Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors

Size: px
Start display at page:

Download "Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors"

Transcription

1 Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors Z. S. WANG *, S. L. HO ** * College of Electrical Engineering, Zhejiang University, Hangzhou , China ** Electrical Engineering Deartment of Hong Kong Polytechnic University, Hong Kong zjuwzs@hotmail.com, eeslho@inet.olyu.edu.hk Abstract This aer rooses a simlified vector control imlementation strategy that can be realized in the absence of current sensors. In order to decoule the torque and flux in the determination of the three-hase voltage reference commands of the SPWM inverter, both stator and rotor currents in the stationary and rotating frames can be derived from the corresonding rotor flux-oriented vector control requirements and motor dynamic equations. A sensitivity analysis to study the effect of arameter deviation or mismatch is also investigated. Simulation results are resented to demonstrate the feasibility and erformance of the roosed methodology. Keywords- vector control; induction motor control; motor drives I. INTRODUCTION The indirect field orientation control (IFOC) strategy is widely used for imlementing high erformance induction motor drive systems, and has been increasingly adoted as the standard industry solution [1-3]. In this scheme, current sensors are used to measure the motor currents, and two current controllers have to be designed to regulate the motor currents and to infer the M/T-axis voltage reference command. These sensors and controllers not only increase the overall system s cost, but also increase the design comlexity in terms of drift comensation and gain correction, articularly if the scheme is to be alicable over the whole seed and torque load ranges. Conventional sli frequency control scheme does not use voltage and current sensors [4]. However, essentially, it is scalar control. Inevitably, its dynamic erformance is oor due to the couling effect between torque and flux. Yamamura S. etc. integrated the scalar scheme with vector control, and roosed the sli frequency vector control strategy to get good dynamic resonds [5]. But in this method, current sensors and their corresonding controllers have to be designed to regulate the motor currents. This aer resents a novel IFOC imlementation method for induction motor drives without the need to use voltage and current sensors. It also eliminates two current feedback loos and their associated controllers, resulting in overall design simlicity and cost reduction for vector controllers. In order to realize the decouled control between the torque and flux, the stator current is searated into two orthogonal comonents for torque current and flux magnetizing current, and these comonents are then regulated indeendently. Furthermore, it can be shown that if the rotor currents are known values, the voltage alied to the motor can be determined using motor equations. Nevertheless the rotor current cannot be measured directly in induction motors. However, for rotor field orientation drives, one could calculate the rotor current based on the vector control scheme and motor dynamic equations. Thus, the voltage alied to the motor can be controlled recisely. On the other hand, one has to note that as there are no voltage and current feedbacks, the erformance of the drive might deteriorate due to arameter deviations/mismatch and disturbances in the inut DC link voltage. It is shown from the simulation results that even though there are large value mismatching in arameters, the roosed algorithm could, with the excetion of very low seeds, roduce good dynamic and steady state erformances over a wide range of seed. The effect of DC link voltage disturbance can be neglected in many actual ractical alication cases. II. INDUCTION MOTOR MODEL AND THE PROPOSED CONTROL METHODOLOGY According to the rotor field orientation vector control theory [4] [6], the stator current of squirrel-cage induction motor can be decomosed into two orthogonal comonents in the synchronous rotating rotor fluxoriented reference frame (M-T frame) which are, namely, the torque current i TS, which is to generate the electromagnetic torque, and the magnetizing current i MS, which is to excite the motor flux. These two current comonents are searated indeendently and decouled each other. Their magnitudes can be calculated according the electromagnetic torque ( T e ) and rotor flux level ( λ r ), and are governed by the following equations [6] /06/$ IEEE IPEMC 2006

2 4Te its 3Pλr (1) 1+ ( Lr ) λr The subscrit s and r indicate the stator and rotor variables, M,T reresent the variables in the rotor field orientation rotating reference frame. R r, L M, L S and Lr are the motor rotor resistance, mutual inductance, stator inductance and rotor inductance, resectively. λ r and T e are the resective rotor flux and electromagnetic torque. P is the number of ole airs. is the d / dt oerator. In most cases, the flux magnitude should be ket at some constant level, articularly when the motor runs below its base seed. So, (1) can be rewritten as 4Te its 3Pλr (2) λr The current angle θ 2 in M-T axis is its θ 2 arctg (3) On the other hand, the sli frequency is [4] RriTS ω s (4) Lr The rotor flux angle in stationary reference frame can be exressed as θ 1 ( ω r + ωs )dt (5) where ωr is the rotor mechanical seed. Thus, the stator current can be exressed in the stationary reference frame as: i i αs βs cosθ1 sinθ1 - sinθ1 i cosθ 1 i MS TS On the hand, in the rotor flux-orientated reference frame, the rotor side voltage-current equations of squirrel-cage induction motor can be described as [6] where i 0 0 ωs Mr, i Tr 0 0 its + Rr + Lr Lrω S 0 R r imr itr are rotor current comonents in M-T axis. The first row of (7) can be rewritten as 0 RriMr + ( ims + LriMr ) RriMr + λmr (6) (7) (8) In the rotor field orientation control, λ r λmr,λtr 0. In most cases, flux magnitude should be ket at some constant levels: λ r const., or λ r 0. Base on these requirements and the flux definition, the rotor current comonents in M-T axis, i, i, can be obtained as [6] Mr imr λmr λr 0 itr ( λtr LmiTs ) / Lr ( 0 / Lr ) its (9) ( / Lr ) its Using coordinate transformation, the rotor current can be exressed in the stationary reference as iα r cosθ1 sinθ1 imr (10) r sinθ1 cosθ1 itr The hasor diagram of the stator and rotor current ( i s, i r ) in α β axis and M-T axis is shown in Fig. 1. Tr Fig.1 Phasor diagram of stator and rotor current Based on the motor voltage-current equations in stationary reference frame which are shown below, uα s RS + LS uβ s iα s R S + LS s 0 iα r r (11) where R s, L s are stator resistance and inductance. Using the 2-hase to 3-hase coordinate transformation, the three hase reference command voltage signal can finally be determined. Thus, the final stator voltage, including frequency, hase and magnitude, can be directly derived from the motor dynamic equations just according to the seed and flux requirements (reference). Any voltage current sensors, signal feedback loos, and corresonding controllers do not need. Moreover, this method does not require comlicated algorithm [5][6], and time-consuming arameter online identification technique [6]. So, the roosed control scheme can greatly simlify the system design, and reduce overall cost.

3 Fig.2 Configuration o the roosed vector control method III. SIMULATION RESULTS Digital simulation research is carried out to validate the roosed control method. Fig. 2 shows the system configuration of the vector control: a 2.2 kw induction motor is driven by a SPWM voltage-tye inverter, and the three-hase voltage reference command alied to the inverter is derived from the flux and torque references. The simulation investigation is focused on the motor erformance with decouled torque and flux, a sensitivity study to evaluate arameter mismatch or deviation, and the tracking ability of the motor in detuned cases. The motor arameters are R S 3 Ω, R r 3. 23Ω, L M 210mH, LS Lr 223mH, P2. A. Performance of the Proosed IFO Conreoller Detailed simulation tests are carried out to assess the roosed control method. Figs. 3 and 4 show the torque and flux decouled erformance of the motor. In Fig. 3, the motor is running at a seed of 1000 rm. It can be seen that as the load torque is suddenly changed from 5.5 Nm to 10.5 Nm (trace a), the rotor flux level hardly changes (trace b, c), although there is a small seed di but then it is restored quickly (trace d). Fig. 4 shows a different case in that the flux level is suddenly changed at t5 s by the maniulators (trace a, c), however the torque can be restored to its original level quickly (trace b). Fig. 5 shows the tracking erformance of the motor following a traezoidal seed reference (trace a). Trace b is the seed error, and trace c is the rotor flux in the α axis. It can be seen that the flux level can be ket constant in different seed regions. The M-axis and the T-axis fluxes in trace d illustrate the effect of the rotor field-oriented control: λ T r 0, λ M r const. The seed tracking exeriment is in a constant load condition (10Nm). This traezoidal test can be used to evaluate the driver running in bi-direction oeration, constant /variable seed and motoring/generative modes. Fig. 6 shows the seed transient and ste torque change resonses (trace a). The load torque is roortional to the rotor seed in this case. There are seed reference and load torque ste changes at time t3 s and at t3.5 s (trace a, c) resectively. Trace d and b show the corresonding flux magnitude and α axis flux. Because there are no voltage and current feedbacks in this control method, arameter mismatching or detuned running is a major roblem. The following tests are designed to evaluate this erformance. In Fig.7, the DC link voltage, which is alied to the inverter, is set to have a ± 20% deviation from the rated voltages (the rated voltage is 500V) (trace a). It shows that the steady state torque is not changed (trace c), but the flux level is changed by as much as about ± 20%. This is still an accetable result because in ractical alications, most motors have their own inut voltage ranges and their corresonding flux levels. Moreover, many new generation drivers use ower factor correction (PFC) circuits in the first stage, so that their DC link voltage can be maintained at a constant level, and therefore one does not need to take into account this influence. Fig. 8 shows the flux sensitivity with resect to the inductor arameters ( L M,LS, Lr ) and mismatching in low-seed (100rm, traces a, b) and high-seed (1200 rm, trace c, d) running. During t2s to 3s, Lˆ MSR L * MSR. During t3s to 4s, Lˆ MSR 2L * MSR. During t4s to 5s: Lˆ MSR 0. 5L * MSR, where L * MSR means the actual motor L M, L S, Lr arameters, and Lˆ MSR means the corresonding mismatched arameters used in the controller. These mismatching has a slight influence uon the motor erformance at high-seed running only, the influence is much more ronounced at low-seeds. The resistance mismatching influence is shown in Fig.9, similarly, it exlains the flux level versus different stator and rotor resistances in low-seed (100rm in trace a, b) and high-seed (1200 rm in trace in trace d, e) regions. During t2s to 3s, Rˆ * s r R s r. During t3s to 4s, Rˆ * s r 2R s r. During t4s to 5s, Rˆ * s r 0. 5R s r, where R * s r means the actual arameters, and Rˆ s r means the mismatched arameters used in the controller. One can

4 Fig.3 Flux erformance under torque ste changing Fig.4 Torque erformance under flux ste changing Fig.5 Traezoidal tracking running Fig. 6 Transient erformance under ste seed and load Fig. 7.Dc link voltage mismatching Fig.8 Inductor mismatching

5 Fig.9 Resistance mismatching see that noticeable influence only aears in case of low seed running. For the roosed control method, it will have a general tolerance to oerate with arameters mismatching to a certain extent. A transient erformance with arameter mismatching is shown in Fig. 10. The mismatched arameters are: R * s r 2 Rˆ s r, L* MSR 1. 5Lˆ MSR. The load is set to be roortional to the rotor seed. One can see that although the transient time is increased a bit, the steady state flux and torque (seed) are still stable with very small riles. B. Dynamic Resonds Comarison with Conventional Vector Control The roosed control algorithm is derived form the basic rincile of rotor field orientation control. Consequently, so it is still vector control method. It should be noted that the urose of this control method is aimed to reduce the money cost in hardware, and simlify the control design. Fig.11 shows the dynamic resonds of conventional vector control and roosed control scheme in case of no load ( (a)) and 10 Nm load (Trace (b)). Fig. 11 Ste resonds of roosed control method and conventional vector control. (a). no load running, (b). running in 10 Nm load Fig. 10 Synthetic arameter mismatching Both trace (a) and (b) show that the roosed control scheme shares comarable good dynamic resonds erformance with conventional vector controller using current sensors no matter running in no load or in a heavy load. IV. CONCLUSIONS A vector control strategy for induction motor drives, which does not use current sensor, is roosed and tested. This scheme can reduce the system cost and simlify the control design. The current feedback loo and controller can be eliminated. It exhibits the decouled effect between the flux and torque. Sensitivity to the arameter mismatching is evaluated by simulation, and it shows that the roosed algorithm works well over most seed ranges with the excetion of low seeds. Moreover, the roosed system can oerate stably with significant arameters mismatching as well. REFERENCES [1] A. Consoli, G. Scarcella, and A. Testa, Seed-and Current- Sensorless Field-Oriented Induction Motor Drive Oeration at Low Stator Frequencies, IEEE Trans. Industry Alications, Vol.40, No. 1, , Jan./Feb., [2] Fang-Zheng Peng, and T. Fukao, Robust Seed Identification for Seed-sensorless Vector Control of Induction Motors, IEEE Trans. Industry Al., Vol.30, No. 5, , Set./Oct., [3] R. Gabriel, W. Leonard, C. Nordby, Field Oriented Control of a Standard AC Motor Using Micro-rocessors, IEEE Trans. Industry Alications, Vol.IA-16, No. 2, , [4] Andrzej M. Trzynadlowski, The Field Orientation Princile in Control of Induction Motors, Kluwer Academic Publishers, U.S.A. [5] Yamamura S., Siral Vector Theory of AC Motor Analysis and Control, IEEE Industry Alications Society Annual Meeting, 1991, Conference Record of 1991, [6] Bose B. K., Modern Power Electronics and AC Drivers, Prentice- Hall, Englewood Cliffs, New Jersey, 1986.

Position Control of Induction Motors by Exact Feedback Linearization *

Position Control of Induction Motors by Exact Feedback Linearization * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8 No Sofia 008 Position Control of Induction Motors by Exact Feedback Linearization * Kostadin Kostov Stanislav Enev Farhat

More information

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform International Journal of Alied Engineering Research ISSN 0973-456 Volume 3, Number (08). 9437-944 Simulation of 3-Phase - Stator Induction Motor Using MATLAB Platform Pallavi R.Burande Deartment of Electrical

More information

Electromagnetic Levitation Control of Contactless Linear Synchronous Drive for Flexible Vertical Transportation

Electromagnetic Levitation Control of Contactless Linear Synchronous Drive for Flexible Vertical Transportation Electromagnetic Levitation Control of Contactless Linear Synchronous Drive for Flexible Vertical Transortation Toshiyuki NAKAI*, Daisuke TATEISHI**, Takafumi KOSEKI*, and Yasuaki AOYAMA*** (*)Deartment

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Deartment, Middle East Technical University Armature controlled dc motor Outside θ D outut Inside θ r inut r θ m Gearbox Control Transmitter θ D

More information

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,

More information

On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm

On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm Gabriel Noriega, José Restreo, Víctor Guzmán, Maribel Giménez and José Aller Universidad Simón Bolívar Valle de Sartenejas,

More information

Journal of System Design and Dynamics

Journal of System Design and Dynamics Vol. 5, No. 6, Effects of Stable Nonlinear Normal Modes on Self-Synchronized Phenomena* Hiroki MORI**, Takuo NAGAMINE**, Yukihiro AKAMATSU** and Yuichi SATO** ** Deartment of Mechanical Engineering, Saitama

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators S. K. Mallik, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S. N. Singh, Senior Member, IEEE Deartment of Electrical

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

A Simple Fuzzy PI Control of Dual-Motor Driving Servo System

A Simple Fuzzy PI Control of Dual-Motor Driving Servo System MATEC Web of Conferences 04, 0006 (07) DOI: 0.05/ matecconf/07040006 IC4M & ICDES 07 A Simle Fuzzy PI Control of Dual-Motor Driving Servo System Haibo Zhao,,a, Chengguang Wang 3 Engineering Technology

More information

Chapter 12: Three-Phase Circuits

Chapter 12: Three-Phase Circuits Chater 1: Three-Phase Circuits 1.1 ntroduction 1. Balanced Three-Phase oltages 1.3 Balanced Wye-Wye connection 1.4 Balanced Wye-Delta Connection 1.7 Power in a Balanced System 1.1 NTRODUCTON A single-hase

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

MODELING THE RELIABILITY OF C4ISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL

MODELING THE RELIABILITY OF C4ISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL Technical Sciences and Alied Mathematics MODELING THE RELIABILITY OF CISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL Cezar VASILESCU Regional Deartment of Defense Resources Management

More information

MODULAR LINEAR TRANSVERSE FLUX RELUCTANCE MOTORS

MODULAR LINEAR TRANSVERSE FLUX RELUCTANCE MOTORS MODULAR LINEAR TRANSVERSE FLUX RELUCTANCE MOTORS Dan-Cristian POPA, Vasile IANCU, Loránd SZABÓ, Deartment of Electrical Machines, Technical University of Cluj-Naoca RO-400020 Cluj-Naoca, Romania; e-mail:

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Anakapalli Andhra Pradesh, India I. INTRODUCTION Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

More information

Speed Sensorless Control of Induction Motor based on Indirect Field-Orientation

Speed Sensorless Control of Induction Motor based on Indirect Field-Orientation Speed Sensorless Control of Induction Motor based on Indirect Field-Orientation Marcello Montanari a, Sergei Peresada b, Andrea Tilli a, Alberto Tonielli a a Dept. of Electronics, Computer and System Sciences

More information

THE 3-DOF helicopter system is a benchmark laboratory

THE 3-DOF helicopter system is a benchmark laboratory Vol:8, No:8, 14 LQR Based PID Controller Design for 3-DOF Helicoter System Santosh Kr. Choudhary International Science Index, Electrical and Information Engineering Vol:8, No:8, 14 waset.org/publication/9999411

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Oil Temperature Control System PID Controller Algorithm Analysis Research on Sliding Gear Reducer

Oil Temperature Control System PID Controller Algorithm Analysis Research on Sliding Gear Reducer Key Engineering Materials Online: 2014-08-11 SSN: 1662-9795, Vol. 621, 357-364 doi:10.4028/www.scientific.net/kem.621.357 2014 rans ech Publications, Switzerland Oil emerature Control System PD Controller

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives Nagaraja Yadav Ponagani Asst.Professsor, Department of Electrical & Electronics Engineering Dhurva Institute of Engineering

More information

Sensorless Sliding Mode Control of Induction Motor Drives

Sensorless Sliding Mode Control of Induction Motor Drives Sensorless Sliding Mode Control of Induction Motor Drives Kanungo Barada Mohanty Electrical Engineering Department, National Institute of Technology, Rourkela-7698, India E-mail: kbmohanty@nitrkl.ac.in

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018 Comuter arithmetic Intensive Comutation Annalisa Massini 7/8 Intensive Comutation - 7/8 References Comuter Architecture - A Quantitative Aroach Hennessy Patterson Aendix J Intensive Comutation - 7/8 3

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

DESIGN AND IMPLEMENTATION OF SENSORLESS SPEED CONTROL FOR INDUCTION MOTOR DRIVE USING AN OPTIMIZED EXTENDED KALMAN FILTER

DESIGN AND IMPLEMENTATION OF SENSORLESS SPEED CONTROL FOR INDUCTION MOTOR DRIVE USING AN OPTIMIZED EXTENDED KALMAN FILTER INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 ISSN 0976 6464(Print)

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

Robust Performance Design of PID Controllers with Inverse Multiplicative Uncertainty

Robust Performance Design of PID Controllers with Inverse Multiplicative Uncertainty American Control Conference on O'Farrell Street San Francisco CA USA June 9 - July Robust Performance Design of PID Controllers with Inverse Multilicative Uncertainty Tooran Emami John M Watkins Senior

More information

J. Electrical Systems 13-2 (2017): Regular paper

J. Electrical Systems 13-2 (2017): Regular paper Menxi Xie,*, CanYan Zhu, BingWei Shi 2, Yong Yang 2 J. Electrical Systems 3-2 (207): 332-347 Regular aer Power Based Phase-Locked Loo Under Adverse Conditions with Moving Average Filter for Single-Phase

More information

Unit-3. Question Bank

Unit-3. Question Bank Unit- Question Bank Q.1 A delta connected load draw a current of 15A at lagging P.F. of.85 from 400, -hase, 50Hz suly. Find & of each hase. Given P = = 400 0 I = 15A Ans. 4.98, 5.7mH So I P = 15 =8.66A

More information

Node-voltage method using virtual current sources technique for special cases

Node-voltage method using virtual current sources technique for special cases Node-oltage method using irtual current sources technique for secial cases George E. Chatzarakis and Marina D. Tortoreli Electrical and Electronics Engineering Deartments, School of Pedagogical and Technological

More information

Design of NARMA L-2 Control of Nonlinear Inverted Pendulum

Design of NARMA L-2 Control of Nonlinear Inverted Pendulum International Research Journal of Alied and Basic Sciences 016 Available online at www.irjabs.com ISSN 51-838X / Vol, 10 (6): 679-684 Science Exlorer Publications Design of NARMA L- Control of Nonlinear

More information

Modelling and Simulation of Direct Self-Control Systems*

Modelling and Simulation of Direct Self-Control Systems* Int. J. Engng Ed. Vol. 19, No., pp. ±, 003 099-19X/91 $3.00+0.00 Printed in Great Britain. # 003 TEMPUS Publications. Modelling and Simulation of Direct Self-Control Systems* K. L. SHI, T. F. CHAN, Y.

More information

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque S. Rajesh Babu 1, S. Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering, JNTUACEA, Anantapuramu,

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

EKT103 ELECTRICAL ENGINEERING

EKT103 ELECTRICAL ENGINEERING EKT13 EECTRCA ENGNEERNG Chater 1 Three-Phase System 1 COURSE OUTCOME (CO) CO1: Ability to define and exlain the concet of single-hase and threehase system. 2 Revision A sinusoid is a signal that has the

More information

An Adaptive Three-bus Power System Equivalent for Estimating Voltage Stability Margin from Synchronized Phasor Measurements

An Adaptive Three-bus Power System Equivalent for Estimating Voltage Stability Margin from Synchronized Phasor Measurements An Adative Three-bus Power System Equivalent for Estimating oltage Stability argin from Synchronized Phasor easurements Fengkai Hu, Kai Sun University of Tennessee Knoxville, TN, USA fengkaihu@utk.edu

More information

Active and reactive power control schemes for distributed generation systems under voltage dips Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

Active and reactive power control schemes for distributed generation systems under voltage dips Wang, F.; Duarte, J.L.; Hendrix, M.A.M. Active and reactive ower control schemes for distributed generation systems under voltage dis Wang, F.; Duarte, J.L.; Hendrix, M.A.M. ublished in: roceedings IEEE Energy Conversion Congress and Exosition

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages POSTER 2016, PRAGUE MAY 24 1 Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages Tomáš KOŠŤÁL Dept. of Electric Drives and Traction, Czech Technical University,

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overview Electrical Machine and Drive 7-9 1: Introduction, Maxwell equation, magnetic circuit 11-9 1.-3: Magnetic circuit, Princile 14-9 3-4.: Princile, DC machine 18-9 4.3-4.7: DC machine and drive 1-9

More information

An Improved UPFC Control to Enhance Power System Stability

An Improved UPFC Control to Enhance Power System Stability Modern Alied Science Vol. 4, No. 6; June An Imroved UPFC Control to Enhance Power System Stability Ashwin Kumar Sahoo (Corresonding Author) Deartment of Electrical and Electronics Engineering SSN Institutions,

More information

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 6, January-June 2005 p. 1-16 Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

More information

A High Performance Sensorless Indirect Stator Flux Orientation Control of Induction Motor Drive

A High Performance Sensorless Indirect Stator Flux Orientation Control of Induction Motor Drive A High Performance Sensorless Indirect Stator Flux Orientation Control of Induction Motor Drive Mohamed Boussak, Kamel Jarray To cite this version: Mohamed Boussak, Kamel Jarray. A High Performance Sensorless

More information

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:

More information

An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding mode control scheme for induction motor drives An adaptive sliding mode control scheme for induction motor drives Oscar Barambones, Patxi Alkorta, Aitor J. Garrido, I. Garrido and F.J. Maseda ABSTRACT An adaptive sliding-mode control system, which

More information

Robust Predictive Control of Input Constraints and Interference Suppression for Semi-Trailer System

Robust Predictive Control of Input Constraints and Interference Suppression for Semi-Trailer System Vol.7, No.7 (4),.37-38 htt://dx.doi.org/.457/ica.4.7.7.3 Robust Predictive Control of Inut Constraints and Interference Suression for Semi-Trailer System Zhao, Yang Electronic and Information Technology

More information

II. Mathematical Modeling of

II. Mathematical Modeling of SICE Annual Conference in Fukui, August 4-62003 Fukui University, Japan MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Young Sam Kim, Sang Kyoon Kim and Young Ahn Kwon Department of

More information

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE

More information

Implementation of Twelve-Sector based Direct Torque Control for Induction motor

Implementation of Twelve-Sector based Direct Torque Control for Induction motor International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 4 ǁ April. 2013 ǁ PP.32-37 Implementation of Twelve-Sector based Direct Torque Control

More information

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Journal of Modern Alied Statistical Methods Volume Issue Article 7 --03 A Comarison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Ghadban Khalaf King Khalid University, Saudi

More information

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology Arpit S. Bhugul 1, Dr. Archana

More information

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK Comuter Modelling and ew Technologies, 5, Vol.9, o., 3-39 Transort and Telecommunication Institute, Lomonosov, LV-9, Riga, Latvia MATHEMATICAL MODELLIG OF THE WIRELESS COMMUICATIO ETWORK M. KOPEETSK Deartment

More information

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink ABSTRACT

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

An ANN based Rotor Flux Estimator for Vector Controlled Induction Motor Drive

An ANN based Rotor Flux Estimator for Vector Controlled Induction Motor Drive International Journal of Electrical Engineering. ISSN 974-58 Volume 5, Number 4 (), pp. 47-46 International Research Publication House http://www.irphouse.com An based Rotor Flux Estimator for Vector Controlled

More information

A new FOC technique based on predictive current control for PMSM drive

A new FOC technique based on predictive current control for PMSM drive ISSN 1 746-7, England, UK World Journal of Modelling and Simulation Vol. 5 (009) No. 4, pp. 87-94 A new FOC technique based on predictive current control for PMSM drive F. Heydari, A. Sheikholeslami, K.

More information

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE Hussein Sarhan Department of Mechatronics Engineering, Faculty of Engineering Technology, Amman, Jordan ABSTRACT This paper presents a

More information

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

More information

Comparative study between the conventional regulators and fuzzy logic controller: application on the induction machine

Comparative study between the conventional regulators and fuzzy logic controller: application on the induction machine International Journal of Sciences and Techniques of Automatic control & comuter engineering IJ-STA, Volume 1, N, December 007,. 196 1. Comarative study between the conventional regulators and fuzzy logic

More information

Dynamic System Eigenvalue Extraction using a Linear Echo State Network for Small-Signal Stability Analysis a Novel Application

Dynamic System Eigenvalue Extraction using a Linear Echo State Network for Small-Signal Stability Analysis a Novel Application Dynamic System Eigenvalue Extraction using a Linear Echo State Network for Small-Signal Stability Analysis a Novel Alication Jiaqi Liang, Jing Dai, Ganesh K. Venayagamoorthy, and Ronald G. Harley Abstract

More information

Multivariable PID Control Design For Wastewater Systems

Multivariable PID Control Design For Wastewater Systems Proceedings of the 5th Mediterranean Conference on Control & Automation, July 7-9, 7, Athens - Greece 4- Multivariable PID Control Design For Wastewater Systems N A Wahab, M R Katebi and J Balderud Industrial

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

EE595S : Class Lecture Notes Parameter Identification and Maximum Torque Per Amp Control Algorithm

EE595S : Class Lecture Notes Parameter Identification and Maximum Torque Per Amp Control Algorithm EE595S : Class Lecture Notes Parameter Identification and Maximum Torque Per Amp Control Algorithm Outline GA based AQDM Characterization Procedure MTPA Control strategy AMTPA Control Strategy 2 Alternate

More information

Dual-Halbach Array Permanent Magnet Tubular Generator for Free-Piston Generator

Dual-Halbach Array Permanent Magnet Tubular Generator for Free-Piston Generator Journal of Magnetics 0(4), 405-41 (015) ISSN (Print) 16-1750 ISSN (Online) 33-6656 htt://dx.doi.org/10.483/jmag.015.0.4.405 Dual-Halbach Array Permanent Magnet Tubular Generator for Free-Piston Generator

More information

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines 1 Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines João Ferraz, Paulo Branco Phd. Abstract A sliding-mode observer for the rotor flux and speed

More information

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab Mukesh Kumar Arya*, Dr.Sulochana Wadhwani** *( Department of Electrical Engineering, Madhav Institute of Technology & Science,

More information

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS Inertia Identification and Auto-Tuning of Induction Motor Using MRAS Yujie GUO *, Lipei HUANG *, Yang QIU *, Masaharu MURAMATSU ** * Department of Electrical Engineering, Tsinghua University, Beijing,

More information

Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations

Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations PINAR KORKMAZ, BILGE E. S. AKGUL and KRISHNA V. PALEM Georgia Institute of

More information

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives International Journal of Automation and Computing (24) 35-4 Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives Yong Liu, Ziqiang Zhu, David Howe Department of

More information

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor Vipul G. Pagrut, Ragini V. Meshram, Bharat N. Gupta, Pranao Walekar Department of Electrical Engineering Veermata Jijabai

More information

Indirect Field Orientation for Induction Motors without Speed Sensor

Indirect Field Orientation for Induction Motors without Speed Sensor Indirect Field Orientation for Induction Motors without Speed Sensor C. C. de Azevedol, C.B. Jacobinal, L.A.S. Ribeiro2, A.M.N. Lima1 and A.C. Oliveira1j2 UFPB/CCT/DEE/LEIAM - Campus II - Caixa Postal

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

2. Electromagnetic fundamentals

2. Electromagnetic fundamentals 2. Electromagnetic fundamentals Prof. A. Binder 2/1 AMPERE s law: Excitation of magnetic field by electric current Examle: Two different currents I 1, I 2 with two different numbers of turns 1 and N and

More information

Modelling and Parameter Determination of an Induction Servo-Motor

Modelling and Parameter Determination of an Induction Servo-Motor British Journal of Applied Science & Technology 13(2): 1-11, 2016, Article no.bjast.21969 ISSN: 2231-0843, NLM ID: 101664541 SCIENCEDOMAIN international www.sciencedomain.org Modelling and Parameter Determination

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE ANALYTICAL MODEL FOR THE BYPASS ALE IN A LOOP HEAT PIPE Michel Seetjens & Camilo Rindt Laboratory for Energy Technology Mechanical Engineering Deartment Eindhoven University of Technology The Netherlands

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction S. Pavithra, Dinesh Krishna. A. S & Shridharan. S Netaji Subhas Institute of Technology, Delhi University

More information

2-D Analysis for Iterative Learning Controller for Discrete-Time Systems With Variable Initial Conditions Yong FANG 1, and Tommy W. S.

2-D Analysis for Iterative Learning Controller for Discrete-Time Systems With Variable Initial Conditions Yong FANG 1, and Tommy W. S. -D Analysis for Iterative Learning Controller for Discrete-ime Systems With Variable Initial Conditions Yong FANG, and ommy W. S. Chow Abstract In this aer, an iterative learning controller alying to linear

More information

Multiple Resonance Networks

Multiple Resonance Networks 4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL 49, NO, FEBRUARY [4] Y-Y Cao, Y-X Sun, and J Lam, Delay-deendent robust H control for uncertain systems with time-varying

More information

Simulation And Implementation Of Ifoc Based 3-Phase Induction Motor Drive

Simulation And Implementation Of Ifoc Based 3-Phase Induction Motor Drive Simulation And Implementation Of Ifoc Based 3-Phase Induction Motor Drive Arun.V.A 1, Nithin S Nair 2,Indu K Simon 3 1 (Department of EEE SNGCE,Ina) 2 (Department of EEE SNGCE,Ina) 3 (Department of EEE

More information

INTERACTIONS among power converters, input/output filters,

INTERACTIONS among power converters, input/output filters, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 8 795 Reaching Criterion of a Three-Phase Voltage-Source Inverter Oerating With Passive and Nonlinear Loads and Its Imact on Global Stability

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Journal of ELECTRICAL ENGINEERING, VOL 58, NO 6, 2007, 326 333 DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Ahmed Azaiz Youcef Ramdani Abdelkader Meroufel The field orientation control (FOC) consists

More information

Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System

Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System Jisha Thomas Chandy 1 and Mr. Vishnu J 2 1,2 Electrical & Electronics Dept of Engineering, Sree Buddha College

More information

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation

Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 11, July-December 007 p. 19-36 Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation Mohamed BEN MESSAOUD

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

Research of PMU Optimal Placement in Power Systems

Research of PMU Optimal Placement in Power Systems Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, Setember 15-17, 2005 (38-43) Research of PMU Otimal Placement in Power Systems TIAN-TIAN CAI, QIAN AI

More information

SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB

SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB olume No.0, Issue No. 08, August 014 ISSN (online): 48 7550 SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB Harish Kumar Mishra 1, Dr.Anurag Tripathi 1 Research Scholar,

More information

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System 5 th SASTech 211, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. 1 Sensorless Torue and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model

More information

Analysis of Sensorless Controlled One Phase Brushless DC Motor

Analysis of Sensorless Controlled One Phase Brushless DC Motor nalysis of Sensorless Controlled One Phase Brushless DC Motor BDEL-KRIM DUD Electrical and Computer Engineering Department Palestine Polytechnic University (PPU) P.O. Box 98 Hebron, el:+97--89, Fax:+97--78

More information