6.4 Physics of superconducting quantum circuits

Size: px
Start display at page:

Download "6.4 Physics of superconducting quantum circuits"

Transcription

1 AS-Chap Physics of superconducting quantum circuits

2 6.4 Physics of Superconducting Quantum Circuits AS-Chap General Hamiltonian H HO = E kin + E pot = p m + 1 mω r x k x e.g., 1 k x for mass on spring m LC resonant circuit H LC = E kin + E pot = q C + Φ L = q C + 1 C 1 LC Φ L C Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC Completely analogous treatment

3 6.4 Physics of Superconducting Quantum Circuits E pot ħ Continuous-variable operators Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC L C Parabolic potential q and Φ form a conjugate pair such as x and p Heisenberg uncertainty: ΔqΔΦ ħ Commutation relation Φ, q = iħ q, Φ AS-Chap

4 6.4 Physics of Superconducting Quantum Circuits E pot ħ E n ħ, Discrete Basis (Fock states) Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC L C a ω rc Φ+i q ω r Cħ a ω rc Φ i q ω r Cħ H LC = ħω r a a + 1 is the annihilation operator is the creation operator 3 Photon number operator n a a Eigenstates are Fock states H LC n = E n n 1 0 ω r q ω r Eigenvalues E n = ħω r n + 1 Linear system Equidistant level spacing n = 0 Finite vacuum energy E 0 = ħω r n is the Fock or number basis AS-Chap

5 E pot ħ E n ħ, Annihilation and creation operator Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC L C a ω rc Φ+i q ω r Cħ a ω rc Φ i q ω r Cħ H LC = ħω r a a + 1 is the annihilation operator is the creation operator a When applied to a Fock state, a annihilates a photon inside the oscillator a n = n n 1 a ω r When applied to a Fock state, a creates a photon inside the oscillator q ω r a n = n + 1 n + 1 AS-Chap

6 E pot ħ E n ħ, Coherent states Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC L C a ω rc Φ+i q ω r Cħ a ω rc Φ i q ω r Cħ H LC = ħω r a a + 1 is the annihilation operator is the creation operator a, a = 1 Bosonic commutation relation a Eigenstates of a a α = α α, α C a ω r Coherent states α α = e α n α n n! n q ω r { α } normal but not orthogonal Overcomplete AS-Chap

7 E pot ħ E n ħ, Practical importance of coherent states Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC L C H LC = ħω r a a + 1 a α = α α, α C Bosonic field amplitude operator A(t) 1 ( a + a ) a For intuitive understanding Move to interaction picture a ω r U = e ( )iω rt a a A I t U A U = 1 ae iω rt + a e +iω rt q ω r AS-Chap

8 E pot ħ E n ħ, Practical importance of coherent states Momentum p Charge q Position x Flux Φ Mass m Capacitance C Resonance frequency ω r ω r = 1 LC L C A(t) 1 ae iω rt + a e +iω rt a α = α α, α C Classical limit α A(t) α = α α α e iω rt + α α α e+iω rt a = 1 = 1 = α e i ω rt+φ + e +i ω rt+φ a ω r = α cos ω r t + φ Oscillating field with amplitude α and phase φ = arg α q ω r Coherent state Most classical quantum state (expectation values obey classical equations of motion) AS-Chap

9 AS-Chap λ/ coplanar waveguide resonator (quasi-1d) H LC = ħω r a a µm Each mode n k B T ħω n LC quantum harmonic oscillator Standing waves ( modes ) H TL = ħ n ω n a n a n

10 Spectrum of H LC H LC = ħω r a a + 1 γ 1 γ Must consider coupling to external channel Loss rates γ 1 and γ Simplification γ γ 1 = γ a in L C a out Challenge Describe interaction between a single mode field and a continuum of modes! Measurement requires two components Input probe field a in Detected output field a out Properties of a in and a out free (propagating) multimode fields Field a inside the resonator is a single mode-field Transition mediated by coupling capacitors Borrow input-output formalism from quantum optics! D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

11 Input-output fundamentals Propagating on-chip microwave fields are quasi-1d No polarization Electric field operator of a free multi-mode field propagating along the +x-direction E + x, t = i Mode sum n=0 ħω n ε 0 V b ne iω n t vacuum Amplitude x c Propagation axis Frequency Mode spectrum centered on carrier frequency Ω ω & Continuum limit Dimensionless Fourier amplitudes of mode n Mode volume Bosonic field operator of dimensions b x, t = e iω t x 1 c dω b ω e iω t x c b ω 1, b ω = δ(ω 1 ω ) π s 1 dt e i ω 1 ω t = π δ ω 1 ω Propagation phase often irrelevant & frame rotating with Ω b t = b x > 0, t = 1 π dω b ω e iωt D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

12 λ/4-resonator (single port) H LC = ħω r a a + 1 γ = 0 γ 1 a in Frame rotating with Ω L a C a out V t = iħ Interaction energy dωg ω b ω a b ω a Heisenberg picture Wavefunction constant Operators time-dependent Explicit time dependence of frequency space operators b ω b t, ω H = H LC + ħω b t, ω b t, ω + iħg ω b t, ω a b t, ω a d dt b t, ω = i ħ H, b t, ω + t b t, ω d dt b t, ω = iω b ω + g ω a D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

13 λ/4-resonator (single port) γ = 0 γ 1 a in d dt b t, ω = iω b t, ω + g ω a L a C a out Initial condition b 0 ω b t 0, ω Final condition b 1 ω b t 1, ω Usually t 0 = and t 1 = (free field) Solutions Input (t 0 < t) b t, ω = e iω t t 0 b 0 ω + g ω t dt e iω t t a t t 0 Output (t < t 1 ) b t, ω = e iω t t 1 b 1 ω g ω t 0 t dt e iω t t a t D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

14 λ/4-resonator (single port) γ = 0 γ 1 dωe iω t t = πδ t t d dt b t, ω = iω b t, ω + g ω a a in Resonator field Equation of motion L a C a out d dt a t = i ħ H LC, a dωg ω b t, ω Coupling to multi-mode field! d dt a t = i ħ H LC, a(t) dωg ω e iω t t 0 b 0 ω Input field a in t 1 γ 1 πg ω Frequencyindependent & π well-behaved functions dωg ω t t 0 dt e iω t t a t dωe iω t t 0 b 0 ω a in t, a in t = δ t t d dt a t = i ħ H LC, a t + γ 1 a t + γ 1 a in t D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

15 λ/4-resonator (single port) γ = 0 γ 1 γ 1 πg ω a in t 1 π dωe iω t t 0 b 0 ω a in Output field Analogous result L a C a out t 1 π dωe iω t t 1 b 1 ω a out a out t, a out t = δ t t d dt a t = i ħ H LC, a t γ 1 a t + γ 1 a in t d dt a t = i ħ H LC, a t + γ 1 a t γ 1 a out t a in t + a out t = γ 1 a t Fourier integral a t = 1 π dωe iω t t 0 a ω Solving differential equations simplifies to root finding! D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

16 λ/4-resonator (single port) γ = 0 γ 1 a t = 1 π dωe iω t t 0 a ω a in H LC = ħω r a a + 1 a in t + a out t = γ 1 a t L a C a out d dt a t = i ħ H LC, a t γ 1 a t + γ 1 a in t iω a ω = iω r a ω γ 1 a ω + γ 1 a in ω a in ω + a out ω = γ 1 a ω D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

17 λ/4-resonator (single port) γ = 0 γ 1 a in H LC = ħω r a a + 1 a in t + a out t = γ 1 a t L a C a out Reflection coefficient Γ a out a in = γ1 +i ω ω r γ1 i ω ω r = γ1 +i ω ωr γ 1 ω ω r γ1 + ω ωr What goes in, must go out Γ = 1 Resonator field Γ r a a in = γ 1 γ1 i ω ω r Γ r is Lorentzian Field enhancement inside resonator D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

18 λ/-resonator (two ports) a t = 1 π dωe iω t t 0 a ω γ γ 1 b in a in H LC = ħω r a a + 1 a in ω + a out ω = γ 1 a ω L a C a out b out d dt a t = i ħ H LC, a t γ 1 + γ a t + γ 1 a in t + γ b in t iω a t = iω r a t γ 1 + γ a t + γ 1 a in t + γ b in t a in t + a out t = γ 1 a t b in ω + b out ω = γ a ω D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) AS-Chap

19 λ/-resonator (two ports) a t = 1 π dωe iω t t 0 a ω γ γ 1 b in a in H LC = ħω r a a + 1 a in ω + a out ω = γ 1 a ω L a C a out Transmission coefficient ( b in = 0, γ 1 = γ γ) b out Now reflection and transmission (two ports) Γ + T = 1 T b out a in = γ γ i ω ω r Transmitted power T is Lorentzian! (equals the classical result) T Δω = γ D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 008) ω r ω AS-Chap

20 6.4 Physics of Superconducting Quantum Circuits.. Resonator lifetime T 1 λ/-resonator (two ports) γ γ T = γ γ i ω ω r b in a in T L b out a C a out ω r Δω κ = γ ω Storage time of HO characterized by its quality factor Q f r Δf = ω r Δω = ω r κ, where ω r πf r Energy-time uncertainty ΔEΔt ħ ΔωΔt 1 E = ħω Identify Δt with dephasing time T T = 1 πδf Typically, ω, γ, κ are angular frequencies, but f, T 1, T, T, T φ are normal frequencies AS-Chap

21 6.4 Physics of Superconducting Quantum Circuits.. Resonator lifetime T 1 AS-Chap λ/-resonator (two ports) γ γ T = γ γ i ω ω r b in a in T L b out a C a out ω r Δω κ = γ ω Q γ 1 Quality factor determined by loss ports Many types of loss ports Coupling capacitors Q c Internal dissipative/dielectric losses Q i Radiation losses Q rad Loaded quality factor 1 Q = 1 Q c + 1 Q i + 1 Q rad +

22 AS-Chap D resonators T = 1 πδf Niobium on SiO -coated high-resistivity Si temperatures f 0 = few GHz Q i 10 5 T 10 μs MBE grown (epitaxially) Al on sapphire mk temperatures f 0 = 6.11 GHz Q i = , Q c = T 0.1 ms Megrant et al., APL 100, (01)

23 3D resonators Loss sources for planar superconducting resonators Resistive or QP losses Superconductivity & low temperatures Radiation losses Clever design Problem: Dielectric losses from material defects (spurious TLS) TLS in bulk substrate Use clean single crystal (sapphire, intrinsic Si) TLS at substrate-metal interface Need clean materials & growth processes! Alternative: 3D cavity resonators No more dielectric No TLS in cavity Q i Reduce participation ratio of interace losses for embedded circuits 3D transmon qubit T ms Paik et al., PRL 107, (011) T = 1 πδf AS-Chap

24 AS-Chap Applications of quantum harmonic oscillators Quantum HO is linear Not a qubit Not directly useful for quantum computation! Quantum simulation of many-body Hamiltonians Nevertheless indirect use: Mediate coupling between qubits Quantum bus Qubit readout ( dispersive readout ) L C Typically long coherence times Quantum memory Ancilla qubit/nonlinearity Explore quantum physics (Fock states, squeezing etc.) Identify decoherence sources in superconducting quantum circuits

25 E pot ħ E pot ħ AS-Chap Josephson nonlinearity Linear system (parabolic potential) Nonlinear system (general potential) ω r ω r ω r ω r ω 1 ω 01 q q L C L C

26 How much anharmonicity is required? Coherence time: T dec 1 δν 01 = ν 01 δν 01 1 ν 01 = Q 1 ν 01 1 bit operation time: t op > 1 Δν (otherwise 1 -transitions are induced!) # of 1 bit operations: T dec t op = Q ν 01 t op < Q Δν ν 01 Anharmonicity AS-Chap

27 AS-Chap Repetition -- Quantum description of JJ C Charging energy ``kinetic E kin = en C = 4E C N L J (I c, φ) Josephson energy ``potential E pot = I cφ 0 π = E J (1 cos φ) R Quantization Hamiltonian N N = i φ H J = 4E C φ φ φ (ΔN) Δφ 1 + E J (1 cos φ) q = e N Φ = Φ 0 π φ Characteristic energies Typical parameters Al/AlO x /Al junction with A = nm C 1 ff and I c 300 na E C 60 μev and E J 600 μev Quantum effects observable only at T 0.5 K (100 μev 1 K)

28 phase qubit (E J >> E C ) current biased JJ flux qubit (E J > E C ) fluxon boxes charge qubit (E J < E C ) Cooper pair boxes I I V Nowadays superconducting qubit zoo is larger Transmon, camel-back, capacitively I shunted 3JJ-FQB, fluxonium Traditional classification via E J /E C increasingly difficult J. Martinis (NIST) H. Mooij (Delft) V. Bouchiat (Quantronics) AS-Chap

29 C Engineer potential H J = 4E C φ + E J (1 cos φ) Unsuitable for TLS! L J (I c, φ) Flux/phase engineering Add junctions (3JJ flux qubit) Add inductance (rf SQUID &phase qubit) Add bias current (phase qubit) Charge engineering Add gate capacitor (charge qubit) Add shunt capacitor (transmon qubit) E J naturally induces anticrossings Slightly delocalized charge states with residual anharmonicity AS-Chap

30 I L Flux bias Φ x E J E C N = i φ H = 4E C N φ πf + E J 1 cos φ + E L Inductive energy E L Φ 0 L Circulating current due to external flux I L = Φ x = fφ 0 L L Frustration f Φ x Φ 0 f = 1 E J E C (phase/flux regime) ħω p k B T (ω p = 8E J E C ) I C L Φ 0 Requires large L (otherwise flux quantization kills our quantum variable) 1 0 Δ MQT causes level splitting Δ 0, 1 are symmetric and antisymmetric superpositions of +I L, I L +I L I L φ + πf = 0 φ + πf = π π Φ Φ 0 Theoretical prediction: Leggett (1984) Experimental realization: Friedman et al. (000) AS-Chap

31 Current bias I x E J E C H = 4E C N + E J 1 cos φ + ħ e I xφ Additional force term due to current source Tilted washboard potential Significant anharmonicity 1 0 U m A > 1µm x 1µm E J / E C ~ A² >> 10 4 φ classical arcsin(i e /I c ) G G 1 G 0 φ levels 0, 1 form the qubit oscillator states differ in phase phase qubit Γ Γ 1, Γ 0 pump ω 1 for readout readout detects running phase (voltage) AS-Chap

32 AS-Chap First Rabi oscillations in phase qubit

33 Construction principle current bias I x I L Flux bias Φ x E J E C E J E C parameters similar to RF SQUID qubit E J >> E C ħw p > k B T I c L F 0 opposite circulating current dc SQUID readout Better decoupling from readout electronics significantly longer decoherence times Preferred over current-biased version AS-Chap

34 3-Josephson-junction persistent current flux qubit single JJ in a loop (RF-SQUID flux & flux biased phase qubit) Single quantum degree of freedom Flux quantization fixes JJ phase for β L 1 Requires β L 1 Alternative: More than one JJ in the loop φ 1 φ +I p α Φ x I p J.E. Mooij et al., Science 85, 1036 (1999) T. P. Orlando et al., PRB 60, (1999) Persistent current flux qubit 3 JJ in superconducting loop 1 (L loop L J β L 1) Two junctions have identical size Third junction smaller by factor α E J E J1 = E J and E C E C1 = E C E J3 = αe J and E C3 = E C α E J > E C (phase regime) & ħω p k B T Control knob External flux Φ x applied to loop Still quantum degrees of freedom left after flux quantization AS-Chap

35 φ /π φ /π Double-well potential U J = E J 1 cos φ U φ 1, φ, φ 3 = E J cos φ 1 cos φ + α 1 cos φ 3 Flux quantization φ 1 φ + φ 3 = πf with frustration f Φ x Φ 0 Signs are mere convention! U φ 1, φ = E J + α cos φ 1 cos φ α cos πf + φ 1 φ φ 1 /π Color code: U φ 1,φ E J Φ x = Φ 0 α = 0.8 Double-well potential in each unit cell! φ 1 /π AS-Chap

36 φ /π φ /π Double-well potential φ 1 /π φ + /π Two stable minima at φ, φ and ( φ, φ ), where cos φ 1 Double well rotated by 45 in the φ 1 φ -plane Variable transformation α φ + 1 φ 1 + φ φ 1 U φ +, φ = E J [ + α cos φ + cos φ α cos πf + φ φ 1 φ Variable relevant for qubit dynamics φ AS-Chap

37 φ /π Double-well potential 0.5 U φ +, φ = E J [ + α cos φ + cos φ α cos πf + φ 0 U E J Φ x = n + 1 Φ 0 Symmetric double-well potential Thermodynamics: I = U Φ φ + /π No tunneling Degenerate ground state Left/right well correspond to clockwise/anticlockwise circulating current Persistent current ±I p = U(φ = φ ) = E J α sin πf φ Φ x Φ x =Φ 0 / +I p φ I p φ φ π Φ 0 Φx =Φ 0 / = I = I c α sin φ c α sin π φ cos π = I c α sin φ cos φ = I c 1 1 α sin(x + y) = sin x cos y + cos x sin y sin x = sin x cos y cos φ 1 α AS-Chap

38 φ /π Double-well potential 0.5 U φ +, φ = E J [ + α cos φ + cos φ α cos πf + φ 0 U E J Φ x = n + 1 Φ 0 Symmetric double-well potential +I p I p φ + /π No tunneling Degenerate ground state Left/right well correspond to clockwise/anticlockwise circulating current Persistent current ±I p U E J φ φ Φ x < n + 1 Φ 0 φ Φ x n + 1 Φ 0 Tilted double-well potential +I p I p Flux bias induces energy bias ε Φ x ε Φ x Near Φ x = n + 1 Φ 0 ε Φ x = I p Φ 0 f n 1 φ AS-Chap

39 AS-Chap Quantum treatment N 1, i φ 1, E C e C φ + 1 φ 1 + φ φ 1 φ 1 φ H = 4E C N 1 + N + E J [ + α cos φ + cos φ α cos πf + φ Task convert N 1 and N into N + and N N 1 + N i = φ 1 + φ = φ + dφ + dφ 1 + φ dφ dφ 1 + φ + dφ + dφ + φ dφ dφ = 1 4 φ + + φ φ + φ = 1 φ + + φ = 1 N + + N i Flux qubit Hamiltonian H = E C N + + N + E J [ + α cos φ + cos φ α cos πf + φ

40 E n /ħ (GHz) E n /ħ (GHz) AS-Chap Quantum treatment f = Φ x /Φ 0 H = E C N + + N + E J [ + α cos φ + cos φ α cos πf + φ Numerical diagonalization Eigenenergies E n f f Near Φ x = n + 1 Φ 0 Approximate as two-level system with linear energy bias!

41 AS-Chap E 0,1 δφ x Φ 0 f n 1 Energy bias ε Φ x = I p δφ x 1 +I p I p +I p and I p are eigenstates of ε Φ x σ z Tunneling rate Δ/h over potential barrier Tunnel splitting Δ exp E J E C 0 1 +I p + I p Δ H = ε Φ x σ z + Δ σ x E 1 E 0 ħω q Φ x = ε Φ x + Δ I p σ z 0 δφ x /Φ 0 I p Bloch angle θ denotes operation point Φ x Δ sin θ and cos θ ε Φ x ħω q Φ x ħω q Φ x 0 Persistent circulating current I p σ z I p σ z = I p cos θ depends on Φ x I p 0 δφ x /Φ 0

42 Readout requirements L J Φ 0 πi c E 0,1 1 +I p I p 0 D Inductive coupling to readout circuit Goal: E J 50 E C Junction I c 750 na, C 3 ff, α 0.7 Loop: d 10 μm L μ 0 d 10 ph L L J 400 ph Self-induced flux negligible Flux signal LI p LαI c 3 mφ 0 ±I p can be distinguished by an on-chip dc SQUID I p σ z 0 1 +I p + I p 0 δφ x /Φ 0 I p I p 0 δφ x /Φ 0 AS-Chap

43 Continuous-wave readout with dc SQUID E 0,1 1 +I p I p 0 D I p σ z 1 +I p + I p 0 δφ x /Φ 0 I p 0 I p F. Deppe, Ph.D. thesis (Technische Universität München, 009) 0 δφ x /Φ 0 AS-Chap

44 Pulsed dc SQUID readout away from the degeneracy point E readout pulse sequence time 0 Bias here 0 df x /F 0 K. Kakuyanagi et al., Phys. Rev. Lett. 98, (007) F. Deppe et al., Phys. Rev. B 76, (007) Principle Away from Φ x = Φ 0 /, qubit eigenstates coincide with (anti-)clockwise circulating current states Add/remove flux from SQUID loop Increase/decrease I c,squid (Φ x,squid ) Protocol Bias SQUID just below switching point (short switching pulse) Depending on qubit state switching or not Measure voltage or not Hold pulse avoids retrapping More signal AS-Chap

45 Pulsed dc SQUID readout at the degeneracy point E Prepare adiabatic flux shift pulse 0 ħw microwave pulse sequence readout pulse sequence Readout Prepare & Readout 0 df x /F 0 time K. Kakuyanagi et al., Phys. Rev. Lett. 98, (007) F. Deppe et al., Phys. Rev. B 76, (007) AS-Chap

46 Flux qubit Relaxation rate fit by Bloch-Redfield model (or Golden rule argument): T 1 1 = π ħ ε Φ x sin θ S Φ ω q Transfer function Actual flux noise This data S Φ Δ ħ 10 0 Φ 0 Hz High frequency noise causing resonant transitions Physical coupling via σ z (flux through loop) σ z cos θ σ z sin θ σ x Stronger near magic point (sin θ 1) Inductive coupling MI p I noise Stronger for large ε Φ x = I p F. Deppe et al., Phys. Rev. B 76, (007) AS-Chap

47 ωt F Ramsey filter F R Spin echo filter F E Flux qubit Dephasing rates Depend on type of low frequency noise! Rates depend on the measurement protocol (filters!) Ramsey Probes low-frequency noise T 1 R = T T φr Spin echo T 1 E = T T φe Filters low-frequency noise ωt G. Ithier et al., Phys. Rev. B 7, (005). A. Shnirman et al., Phys. Rev. Lett. 94, 1700 (005). K. Kakuyanagi, F. Deppe et al., PRL 98, (007) F. Deppe et al., Phys. Rev. B 76, (007) AS-Chap

48 Flux qubit dephasing rates This experiment Clearly cusped 1/f-noise dominates Additional small white noise contribution Predictions White noise (Bloch-Redfield) T 1 φ = π ε cos θ ħ Φ x S BR Φ ω = 0 Low-frequency spectrum important T Φ x is smooth function 1/f-noise S Φ ω = A 1/f ω T 1 φe = 1 ε cos θ A ln ħ Φ x Φ x -dependence cusped G. Ithier et al., Phys. Rev. B 7, (005). A. Shnirman et al., Phys. Rev. Lett. 94, 1700 (005). K. Kakuyanagi, F. Deppe et al., PRL 98, (007) F. Deppe et al., Phys. Rev. B 76, (007) AS-Chap

49 Flux qubit dephasing rates Summary & numbers T E 1 T 1 1 at magic point Relaxation-limited T 1 T φe μs Strong 1/f-contribution A 1/f 10 6 Φ 0 Typical value (known from SQUIDs) Additional white-noise contribution S Φ BR ω 0 = Φ 0 S BR Φ ω 0 S Φ ħ Consistent (white noise should be frequencyindependent) Δ Hz G. Ithier et al., Phys. Rev. B 7, (005). A. Shnirman et al., Phys. Rev. Lett. 94, 1700 (005). K. Kakuyanagi, F. Deppe et al., PRL 98, (007) F. Deppe et al., Phys. Rev. B 76, (007) AS-Chap

50 Z(w) Flux qubit noise sources White noise Attenuator V out White noise from control line Cold attenuators I bias White noise from readout circuit Engineer Z(ω) 1/f noise 1/f noise independent of area of qubit loop local noise sources in close qubit environment Two-level fluctuators Improve fabrication technology AS-Chap

51 AS-Chap Charge engineering The Cooper pair box (CPB) Superconducting island with negligible self-capacitance Hamiltonian (for any E J, E C n E J, C J C g V g e C g +C J, n g ) Charge regime E C E J Charge is good quantum number Schrödinger equation H CPB Ψ k = E k Ψ k Mathieu equation for Ψ k Ψ k e in gφ H CPB = 4E C n n g + EJ 1 cos φ Ψ k α E J E C cos α Ψ k = 4E k E C Ψ k Gate charge n g C gv g induced by source V e g Adds/removes excess CP to/from island (always many equilibrium CP) Classical quantity May assume fractional values! α φ/ Numerical solution Eigenenergies E k

52 The split Cooper pair box V g Tunable JJ (dc SQUID) C J / C g Island C J / Readout E E/E / E C C E E J E C = 0.06 E J E + Dc SQUID with β L 1 Tunable JJ with effective E J and E C Gate voltage V g is control knob Readout with additional JJ Detect number of excess Cooper pairs on island Josephson energy E J cos φ Couples charge states/parabolas Avoided crossings 0.0 E - E CV e / e n g H CPB = 4E C n n g + EJ cos φ More typical parameters E C 5 GHz, E J 5 GHz AS-Chap

53 AS-Chap The split Cooper pair box V g Tunable JJ (dc SQUID) C J / C g Island C J / Readout E E/E / E C C E E J E C = 0.06 E J E + Theory questions Why is coupling exactly E J? Near n g = 1, energy levels look like hyperbola. Correct? 0.0 E - E CV e / e n g H CPB = 4E C n n g + EJ cos φ More typical parameters E C 5 GHz, E J 5 GHz

54 Two-level-representation of the CPB Goal Express H CPB = 4E C n n g + EJ cos φ as TLS near n g = 1 Charge states n n n = n n n ng = n ng n n n n g = Commutation relations n, φ = 1 n n n n g n n n = 1 π 0 πdφ exp in φ φ exp ip φ n = 1 π 0 πdφ exp i n + p φ φ = n + p exp ±i φ n = n ± 1 cos φ = 1 exp i φ + exp i φ = = 1 n n exp i φ + exp i φ n n = 1 n n n n + 1 n n n AS-Chap

55 Two-level-representation of the CPB TLS n {0,1} n n n = n n exp ±i φ n = n ± 1 n n n g n n 1 n g σ z HCPB = 4EC n ng + EJ cos φ 1 = 1 n n n exp i φ + exp i φ n n n exp i φ + exp i φ = 1 ( 0 0 exp i φ exp i φ exp i φ exp i φ exp i φ exp i φ 1 1 H CPB = E el σ z + E J σ x E el 4E C 1 n g = 1 ( ) = 1 σ x AS-Chap

56 Two-level-representation of the CPB V g Tunable JJ (dc SQUID) C J / C g Island C J / Readout E E/E / E C C E E J E C = 0.06 E J E + Why is coupling exactly E J? Because of the two-level representation Near n g = 1, energy levels look like hyperbola. Correct? Yes, because E el V g can be linearized for n n g E CV e / e n g H CPB = E el σ z + E J σ x E el 4E C n n g E - Practical devices parameters E C 5 GHz, E J 5 GHz AS-Chap

57 q = 0 q = 1 q = From the Cooper pair box to the transmon qubit Advantages of the CPB Simple design (JJ, β L 1) Coupling element E J I c (Flux qubit: Δ exp E J E C ) Voltages convenient for Coupling to other qubits Coupling to readout circuitry Coupling to control signals Large anharmonicity (few GHz) E / E C 1.0 E J / E C = E + E + E J E J E - E CV e / e In first order insensitive to charge fluctuations at sweet spot n g = n + 1 Big disadvantage Coherence times short due to susceptibility to 1/f charge noise In practice: Coherence times of a few tens of nanoseconds even at the sweet spot! (Typical charge noise magnitude Typical flux noise magnitude) Idea Flatten energy dispersion AS-Chap

58 The transmon qubit (Transmission line shunted plasma oscillation qubit) Take a CPB geometry and increase E J E C E m n g E m n g = 1 4 ε m cos πn g ε m 1 m E C 4m+5 m π E J E C m +3 4 e 8E J E C Charge dispersion decreases exponentially with E J E C Anharmonicity decreases only polynomially with E J E C Optimum trade-off for E J E C 50 Few hundreds of MHz anharmonicity left Charge no longer good quantum number Not tunable via gate voltage anymore Tune via flux (dc SQUID) J. Koch et al., Phys. Rev. A 76, (007). AS-Chap

59 The transmon qubit Embed into a resonator for Readout Filtering Control The transmon is currently most successful qubit with respect to coherence times Coherence of transmons mostly limited by spurious TLS (defects) in substrate and metal-substrate interface D geometries μs 3D geometries up to 00 μs J. Koch et al., Phys. Rev. A 76, (007). AS-Chap

60 AS-Chap The C-shunted flux qubit C sh αe J, αc J Decreasing E J /E C and/or α reduces influence of flux noise by level flattening However, sensitivity to charge noise on islands a,b,c is increased Suppress charge noise by shunt capacitance C sh = β α C J Typically, C sh 100 ff C J 5 ff First promising results T T μs E J, C J n c Φ x n a n b E J, C J J. Q. You et al., Phys. Rev. B 75, (R) (007). M. Steffen et al., Phys. Rev. Lett 105, (010).

61 The C-shunted flux qubit C sh Optimize thin film fabrication as in transmon Anharmonicity 800 MHz slightly larger than for typical transmon qubits Neverthless, transmon-like design Noise sources limiting T / n c αe J, αc n b Resonator loss Ohmic charge noise 1/f flux noise Temporal variations attributed to quasiparticles Noise sources limiting T 85 0 / Photon shot noise from residual thermal photons in the readout resonator E J, C J Φ x n a E J, C J F. Yan et al., arxiv: (015). AS-Chap

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

10.6 Propagating quantum microwaves

10.6 Propagating quantum microwaves AS-Chap. 10-1 10.6 Propagating quantum microwaves Propagating quantum microwaves emit Quantum - - Superconducting quantum circuits Artificial quantum matter Confined quantum states of light Does the emitted

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, two-level systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Superconducting phase qubits

Superconducting phase qubits Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s11128-009-0105-1 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

Control of quantum two-level systems

Control of quantum two-level systems Control of quantum two-level sstems R. Gross, A. Mar & F. Deppe, Walther-Meißner-Institut (00-03) 0.3 Control of quantum two-level sstems.. General concept AS-Chap. 0 - How to control a qubit? Does the

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Superconducting Quantum Circuits

Superconducting Quantum Circuits http:// DPG-Frühjahrstagung Sektion Kondensierte Materie Berlin, 11.03. - 16.03.2018 Superconducting Quantum Circuits Rudolf Gross Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften and Technische

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Superconducting qubit oscillator circuit beyond the ultrastrong-coupling regime S1. FLUX BIAS DEPENDENCE OF THE COUPLER S CRITICAL CURRENT The circuit diagram of the coupler in circuit I is shown as the

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Technische Universität

Technische Universität Physik-Department Superconducting flux quantum circuits: characterization, quantum coherence, and controlled symmetry breaking Dissertation von Frank Deppe Technische Universität München TECHNISCHE UNIVERSITÄT

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Superconducting Circuits and Quantum Information

Superconducting Circuits and Quantum Information Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and

More information

Quantize electrical circuits

Quantize electrical circuits Quantize electrical circuits a lecture in Quantum Informatics the 4th and 7th of September 017 Thilo Bauch and Göran Johansson In this lecture we will discuss how to derive the quantum mechanical hamiltonian

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Martin Weides, Karlsruhe Institute of Technology July 2 nd, 2014 100 mm Basic potentials

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Materials Origins of Decoherence in Superconducting Qubits Robert McDermott

Materials Origins of Decoherence in Superconducting Qubits Robert McDermott 2 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 1, FEBRUARY 2009 Materials Origins of Decoherence in Superconducting Qubits Robert McDermott (Invited Paper) Abstract Superconducting integrated

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information

Chapter 3. Physics of Josephson Junctions: The Voltage State

Chapter 3. Physics of Josephson Junctions: The Voltage State Chapter 3 Physics of Josephson Junctions: The Voltage State AS-Chap. 3-2 3. Physics of Josephson Junctions: The Voltage State for I > I sm : - finite junction voltage phase difference j evolves in time:

More information

Superconducting persistent-current qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J.

Superconducting persistent-current qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J. University of Groningen Superconducting persistent-current qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J. Published in: Physical Review B DOI:

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and Lecture 6. Josephson junction circuits Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and I(t) its only destination is as supercurrent through the

More information

Quantum bits with Josephson junctions

Quantum bits with Josephson junctions Fizika Nizkikh Temperatur, 007, v. 33, No. 9, p. 957 98 Quantum bits with Josephson junctions (Review Article) G. Wendin and V.S. Shumeiko Department of Microtechnology and Nanoscience, Chalmers University

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Chapter 10. Superconducting Quantum Circuits

Chapter 10. Superconducting Quantum Circuits AS-Chap. 10-1 Chapter 10 Superconducting Quantum Circuits AS-Chap. 10-2 10.1 Fabrication of JJ for quantum circuits AS-Chap. 10-3 Motivation Repetition Current-phase and voltage-phase relation are classical,

More information

Fabio Chiarello IFN-CNR Rome, Italy

Fabio Chiarello IFN-CNR Rome, Italy Italian National Research Council Institute for Photonics and Nanotechnologies Elettronica quantistica con dispositivi Josephson: dagli effetti quantistici macroscopici al qubit Fabio Chiarello IFN-CNR

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Quantum Information Processing, Vol. 3, No. 1, February 2004 ( 2004) Implementing Qubits with Superconducting Integrated Circuits

Quantum Information Processing, Vol. 3, No. 1, February 2004 ( 2004) Implementing Qubits with Superconducting Integrated Circuits Quantum Information Processing, Vol. 3, No. 1, February 2004 ( 2004) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Implementing Qubits with Superconducting Integrated Circuits Michel

More information

GROWTH OF TITANIUM-NITRIDE THIN FILMS FOR LOW-LOSS SUPERCONDUCTING QUANTUM CIRCUITS GUSTAF ANDERS OLSON DISSERTATION

GROWTH OF TITANIUM-NITRIDE THIN FILMS FOR LOW-LOSS SUPERCONDUCTING QUANTUM CIRCUITS GUSTAF ANDERS OLSON DISSERTATION GROWTH OF TITANIUM-NITRIDE THIN FILMS FOR LOW-LOSS SUPERCONDUCTING QUANTUM CIRCUITS BY GUSTAF ANDERS OLSON DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of

More information

Decoherence in Josephson-junction qubits due to critical-current fluctuations

Decoherence in Josephson-junction qubits due to critical-current fluctuations PHYSICAL REVIEW B 70, 064517 (2004) Decoherence in Josephson-junction qubits due to critical-current fluctuations D. J. Van Harlingen, 1 T. L. Robertson, 2 B. L. T. Plourde, 2 P. A. Reichardt, 2 T. A.

More information

Josephson charge qubits: a brief review

Josephson charge qubits: a brief review Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s11128-009-0101-5 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009

More information

Circuit quantum electrodynamics with transmon qubits

Circuit quantum electrodynamics with transmon qubits TECHNISCHE UNIVERSITÄT MÜNCHEN WMI WALTHER - MEISSNER - INSTITUT FÜR TIEF - TEMPERATURFORSCHUNG BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Circuit quantum electrodynamics with transmon qubits Master s Thesis

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03 Decoherence and Relaxation in Driven Circuit QED Systems Alexander Shnirman Arkady Fedorov Julian Hauss Valentina Brosco Stefan André Michael Marthaler Gerd Schön experiments Evgeni Il ichev et al. Univ.

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Of course, what is amazing about Kitaev's scheme is the claim that Z and controlled Z gates can be protected!

Of course, what is amazing about Kitaev's scheme is the claim that Z and controlled Z gates can be protected! Kitaev's scheme for a protected qubit in a circuit. Superconducting qubits can be improved by using better materials -- e.g., by replacing the amorphous dielectrics in capacitors with crystalline materials

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Φ / Resonant frequency (GHz) exp. theory Supplementary Figure 2: Resonant frequency ω PO

Φ / Resonant frequency (GHz) exp. theory Supplementary Figure 2: Resonant frequency ω PO 1 a 1 mm b d SQUID JJ c 30 µm 30 µm 10 µm Supplementary Figure 1: Images of the parametric phase-locked oscillator. a, Optical image of the device. The λ/4-type coplanar waveguide resonator is made of

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator : A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi

More information

Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades.

Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades. EXPERIMENTS ON SUPERCONDUCTING JOSEPHSON PHASE QUANTUM BITS Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Jürgen

More information

Quantum phase slip junctions

Quantum phase slip junctions Quantum phase slip junctions J.E. Mooij* and Yu.V. Nazarov Kavli Institute of Nanoscience Delft University of Technology 68 CJ Delft, The Netherlands *e-mail: j.e.mooij@tnw.tudelft.nl abstract For a superconductor,

More information

Superconducting qubits

Superconducting qubits Superconducting qubits Franco Nori Physics Dept., The University of Michigan, Ann Arbor, USA Group members: Frontier Research System, RIKEN, Japan Yu-xi Liu, L.F. Wei, S. Ashhab, J.R. Johansson Collaborators:

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

Supplementary Information for Controlled catch and release of microwave photon states

Supplementary Information for Controlled catch and release of microwave photon states Supplementary Information for Controlled catch and release of microwave photon states Yi Yin, 1, Yu Chen, 1 Daniel Sank, 1 P. J. J. O Malley, 1 T. C. White, 1 R. Barends, 1 J. Kelly, 1 Erik Lucero, 1 Matteo

More information