic gate for phase qubits based on conditional spectroscopy Quantum Inf Process (2012) 11:1349 1357 DOI 10.1007/s11128-011-0274-6 Controlled-NOT logic gate for phase qubits based on conditional spectroscopy Joydip Ghosh Michael R. Geller Received: 19 May 2011 /

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

State tomography of capacitively shunted phase qubits with high fidelity. Abstract State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,

More information

Constructing two-qubit gates with minimal couplings

Constructing two-qubit gates with minimal couplings Constructing two-qubit gates with minimal couplings Citation As Published Publisher Yuan, Haidong et al. Constructing two-qubit gates with minimal couplings. Physical Review A 79.4 (2009): 042309.(C) 2010

More information

Quantum information processing with superconducting qubits in a microwave field

Quantum information processing with superconducting qubits in a microwave field PHYSICAL REVIEW B 68, 064509 2003 Quantum information processing superconducting qubits in a microwave field J. Q. You 1,2,3 and Franco Nori 1,2, * 1 Frontier Research System, The Institute of Physical

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Zhongyuan Zhou* and Shih-I Chu Department of Chemistry, University of Kansas, Lawrence, Kansas 66045

Zhongyuan Zhou* and Shih-I Chu Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 Quantum computing with superconducting devices: A three-level SQUID qubit Zhongyuan Zhou* and Shih-I Chu Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 Siyuan Han Department of Physics

More information

Theory of magnetic oscillations in Josephson-junction stacks

Theory of magnetic oscillations in Josephson-junction stacks Physica C 437 438 (2006) 157 161 www.elsevier.com/locate/hysc Theory of magnetic oscillations in Josehson-junction stacks A.E. Koshelev Materials Science Division, Argonne National Laboratory, Argonne,

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Storage and Retrieval of a Weak Optical Signal Improved by Spontaneously Generated Coherence in an Atomic Assemble

Storage and Retrieval of a Weak Optical Signal Improved by Spontaneously Generated Coherence in an Atomic Assemble Commun. Theor. Phys. 57 (2012) 463 467 Vol. 57, No. 3, March 15, 2012 Storage and Retrieval of a Weak Otical Signal Imroved by Sontaneously Generated Coherence in an Atomic Assemble ZHENG Tao (Ü ), 1 QIU

More information

Dielectric losses in multi-layer Josephson junction qubits

Dielectric losses in multi-layer Josephson junction qubits Dielectric losses in multi-layer Josephson junction qubits David Gunnarsson 1, Juha-Matti Pirkkalainen 2, Jian Li 2, Gheorghe Sorin Paraoanu 2, Pertti Hakonen 2, Mika Sillanpää 2, and Mika Prunnila 1.

More information

A Note on Massless Quantum Free Scalar Fields. with Negative Energy Density

A Note on Massless Quantum Free Scalar Fields. with Negative Energy Density Adv. Studies Theor. Phys., Vol. 7, 13, no. 1, 549 554 HIKARI Ltd, www.m-hikari.com A Note on Massless Quantum Free Scalar Fields with Negative Energy Density M. A. Grado-Caffaro and M. Grado-Caffaro Scientific

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Sillanpää, Mika; Li, Jian; Cicak,

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Implementation of the Four-Bit Deutsch Jozsa Algorithm with Josephson Charge Qubits

Implementation of the Four-Bit Deutsch Jozsa Algorithm with Josephson Charge Qubits phys. stat. sol. (b) 233, No. 3, 482 489 (2002) Implementation of the Four-Bit Deutsch Jozsa Algorithm with Josephson Charge Qubits N. Schuch ) and J. Siewert*) Institut für Theoretische Physik, Universität

More information

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System.

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System. Velocity Changing and Dehasing collisions Effect on electromagnetically induced transarency in V-tye Three level Atomic System. Anil Kumar M. and Suneel Singh University of Hyderabad, School of hysics,

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit Fortschr. Phys. 51, No. 4 5, 462 468 (2003) / DOI 10.1002/prop.200310063 Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit D. Vion 1, A. Aassime 1, A. Cottet 1,P.Joyez 1, H. Pothier

More information

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation Uniformly best wavenumber aroximations by satial central difference oerators: An initial investigation Vitor Linders and Jan Nordström Abstract A characterisation theorem for best uniform wavenumber aroximations

More information

Beam-Beam Stability in Electron-Positron Storage Rings

Beam-Beam Stability in Electron-Positron Storage Rings Beam-Beam Stability in Electron-Positron Storage Rings Bjoern S. Schmekel, Joseh T. Rogers Cornell University, Deartment of Physics, Ithaca, New York 4853, USA Abstract At the interaction oint of a storage

More information

Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic quantum dot

Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic quantum dot PRAMANA c Indian Academy of Sciences Vol. 81, No. 5 journal of November 013 physics pp. 865 871 Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

arxiv: v1 [quant-ph] 19 Apr 2008

arxiv: v1 [quant-ph] 19 Apr 2008 Maximally entangling tripartite protocols for Josephson phase qubits Andrei Galiautdinov Department of Physics and Astronomy, University of Georgia, Athens, Georgia 060 John M. Martinis Department of Physics,

More information

Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit

Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit PHYSICAL REVIEW A 71, 06380 005 Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit Yu-xi Liu, 1 L. F. Wei, 1, and Franco Nori 1,3 1

More information

Ordered and disordered dynamics in random networks

Ordered and disordered dynamics in random networks EUROPHYSICS LETTERS 5 March 998 Eurohys. Lett., 4 (6),. 599-604 (998) Ordered and disordered dynamics in random networks L. Glass ( )andc. Hill 2,3 Deartment of Physiology, McGill University 3655 Drummond

More information

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA)

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) Note: SFA will automatically be taken to mean Coulomb gauge (relativistic or non-diole) or VG (nonrelativistic, diole-aroximation). If LG is intended (rarely),

More information

Accurate control of Josephson phase qubits

Accurate control of Josephson phase qubits Accurate control of Josephson phase qubits Matthias Steffen, 1,2, * John M. Martinis, 3 and Isaac L. Chuang 1 1 Center for Bits and Atoms and Department of Physics, MIT, Cambridge, Massachusetts 02139,

More information

Encoding a logical qubit into physical qubits

Encoding a logical qubit into physical qubits Encoding a logical qubit into physical qubits B. Zeng, 1, * D. L. Zhou, 2,3 Z. Xu, 1 C. P. Sun, 2 and L. You 2,3 1 Department of Physics, Tsinghua University, Beijing 100084, Peoples Republic of China

More information

Oil Temperature Control System PID Controller Algorithm Analysis Research on Sliding Gear Reducer

Oil Temperature Control System PID Controller Algorithm Analysis Research on Sliding Gear Reducer Key Engineering Materials Online: 2014-08-11 SSN: 1662-9795, Vol. 621, 357-364 doi:10.4028/www.scientific.net/kem.621.357 2014 rans ech Publications, Switzerland Oil emerature Control System PD Controller

More information

Control the high-order harmonics cutoff through the. combination of chirped laser and static electric field

Control the high-order harmonics cutoff through the. combination of chirped laser and static electric field Control the high-order harmonics cutoff through the combination of chired laser and static electric field Yang Xiang,, Yueing iu Shangqing Gong State Key Laboratory of High Field Laser Physics, Shanghai

More information

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Chin. Phys. B Vol. 19, No. 1 010) 010305 Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Li Zhi-Jian 李志坚 ), Cheng Lu 程璐 ), and Wen Jiao-Jin

More information

Ramsey fringe measurement of decoherence in a novel superconducting quantum bit based on the Cooper pair box

Ramsey fringe measurement of decoherence in a novel superconducting quantum bit based on the Cooper pair box Ramsey fringe measurement of decoherence in a novel superconducting quantum bit based on the Cooper pair box D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and M.H. Devoret

More information

Temperature, current and doping dependence of non-ideality factor for pnp and npn punch-through structures

Temperature, current and doping dependence of non-ideality factor for pnp and npn punch-through structures Indian Journal of Pure & Alied Physics Vol. 44, December 2006,. 953-958 Temerature, current and doing deendence of non-ideality factor for n and nn unch-through structures Khurshed Ahmad Shah & S S Islam

More information

The oerators a and a obey the commutation relation Proof: [a a ] = (7) aa ; a a = ((q~ i~)(q~ ; i~) ; ( q~ ; i~)(q~ i~)) = i ( ~q~ ; q~~) = (8) As a s

The oerators a and a obey the commutation relation Proof: [a a ] = (7) aa ; a a = ((q~ i~)(q~ ; i~) ; ( q~ ; i~)(q~ i~)) = i ( ~q~ ; q~~) = (8) As a s They can b e used to exress q, and H as follows: 8.54: Many-body henomena in condensed matter and atomic hysics Last modied: Setember 4, 3 Lecture. Coherent States. We start the course with the discussion

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

arxiv: v1 [quant-ph] 13 Apr 2011

arxiv: v1 [quant-ph] 13 Apr 2011 Quantum refrigerator driven by current noise Yi-Xin Chen 1, and Sheng-Wen Li 1,2 1 Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China 2 Kavli Institute for Theoretical Physics

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

Dressed relaxation and dephasing in a strongly driven two-level system

Dressed relaxation and dephasing in a strongly driven two-level system PHYSICAL REVIEW B 81, 0450 010 Dressed relaxation and dephasing in a strongly driven two-level system C. M. Wilson,* G. Johansson, T. Duty, F. Persson, M. Sandberg, and P. Delsing Department of Microtechnology

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

All-fiber Optical Parametric Oscillator

All-fiber Optical Parametric Oscillator All-fiber Otical Parametric Oscillator Chengao Wang Otical Science and Engineering, Deartment of Physics & Astronomy, University of New Mexico Albuquerque, NM 87131-0001, USA Abstract All-fiber otical

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of Josehson vortex cores S1. Descrition of the Ginzburg-Landau simulations The framework for the theoretical simulations in this aer is the henomenological Ginzburg-Landau (GL) theory.

More information

Stopping single photons in one-dimensional circuit quantum electrodynamics systems

Stopping single photons in one-dimensional circuit quantum electrodynamics systems Stopping single photons in one-dimensional circuit quantum electrodynamics systems Jung-Tsung Shen, M. L. Povinelli, Sunil Sandhu, and Shanhui Fan* Ginzton Laboratory, Stanford University, Stanford, California

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

Introduction to Landau s Fermi Liquid Theory

Introduction to Landau s Fermi Liquid Theory Introduction to Landau s Fermi Liquid Theory Erkki Thuneberg Deartment of hysical sciences University of Oulu 29 1. Introduction The rincial roblem of hysics is to determine how bodies behave when they

More information

1. A few weeks ago you recorded one of the two NMR spectra below. Explain briefly the necessary procedure to record such beautiful spectra!

1. A few weeks ago you recorded one of the two NMR spectra below. Explain briefly the necessary procedure to record such beautiful spectra! llowed aids: en/encil, eraser, ruler, calculator You may answer in English or Swedish. few weeks ago you recorded one of the two NMR sectra below. Exlain briefly the necessary rocedure to record such beautiful

More information

CSE 599d - Quantum Computing When Quantum Computers Fall Apart

CSE 599d - Quantum Computing When Quantum Computers Fall Apart CSE 599d - Quantum Comuting When Quantum Comuters Fall Aart Dave Bacon Deartment of Comuter Science & Engineering, University of Washington In this lecture we are going to begin discussing what haens to

More information

arxiv: v1 [quant-ph] 14 Jul 2009

arxiv: v1 [quant-ph] 14 Jul 2009 Quantum Jump Approach to Switching Process of a Josephson Junction Coupled to a Microscopic Two-Level System arxiv:97.2319v1 [quant-ph] 14 Jul 29 Xueda Wen, 1 Yiwen Wang, 1 Ning Dong, 1 Guozhu Sun, 2 Jian

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

The time and space characteristics of magnetomotive force in the cascaded linear induction motor

The time and space characteristics of magnetomotive force in the cascaded linear induction motor J. Mod. Transort. (13) 1(3):194 199 DOI 1.17/s434-13-18-7 The time and sace characteristics of magnetomotive force in the cascaded linear induction motor Dajing Zhou Jiaqing Ma Lifeng Zhao Xiao Wan Yong

More information

Problem set 6 for Quantum Field Theory course

Problem set 6 for Quantum Field Theory course Problem set 6 or Quantum Field Theory course 2018.03.13. Toics covered Scattering cross-section and decay rate Yukawa theory and Yukawa otential Scattering in external electromagnetic ield, Rutherord ormula

More information

Superconducting qubits

Superconducting qubits Superconducting qubits Franco Nori Physics Dept., The University of Michigan, Ann Arbor, USA Group members: Frontier Research System, RIKEN, Japan Yu-xi Liu, L.F. Wei, S. Ashhab, J.R. Johansson Collaborators:

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

2 Introduction The quantum measurement is an essential ingredient of investigations of quantum coherent eects. In particular, it is needed to probe ma

2 Introduction The quantum measurement is an essential ingredient of investigations of quantum coherent eects. In particular, it is needed to probe ma READING-OUT A QUANTUM STATE: AN ANALYSIS OF THE QUANTUM MEASUREMENT PROCESS Yu. Makhlin Institut fur Theoretische Festkorperphysik, Universitat Karlsruhe, D-76128 Karlsruhe Landau Institute for Theoretical

More information

Superconducting persistent-current qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J.

Superconducting persistent-current qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J. University of Groningen Superconducting persistent-current qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J. Published in: Physical Review B DOI:

More information

Emittance Growth Caused by Surface Roughness

Emittance Growth Caused by Surface Roughness Emittance Growth Caused by Surface Roughness he hang, Chuanxiang Tang Tsinghua University, Beijing Oct. 17th, 2016 Motivation What causes the emittance growth Dowell s equations of QE & emittance for bulk

More information

On the q-deformed Thermodynamics and q-deformed Fermi Level in Intrinsic Semiconductor

On the q-deformed Thermodynamics and q-deformed Fermi Level in Intrinsic Semiconductor Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 5, 213-223 HIKARI Ltd, www.m-hikari.com htts://doi.org/10.12988/ast.2017.61138 On the q-deformed Thermodynamics and q-deformed Fermi Level in

More information

Protected qubit based on a superconducting current mirror

Protected qubit based on a superconducting current mirror arxiv:cond-mat/0609v [cond-mat.mes-hall] 9 Sep 006 Protected qubit based on a superconducting current mirror Alexei Kitaev Microsoft Project Q, UCSB, Santa Barbara, California 906, USA California Institute

More information

602 ZHANG Zhi and CHEN Li-Rong Vol Gibbs Free Energy From the thermodynamics, the Gibbs free energy of the system can be written as G = U ; TS +

602 ZHANG Zhi and CHEN Li-Rong Vol Gibbs Free Energy From the thermodynamics, the Gibbs free energy of the system can be written as G = U ; TS + Commun. Theor. Phys. (Beijing, China) 37 (2002) 601{606 c International Academic Publishers Vol. 37, No. 5, May 15, 2002 The 2D Alternative Binary L J System: Solid-Liquid Phase Diagram ZHANG Zhi and CHEN

More information

Accurate control of Josephson phase qubits

Accurate control of Josephson phase qubits Accurate control of Josephson phase qubits Matthias Steffen, 1, 2, John M. Martinis, 3 and Isaac L. Chuang 1 1 Center for Bits and Atoms - MIT, Cambridge, Massachusetts 2139 2 Solid State and Photonics

More information

97.398*, Physical Electronics, Lecture 8. Diode Operation

97.398*, Physical Electronics, Lecture 8. Diode Operation 97.398*, Physical Electronics, Lecture 8 Diode Oeration Lecture Outline Have looked at basic diode rocessing and structures Goal is now to understand and model the behavior of the device under bias First

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Superconducting qubit oscillator circuit beyond the ultrastrong-coupling regime S1. FLUX BIAS DEPENDENCE OF THE COUPLER S CRITICAL CURRENT The circuit diagram of the coupler in circuit I is shown as the

More information

1. INTRODUCTION. Fn 2 = F j F j+1 (1.1)

1. INTRODUCTION. Fn 2 = F j F j+1 (1.1) CERTAIN CLASSES OF FINITE SUMS THAT INVOLVE GENERALIZED FIBONACCI AND LUCAS NUMBERS The beautiful identity R.S. Melham Deartment of Mathematical Sciences, University of Technology, Sydney PO Box 23, Broadway,

More information

Optical self-energy of superconducting Pb in the terahertz region

Optical self-energy of superconducting Pb in the terahertz region Otical self-energy of suerconducting Pb in the terahertz region T. Mori, 1 E. J. Nicol, 2, * S. Shiizuka, 1 K. Kuniyasu, 3 T. Nojima, 3 N. Toyota, 1 and J. P. Carbotte 4 1 Physics Deartment, Graduate School

More information

Controlled-NOT logic with nonresonant Josephson phase qubits

Controlled-NOT logic with nonresonant Josephson phase qubits Controlled-NOT logic with nonresonant Josephson phase qubits Andrei Galiautdinov* Department of Physics and Astronomy, University of Georgia, Athens, Georgia 362, USA Received 23 December 28; published

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors

Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors Z. S. WANG *, S. L. HO ** * College of Electrical Engineering, Zhejiang University, Hangzhou

More information

PHYSICAL REVIEW D 98, 0509 (08) Quantum field theory of article oscillations: Neutron-antineutron conversion Anca Tureanu Deartment of Physics, Univer

PHYSICAL REVIEW D 98, 0509 (08) Quantum field theory of article oscillations: Neutron-antineutron conversion Anca Tureanu Deartment of Physics, Univer PHYSICAL REVIEW D 98, 0509 (08) Quantum field theory of article oscillations: Neutron-antineutron conversion Anca Tureanu Deartment of Physics, University of Helsinki, P.O. Box 64, FIN-0004 Helsinki, Finland

More information

Multi-instance Support Vector Machine Based on Convex Combination

Multi-instance Support Vector Machine Based on Convex Combination The Eighth International Symosium on Oerations Research and Its Alications (ISORA 09) Zhangjiajie, China, Setember 20 22, 2009 Coyright 2009 ORSC & APORC,. 48 487 Multi-instance Suort Vector Machine Based

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

6.4 Physics of superconducting quantum circuits

6.4 Physics of superconducting quantum circuits AS-Chap. 6.4-1 6.4 Physics of superconducting quantum circuits 6.4 Physics of Superconducting Quantum Circuits AS-Chap. 6.4-3 General Hamiltonian H HO = E kin + E pot = p m + 1 mω r x k x e.g., 1 k x for

More information

DIFFERENTIAL evolution (DE) [3] has become a popular

DIFFERENTIAL evolution (DE) [3] has become a popular Self-adative Differential Evolution with Neighborhood Search Zhenyu Yang, Ke Tang and Xin Yao Abstract In this aer we investigate several self-adative mechanisms to imrove our revious work on [], which

More information

Josephson charge qubits: a brief review

Josephson charge qubits: a brief review Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s11128-009-0101-5 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Kemppinen, Antti

More information

Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles

Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles Toological-hase effects and ath-deendent interference in microwave structures with magnetic-diolar-mode ferrite articles Abstract M. Berezin, E.O. Kamenetskii, and R. Shavit Microwave Magnetic Laboratory

More information