IV. Rocket Propulsion Systems. A. Overview

Size: px
Start display at page:

Download "IV. Rocket Propulsion Systems. A. Overview"

Transcription

1 IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1

2 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating some matter (the propellant) and exhausting it from the rocket Most significant difference between rocket and air-breathing engines we have examined so far is that the rocket carries all its own propellant Seitzman Rocket Overview-2

3 Rocket: Performance Issues Thrust important when there are minimum allowable acceleration requirements, e.g., launch in gravity field Impulse F(t) dt measure of rocket performance normalized by mass of propellant required Other issues structural weight, size, complexity, reliability, Seitzman Rocket Overview-3

4 Rocket Propulsion Elements Propellant gas, liquid, solid Energy Source chemical, pressure, nuclear, radiation (solar) Storage Feed System for gases/liquids same in chemical rockets Accelerator Thermodynamic (pressure nozzle), electromagnetic (static, dynamic fields) Storage Conversion to press., temp., electricity, radiation Seitzman Rocket Overview-4

5 Examples: Pressure Rocket Cold Gas Thruster Cold gas (N 2, hydrazine, ) stored at high pressure with thrust provided by acceleration through nozzle Propellant=Energy source (storage pressure) Feed system: piping from storage to nozzle Accelerator: nozzle (thermal to kinetic energy) Seitzman Rocket Overview-5

6 Seitzman Rocket Overview-6 Examples: Chemical Rocket Bipropellant: LH2-LOX (H 2 /O 2 ) Combust pressurized H 2 and O 2 in combustion chamber, nozzle exhaust Propellant=Energy source (chemical) Storage: liquid (cryogenic) tanks Feed system: liquid pumps and piping Energy conversion: chemical to thermal energy (combustion) Accelerator: nozzle

7 Examples: Electrical Rocket Ion Engine Ionize neutral gas (Xe); ions accelerated by E field; ions recombined with e - Propellant: neutral gas Energy source: e.g., nuclear Energy conversion: nuclear to thermal to electrical Accelerator: high voltage electrostatic field across electrodes Seitzman Rocket Overview-7

8 Applications Space Propulsion Launch: from planetary body to orbit Orbit Insertion: from launch orbit to mission orbit Maneuvering: maintain or change orbit or trajectory Attitude Control: orientation of vehicle Aircraft Propulsion High thrust/acceleration (sustained or boosters) High speed flight (> ramjet/scramjet capability) Seitzman Rocket Overview-8

9 Chemical Rockets Common Applications Usual choice for high thrust rockets, e.g, launch, orbit change, aircraft propulsion Also used for maneuvering and attitude control Monopropellants vs. Bipropellants Monopropellants (no separate fuel and oxidizer, e.g., hydrazine) Bipropellants (e.g., hydrocarbon/oxygen, hydrogen/oxygen, nitrogen tetroxide/monomethyl hydrazine) Seitzman Rocket Overview-9

10 Chemical Rockets (continued) Propellant Types Gas rockets: fuel/oxidizer stored as gases requires large storage volumes Liquid rockets: stored as liquids more complex but high impulse Solid rockets: propellant is solid lower impulse but simpler Hybrid rockets: usually solid fuel+liq./gas oxidizer Motors vs. Engines Motor = propellant stored inside comb. chamber Engine = storage outside combustion chamber Seitzman Rocket Overview-10

11 Seitzman Rocket Overview-11 Other Rockets: Applications Pressure (cold gas) attitude control + maneuvering: reduced thrust as pressure used up, rendevous Electrical Arcjet thrusters - maneuvering + attitude control Ion engines - space propulsion Future systems Nuclear thermal: like chemical rockets with nuclear-based heat addition, high thrust? Magnetoplasmadynamic and other electrodynamic devices, high impulse

12 Non-Rocket Space Propulsion Combined Cycles: typically combine airbreathing with rocket cycles for single-stage to orbit (SSTO) Solar sails: use momentum from solar radiation Magnetic sails: use magnetic fields Tethers: conducting material moving through EM fields can produce currents/voltages or passing current through tether can produce forces Gravity assist: sling shot effect Warp drive.. Seitzman Rocket Overview-12

Rocket Propulsion Overview

Rocket Propulsion Overview Rocket Propulsion Overview Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating some matter (the propellant) and exhausting it from the rocket Most

More information

11.1 Survey of Spacecraft Propulsion Systems

11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems In the progressing Space Age, spacecrafts such as satellites and space probes are the key to space exploration,

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Jet Propulsion - Classification 1. A heated and compressed atmospheric air, mixed with products of combustion,

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

Chapter 4: Spacecraft Propulsion System Selection

Chapter 4: Spacecraft Propulsion System Selection S.1 Introduction - 1 - Chapter 4: Spacecraft Propulsion System Selection The selection of the best propulsion system for a given spacecraft missions is a complex process. Selection criteria employed in

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems Propulsion Systems Design Rocket engine basics Solid rocket motors Liquid rocket engines Monopropellants Bipropellants Propellant feed systems Hybrid rocket engines Auxiliary propulsion systems 2004 David

More information

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS 7. SOLID ROCKET PROPULSION (SRP) SYSTEMS Ch7 1 7.1 INTRODUCTION 7.1 INTRODUCTION Ch7 2 APPLICATIONS FOR SRM APPLICATIONS FOR SRM Strap-On Boosters for Space Launch Vehicles, Upper Stage Propulsion System

More information

Electric Propulsion Research and Development at NASA-MSFC

Electric Propulsion Research and Development at NASA-MSFC Electric Propulsion Research and Development at NASA-MSFC November 2014 Early NEP concept for JIMO mission Dr. Kurt Polzin (kurt.a.polzin@nasa.gov) Propulsion Research and Development Laboratory NASA -

More information

Rocket Propulsion Basics Thrust

Rocket Propulsion Basics Thrust Rockets 101: A Quick Primer on Propulsion & Launch Vehicle Technologies Steve Heister, Professor School of Aeronautics and Astronautics Purdue University Presentation to AFSAB, 13 January, 2010 Rocket

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari Electric Propulsion Survey: outlook on present and near future technologies / perspectives by Ing. Giovanni Matticari Electric Propulsion: a concrete reality on many S/C GOCE ARTEMIS ARTEMIS SMART-1 EP

More information

Preface. 2 Cable space accelerator 39

Preface. 2 Cable space accelerator 39 Contents Abstract Preface xiii xv 1 Space elevator, transport system for space elevator, 1 and tether system 1.1 Brief history 1 1.2 Short description 2 1.3 Transport system for the space elevator 5 1.4

More information

Engineering Sciences and Technology. Trip to Mars

Engineering Sciences and Technology. Trip to Mars PART 2: Launch vehicle 1) Introduction : A) Open this file and save it in your directory, follow the instructions below. B) Watch this video (0 to 1min03s) and answer to questions. Give the words for each

More information

(b) Analyzed magnetic lines Figure 1. Steady state water-cooled MPD thruster.

(b) Analyzed magnetic lines Figure 1. Steady state water-cooled MPD thruster. A. MPD thruster In this study, as one of the In-Space Propulsion projects by JAXA (Japan Aerospace exploration Agency), a practical MPD propulsion system was investigated. We planned to develop MPD thrusters

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc.

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc. SOLUTIONS MANUAL to ROCKET PROPULSION ELEMENTS, 8 th EDITION By George P. Sutton and Oscar Biblarz Published by John Wiley & Sons, Inc. in 1 This manual is in part an outgrowth of courses taught by Prof.

More information

CHAPTER 3. Classification of Propulsion Systems

CHAPTER 3. Classification of Propulsion Systems CHAPTER 3 Classification of Propulsion Systems 3. 1. INTRODUCTION Propulsion systems are those that are required to propel the vehicles to which they are attached. By this definition, propulsion systems

More information

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis Chemical Rocket Propellant Performance Analysis Sapienza Activity in ISP-1 Program 15/01/10 Pagina 1 REAL NOZZLES Compared to an ideal nozzle, the real nozzle has energy losses and energy that is unavailable

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

Chapter 7 Rocket Propulsion Physics

Chapter 7 Rocket Propulsion Physics Chapter 7 Rocket Propulsion Physics To move any spacecraft off the Earth, or indeed forward at all, there must be a system of propulsion. All rocket propulsion relies on Newton s Third Law of Motion: in

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

Electric Rocket Engine System R&D

Electric Rocket Engine System R&D Electric Rocket Engine System R&D In PROITERES, a powered flight by an electric rocket engine is planed; that is, orbital transfer will be carried out with a pulsed plasma thruster (PPT). We introduce

More information

Propulsion means for CubeSats

Propulsion means for CubeSats Propulsion means for CubeSats C. Scharlemann and D. Krejci 2009 CubeSat Developers Workshop, San Louis Obispo, CA Welcome to the Austrian Research Centers Space Propulsion & Advanced Concepts Staff: 11

More information

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK IAC-13,C4,P,44.p1,x1754 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER Roger Shawyer C.Eng. MIET. FRAeS SPR Ltd UK sprltd@emdrive.com ABSTRACT The static operation of an EmDrive microwave

More information

Learn From The Proven Best!

Learn From The Proven Best! Applied Technology Institute (ATIcourses.com) Stay Current In Your Field Broaden Your Knowledge Increase Productivity 349 Berkshire Drive Riva, Maryland 21140 888-501-2100 410-956-8805 Website: www.aticourses.com

More information

EVOLUTION OF POTENTIAL FUTURE SPACECRAFT PROPULSION SYSTEMS

EVOLUTION OF POTENTIAL FUTURE SPACECRAFT PROPULSION SYSTEMS EVOLUTION OF POTENTIAL FUTURE SPACECRAFT PROPULSION SYSTEMS Peter Erichsen April 2005 1 PROPULSION SYSTEM SELECTION CONSIDERATIONS The most fundamental criteria for the propulsion system to be selected

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.)

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.) 16.522, Space Propulsion Prof. Manuel Martinez-Sanchez Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion Systems Considerations (Valving, tanks, etc) Characteristics of some monopropellants

More information

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust,

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 1 Concept: Propulsion 2 Narayanan Komerath 3 4 Keywords: compressor, turbine Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 5 6 7 8 9 1. Definition Propulsion is the

More information

Introduction of Small Solar Power Sail Demonstrator IKAROS

Introduction of Small Solar Power Sail Demonstrator IKAROS Introduction of Small Solar Power Sail Demonstrator IKAROS IKAROS Demonstration Team JAXA Space Exploration Center (JSPEC) Japan Aerospace Exploration Agency (JAXA) Overview of IKAROS IKAROS is a space

More information

Power, Propulsion and Thermal Design Project ENAE483 Fall 2012

Power, Propulsion and Thermal Design Project ENAE483 Fall 2012 Power, Propulsion and Thermal Design Project ENAE483 Fall 2012 Team B8: Josh Sloane Matt Rich Rajesh Yalamanchili Kiran Patel Introduction This project is an extension of Team A2's Crew Systems Project

More information

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration Dr. Michael Holmes, AFRL/PRSS Solar Thermal Propulsion Concept Parabolic Mirror Sun Create thrust by collecting and focusing sunlight to

More information

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Propulsion and Energy Systems Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Schedule Space propulsion with non-chemical technologies 10/5 1) Space Propulsion Fundamentals

More information

Rocket Propulsion. Combustion chamber Throat Nozzle

Rocket Propulsion. Combustion chamber Throat Nozzle Rocket Propulsion In the section about the rocket equation we explored some of the issues surrounding the performance of a whole rocket. What we didn t explore was the heart of the rocket, the motor. In

More information

PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION

PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION IEPC-2013-318 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

The ResistoJet as a simple and cost-effective propulsion system for nano- and microsatellites

The ResistoJet as a simple and cost-effective propulsion system for nano- and microsatellites 1st IAA Latin American Symposium on Small Satellites Advanced Technologies and Distributed Systems March 7-10, 2017 IAA-LA-13-03 The ResistoJet as a simple and cost-effective propulsion system for nano-

More information

Six-Axis Monopropellant Propulsion System for Pico-Satellites

Six-Axis Monopropellant Propulsion System for Pico-Satellites Six-Axis Monopropellant Propulsion System for Pico-Satellites Mariella Creaghan, Orland Lamce, and Cody Slater 14 October 2015 Overview Background Spacecraft Capabilities Thruster System Design Ground

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

Satellite Engineering

Satellite Engineering Satellite Engineering Universidad de Concepción November 2009 Gaëtan Kerschen Space Structures & Systems Lab University of Liège Satellite Engineering Universidad de Concepción November 2009 Day 3: Satellite

More information

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft D.Gibbon, I.Coxhill, A.Baker, M.Sweeting Surrey Satellite Technology Ltd, University of Surrey, Guildford, England

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

A Course in Advanced Space

A Course in Advanced Space AlAA 94-31 12 A Course in Advanced Space Propulsion at The University of Michigan Terry Kammash Department of Nuclear Engineering The University of Michigan Ann Arbor, MI 48109 30th AIANASMWSAEIASEE Joint

More information

High-Power Plasma Propulsion at NASA-MSFC

High-Power Plasma Propulsion at NASA-MSFC High-Power Plasma Propulsion at NASA-MSFC January 2012 Dr. Kurt Polzin (kurt.a.polzin@nasa.gov) Propulsion Research and Development Laboratory NASA - Marshall Space Flight Center Basics of Rocketry Rocket

More information

Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications

Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications D. D Andrea 1, W.Maschek 1 and R. Schneider 2 Vienna, May 6 th 2009 1 Institut for Institute for Nuclear and Energy Technologies

More information

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I.

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. IEPC-97-130 826 Multiple Thruster Propulsion Systems Integration Study Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. Central Research Institute of Machine Building (TsNIIMASH)

More information

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis Mass Estimating Relationships Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis 2006 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T.

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Vinitha 2 1 Research Scholar, Department of Mechanical Engineering,

More information

The Nature of an Advanced Propellant

The Nature of an Advanced Propellant 1 The Nature of an Advanced Propellant RICHARD T. HOLZMANN 1 Downloaded via 148.251.232.83 on January 1, 2019 at 17:14:22 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately

More information

Power, Propulsion and Thermal Design Project. Jesse Cummings Shimon Gewirtz Siddharth Parachuru Dennis Sanchez Alexander Slafkosky

Power, Propulsion and Thermal Design Project. Jesse Cummings Shimon Gewirtz Siddharth Parachuru Dennis Sanchez Alexander Slafkosky Power, Propulsion and Thermal Design Project Jesse Cummings Shimon Gewirtz Siddharth Parachuru Dennis Sanchez Alexander Slafkosky Mission Itinerary Days 1-3: Voyage to moon Days 4-7: On the lunar surface

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Project of Lithuanian Nano-Satellite

Project of Lithuanian Nano-Satellite Project of Lithuanian Nano-Satellite Domantas BRUČAS 1), Vidmantas TOMKUS 2), Romualdas Zykus 2), Raimundas Bastys 2) 1) Department of Aviation Mechanics, Vilnius Gediminas Technical University/Space Science

More information

Fabrication and Characterization of Porous Metal Emitters for Electrospray Applications. Robert S. Legge Jr, Paulo Lozano. June 2008 SSL # 5-08

Fabrication and Characterization of Porous Metal Emitters for Electrospray Applications. Robert S. Legge Jr, Paulo Lozano. June 2008 SSL # 5-08 Fabrication and Characterization of Porous Metal Emitters for Electrospray Applications Robert S. Legge Jr, Paulo Lozano June 2008 SSL # 5-08 Fabrication and Characterization of Porous Metal Emitters

More information

Helicon Plasma Thruster Persepective and At University of Padua

Helicon Plasma Thruster Persepective and At University of Padua Helicon Plasma Thruster Persepective and Development status and future development At University of Padua D.Pavarin, M.Manente, F.Trezzolani, A.Selmo, M.Magarotto, E.Toson Outline Helicon Thruster overview

More information

Asteroid Payload Express Architecture for Low- Cost and Frequent ProspecFng of NEOs

Asteroid Payload Express Architecture for Low- Cost and Frequent ProspecFng of NEOs Asteroid Payload Express Architecture for Low- Cost and Frequent ProspecFng of NEOs Dr. Rob Hoyt Jeffrey Slostad, Lenny Paritsky, Nestor Voronka, Todd Moser, Greg Jimmerson Tethers Unlimited, Inc 11711

More information

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Outline 1. Crew Systems Design Selection 2. Thermal Requirements and Design 3. Power

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

Plasma Propulsion in Space Eduardo Ahedo

Plasma Propulsion in Space Eduardo Ahedo Plasma Propulsion in Space Eduardo Ahedo Professor of Aerospace Engineering Plasmas and Space Propulsion Team Universidad Carlos III de Madrid, Spain Outline Space propulsion has been the domain of chemical

More information

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis A little more about costing Review of iterative design approach (MERs) Sample vehicle design analysis 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Internal Rate of Return Discount

More information

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS 1) State the difference between compressible fluid and incompressible fluid? 2) Define stagnation pressure? 3) Express the stagnation enthalpy in terms of static enthalpy

More information

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc)

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Satellite Components & Systems Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Definitions Attitude: The way the satellite is inclined toward Earth at a certain inclination

More information

Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras. Lecture 09 Theory of Nozzles

Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras. Lecture 09 Theory of Nozzles Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 09 Theory of Nozzles (Refer Slide Time: 00:14) Good morning. We will develop the

More information

Standards at a Glance

Standards at a Glance Standards at a Glance NGSS The Next Generation Science Standards identify the key scientific ideas and practices that all students should learn by the time they graduate from high school. Each standard

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

Index. Downloaded by on April 18, DOI: / Book DOI: /4.

Index. Downloaded by on April 18, DOI: / Book DOI: /4. α thrusters, 183 185, 193, 195 ABL. See airborne laser. Absorber/receiver, 205 206 assembly, 211 212 Acceleration chamber materials, 242 double stage Hall effect thrusters and, 279 280 Adaptive telescope,

More information

Jet Propulsion. Lecture Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Jet Propulsion. Lecture Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati Lecture - 27 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Propellant Properties High specific impulse

More information

The Integrated Structural Electrodynamic Propulsion (ISEP) Experiment

The Integrated Structural Electrodynamic Propulsion (ISEP) Experiment The Integrated Structural Electrodynamic Propulsion (ISEP) Experiment Nestor Voronka, Robert Hoyt, Tyrel Newton, Ian Barnes Brian Gilchrist (UMich( UMich), Keith Fuhrhop (UMich) TETHERS UNLIMITED, INC.

More information

Einstein s silence to Hermann Oberth s principle of relativistic fuelenergy Inflation and thirteen unanswered relativity questions

Einstein s silence to Hermann Oberth s principle of relativistic fuelenergy Inflation and thirteen unanswered relativity questions Einstein s silence to Hermann Oberth s principle of relativistic fuelenergy Inflation and thirteen unanswered relativity questions Abstract: The American Apollo Space Program Rocket Pioneer group member

More information

Atomic and Nuclear Physics Review (& other related physics questions)

Atomic and Nuclear Physics Review (& other related physics questions) Atomic and Nuclear Physics Review (& other related physics questions) 1. The minimum electron speed necessary to ionize xenon atoms is A. 2.66 10 31 m/s B. 5.15 10 15 m/s C. 4.25 10 12 m/s D. 2.06 10 6

More information

The Challenges of Hypersonic and Space. Flight. Charlie Muir

The Challenges of Hypersonic and Space. Flight. Charlie Muir The Challenges of Hypersonic and Space Flight Charlie Muir The Challenges of Hypersonic Flight Overview Definition Background Propulsion Methods Aerodynamics Aero-thermal Effects Industrial Standards }

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Solar Thermal Propulsion

Solar Thermal Propulsion AM A A A01-414 AIAA 2001-77 Solar Thermal Propulsion SOLAR THERMAL PROPULSION FOR AN INTERSTELLAR PROBE Ronald W. Lyman, Mark E. Ewing, Ramesh S. Krishnan, Dean M. Lester, Thiokol Propulsion Brigham City,

More information

Electric Propulsion. An short introduction to plasma and ion spacecraft propulsion. S. Barral. Instytut Podstawowych Problemów Techniki - PAN

Electric Propulsion. An short introduction to plasma and ion spacecraft propulsion. S. Barral. Instytut Podstawowych Problemów Techniki - PAN Electric Propulsion An short introduction to plasma and ion spacecraft propulsion S. Barral Instytut Podstawowych Problemów Techniki - PAN sbarral@ippt.gov.pl S. Barral (IPPT-PAN) Electric Propulsion 1

More information

Dynamics and Control Functional Division Report

Dynamics and Control Functional Division Report Dynamics and Control Functional Division Report Jon Chrone Kevin Daugherty Jeremy Davis Kevin Earle Josh Ellis Mark Grigg Bhalvinder Gulati Becky Maiorano Ellen McDorman Josh Michener November 18, 2004

More information

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys Vacuum Arc thruster development for Horyu-4 satellite KaterynaAheieva, Shingo Fuchikami, Hiroshi Fukuda, Tatsuo Shimizu, Kazuhiro Toyoda, Mengu Cho Kyushu Institute of Technology1 N589502a@mail.kyutech.jp

More information

Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket

Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket Laser Thruster Yoshinari Minami Advanced Sci.-Tech. Rsch. Orgn. (Formerly NEC Space

More information

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium January 2015 Les Johnson / NASA MSFC / ED04 www.nasa.gov Mission Statement Interstellar Probe Mission:

More information

Performance Characteristics of Low-Power Arcjet Thrusters Using Low Toxicity Propellant HAN Decomposed Gas

Performance Characteristics of Low-Power Arcjet Thrusters Using Low Toxicity Propellant HAN Decomposed Gas Performance Characteristics of Low-Power Arcjet Thrusters Using Low Toxicity Propellant HAN Decomposed Gas IEPC-2013-095 Presented at the 33rd International Electric Propulsion Conference, The George Washington

More information

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car.

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car. Q1.The diagram shows the forces acting on a car. The car is being driven along a straight, level road at a constant speed of 12 m/s. (a) The driver then accelerates the car to 23 m/s in 4 seconds. Use

More information

Research Article Analysis of Electric Propulsion System for Exploration of Saturn

Research Article Analysis of Electric Propulsion System for Exploration of Saturn Mathematical Problems in Engineering Volume 29, Article ID 75637, 4 pages doi:.55/29/75637 Research Article Analysis of Electric Propulsion System for Exploration of Saturn Carlos Renato Huaura Solórzano,

More information

Modelling Nozzle throat as Rocket exhaust

Modelling Nozzle throat as Rocket exhaust Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2502-2506 ISSN: 2249-6645 Modelling Nozzle throat as Rocket exhaust Keshava Rao P. 1, Komma Rahul 2, Souda Dinesh 3 1 (Mechanical Engineering, CBIT College, India)

More information

High Speed Propulsion

High Speed Propulsion High Speed Propulsion KTH Rocket Course 28 Ulf.Olsson.Thn @Telia.com What velocities? Isaac Newton: Law of gravity 1687 g = R g R 2 2 Perigee Apogee V = 2gR 112 m/s to leave earth. Hyperbolic velocity.

More information

ENAE483: Principles of Space System Design Power Propulsion Thermal System

ENAE483: Principles of Space System Design Power Propulsion Thermal System Power Propulsion Thermal System Team B4: Ben Abresch Jason Burr Kevin Lee Scott Wingate November 8th, 2012 Presentation Overview Mission Guidelines Project Specifications Initial Design Power Thermal Insulation

More information

Space Exploration. Full paper. Full Paper. Journal of. SRF (synchrotron radiation fusion) drive for interplanetary spaceships.

Space Exploration. Full paper. Full Paper. Journal of. SRF (synchrotron radiation fusion) drive for interplanetary spaceships. Mehtapress 015 Print - ISSN : 319 9814 Online - ISSN : 319 98 Full Paper Journal of Full paper Space Exploration WWW.MEHTAPRESS.COM J.E.Brandenburg Morningstar Applied Physics LLC, (VIRGINIA) Received

More information

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415)

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion

More information

ROCKET PROPULSION. the pressure of the ambient atmosphere, P e. their ejection speed. Thrust is specified either at sea level or in a vacuum.

ROCKET PROPULSION. the pressure of the ambient atmosphere, P e. their ejection speed. Thrust is specified either at sea level or in a vacuum. Page 1 ROCKET PROPULSION Thrust Conservation of Momentum Impulse & Momentum Combustion & Exhaust Velocity Specific Impulse Rocket Engines Power Cycles Engine Cooling Solid Rocket Motors Monopropellant

More information

Plasma Behaviours and Magnetic Field Distributions of a Short-Pulse Laser-Assisted Pulsed Plasma Thruster

Plasma Behaviours and Magnetic Field Distributions of a Short-Pulse Laser-Assisted Pulsed Plasma Thruster Plasma Behaviours and Magnetic Field Distributions of a Short-Pulse Laser-Assisted Pulsed Plasma Thruster IEPC-2015-91325 Presented at Joint Conference of 30th International Symposium on Space Technology

More information

Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications

Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications Hiroshi Furuya furuya@enveng.titech.ac.jp Tokyo Institute of Technology, ORIGAMI Project (ORganizatIon

More information

Applied-Field MPD Thruster with Magnetic-Contoured Anodes

Applied-Field MPD Thruster with Magnetic-Contoured Anodes Applied-Field MPD Thruster with Magnetic-Contoured s IEPC-215-169 Presented at Joint Conference of 3th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference

More information

INTRODUCTION. Simple electron emitters for space. Simple mechanism of electron emission. Demand for electron sources in space

INTRODUCTION. Simple electron emitters for space. Simple mechanism of electron emission. Demand for electron sources in space R E S E A R C H INTRODUCTION Simple electron emitters for space Demand for electron sources in space Asteroid explorer "Hayabusa" returned to Earth on June 13, 2010 after a seven-year space flight using

More information