Power, Propulsion and Thermal Design Project. Jesse Cummings Shimon Gewirtz Siddharth Parachuru Dennis Sanchez Alexander Slafkosky

Size: px
Start display at page:

Download "Power, Propulsion and Thermal Design Project. Jesse Cummings Shimon Gewirtz Siddharth Parachuru Dennis Sanchez Alexander Slafkosky"

Transcription

1 Power, Propulsion and Thermal Design Project Jesse Cummings Shimon Gewirtz Siddharth Parachuru Dennis Sanchez Alexander Slafkosky

2 Mission Itinerary Days 1-3: Voyage to moon Days 4-7: On the lunar surface o + 3 Contingency Days Days 8-10: Voyage back to Earth

3 Requirements Gross mass 4795 kg Must support all mission phases: LEO checkout, Cis-lunar space, LLO loiter, Lunar descent and ascent, Lunar surface operations, Earth EDL. Must be capable of limited 6 DOF control Must maintain cabin temperatures in Full sun, Eclipse, Lunar surface dawn/dusk/polar, Lunar surface 45 sun angle, Lunar surface noon equatorial

4 Crew Systems Capsule Design Selection We approached the capsule selection with a focus on minimizing power requirements and gross mass. With this approach we chose the design which was kg and which used 116 Watts per day. These power and mass requirements are 69% and 9% lower than our second lowest values.

5 Crew Metabolic Heat We assumed that each crew-day there is a total of 348 Watts of metabolic heat radiated per day based on the values from the ECLIPSE slides in the thermal lecture, assuming three crew members.

6 Power: Requirements 1. Account for two phases of mission a. In sun-light b. In darkness 2. Possible Scenarios a. 13 days of darkness b. 13 days of light c. Nominal Case i. 4 Days Dark on Moon ii. 7 days Dark on Moon 3. Examine available technologies 4. Select combination to ensure power to system through energy storage or power generation

7 Power: Assumptions and Reasoning Assumptions 1. Insolation Constant=1394 W/m^2 is actually constant over the range of the mission 2. Technologies examined can perform to capabilities W of additional power assumed for thruster solenoids as a conservative estimate. Reasoning 1. Examine worst case to determine best energy storage device 2. Examine best case to determine best power generation device 3. Create a combination to meet requirements

8 Power: Selections I Battery and Cells 1. Ni-Cd 2. IPV 3. CPV 4. Ni-MH 5. Li-Ion 6. NaS Solar Panels 1. GaAs 2. 2 Junction 3. 3 Junction 4. 4 Junction 5. Single Crystal Si 6. CIGS

9 Power: Selections I These Technologies were excluded: Type - Reason Nuclear and Solar Thermal - Size and Mass Flywheel - Low Watt Hours per SOA H2-O2 Fuel Cell - Storage of H2 and O2 Chemical Thermal - Scalability

10 Power: Trade Study on Mass of Energy Cells

11 Power: Trade Study on Mass of Batteries

12 Power: Trade Study on Volume of Battery and Cells

13 Power: Comparison of Solar Panels

14 Power: Conclusions Li-Ion Cells: Worst case mass = 1298 kg Nominal mass (4 Days) = kg Nominal Volume (4 Days)= 0.25 m^3 Solar Panels: Mass = 4.16 kg Area= m^2

15 Thermal In AU units, difference between Earth and Moon is significantly small o Moon AU Earth AU = 1 AU Solar Flux I s = 1394 W/m 2 (at 1 AU) Stefan-Boltzmann Constant σ = 5.67 * 10-8 W/m 2 K 4 Total Power required for lunar crew module P int = 764 W Desired cabin temperature T = 293 K (Room Temperature)

16 Thermal Calculations Used full Stefan - Boltzmann equation and solved for T (Cabin Temperature) o o o A s = surface area exposed to sun A rad = total surface area T env = environment temperature

17 Thermal: Trans Lunar For the trans lunar case, we are assuming that the solar flux hits everywhere on the spacecraft expect for the base. o We make this assumption because this is the max surface area that the solar flux can hit on the spacecraft in free space assuming any orientation. We also assumed that the environment temperature in free space is approximately 0 C. o A reasonable assumption to make because (Cabin temperature) 4 >> (Free space temperature) 4

18 Thermal: Eclipse General For the eclipse conditions, we are assuming that the spacecraft is completely eclipsed during both the earth and moon orbits. During the earth orbit, we assume that the environment temperature is 280 K based on the solar flux at the earth's distance from the Sun. During the moon orbit, we assume that the environment temperature is 0 K because it is considered to be free space.

19 Thermal: Lunar Surface The Surface of the Moon has different temperatures at different location and time. Below is the most extreme temperatures to design for worst cases. Lunar Surface Temperature (K) Dawn 120 Polar 230 Dusk Sun Angle 370 Noon Equatorial 390

20 Thermal: Lunar Surface Lunar crew module will have different exposure to Sun at different times o Excluding the bottom surface area (no sun exposure) At Polar/Dusk/Dawn o 1/3 of surface area exposed At 45 Sun Angle o 1/2 of surface area exposed At Noon Equatorial o o All of surface area exposed Sun is directly above lunar crew module

21 Thermal: Coating Material Properties For initial thermal calculations, calculated all cabin temperatures with different coating o Different lunar surface temperatures o Different emissivities (ε) and absorptivities (α) Coating Absorptivity (α) Emissivity (ε) White Black Aluminum Polished Metals

22 Thermal: Lunar Surface Trade Study

23 Thermal: Emittance From our trade study of different coating materials, we found that aluminum coating (ε = 0.3 and α = 0.3) has the least variation of cabin temperature from the desired cabin temperature of 293 Kelvin. After doing thermal calculations for all the different conditions (trans lunar, eclipses, and moon surfaces at different times) with aluminum coating, we decided to have the lowest temperature on the trip be equal to the required cabin temperature of 293 Kelvin, so as to only utilize radiators and not any heaters. For us to meet this condition we found that we would need to have an effective emittance of 0.056

24 Insulation Trade Study

25 Thermal: Multi Layered Insulation We were able to achieve this condition by adding 5 layers of an 850-3M Mylar-Aluminum Backing insulation with aluminum coating on both sides to get an effective emissivity of so as to get the cabin temperature during the coldest situation, during the moon eclipse, to be 293 Kelvin. Similar to the effective emissivity, the effective absorptivity of aluminum decreases with more layers. Final absorptivity α = 0.05 and emissivity ε =

26 Thermal: Cabin Temperatures Cabin temperatures in different situations with multi layered insulation (MLI) Situation Temperature (Kelvin) Temperature ( Celsius) Lunar Surface: At Dawn Lunar Surface: At Dusk Lunar Surface: At Polar Lunar Surface: At 45 latitude Lunar Surface: At equatorial Trans Lunar (Free Space) Eclipse in Earth Orbit Eclipse in Lunar Orbit

27 Thermal: Radiator Will use Traveling Wave Tube Amplifier (TWTA) radiators with Optical Solar Reflectors (OSR) covering them o Total Mass = 31 kg o Emissivity of OSR: ε =.77 o Absorptivity of OSR: α =.06 Radiators will be positioned between top and middle thrusters

28 Thermal: Radiator Used the Stefan-Boltzmann equation to solve for the area required for OSR depending on the power generated by the spacecraft. Area of radiators 2 m 2 o o o Radiators will deploy away from the lunar surface at all times so that the environment temperature is reduced. Designed for the worst case condition that the OSR panels are facing the sun at all times Calculated for the OSR panels area to perform at room temperature for the cabin.

29 Thermal: Position of Radiators Side View of Radiators Top View of Radiators (when deployed)

30 Propulsion: Requirements Limited 6 DOF 1. Translational delta V = 50 m/s 2. Attitude Hold in Dead Band for Return 3. Overcome 500 Nm of Aerodynamic moments due to reentry (Pitch and Yaw) 4. Rotate Spacecraft 180 degrees in 30 seconds (Roll)

31 Propulsion: Attitude Control System The attitude control system will consist of 25 attitude thruster nozzles. All the nozzles will be recessed into the craft walls so that they will be protected from forces on the nozzle walls from drag forces and heating on re-entry. The nozzles near the heat shield need to be placed slightly higher up from the bottom because of the extreme heating of the heat shield region.

32 Attitude Control System Diagram 4 thrusters radially at the top for pitch/yaw adjustments in conjunction with radial thrusters on bottom 1 axial thruster at the top for translational movement along the z-axis

33 Attitude Control System Diagram 4 thrusters in the x-y plane around the center of gravity. For translational motion only - no moment generated because of placement.

34 Attitude Control System Diagram 16 thrusters (4 separate groupings) spaced equally radially. Each grouping has one radially, one axially, and two (opposite) azimuthally. Radial thrusters used for pitch/yaw motion and balance in the moment they produce, with thrusters on the top. Azimuthal thrusters used for roll movement. Axial thrusters for translational movement axially with the one on the top (calibrated to balance the power of the thruster axially on top.)

35 Propulsion: Translational Assumptions 1. delta V = 50 a. The total delta V required for all translational adjustments 2. Rocket Equation is a sufficient model 3. Mass and volume are primary considerations 4. Power and storage requirements are secondary considerations

36 Propulsion: Translational Selection I Cold Gas H2 He Methane N2 Air Argon Krpton Freon 14 SOA NTO-MMH 1 1=NASA-Document, See Sources Slide

37 Propulsion: Translational Selection II These Technologies were excluded: Type - Reason Electrical - High Power, Low Thrust Nuclear - High Mass Solid (Chemical) - Configuration Air Breathing (Chemical) - In Space Sails - Mission Design ED Tether - Mass and Volume

38 Propulsion: Translational Reasoning 1. Examine simplest case first (Cold Gas) 1. Examine State of the Art 1. Plot Mass versus Volume for a given system

39 Propulsion: Translational Mass versus Volume

40 Propulsion: Translational Conclusions I The best option is the SOA NTO-MMH This is due to: Isp=324 seconds Constituent densities at stored temperatures Oxidizer (NTO, Nitrogen Tetroxide) Fuel (MMH, Monomethyl Hydrazine) Earth Storable (liquid at ~290 K) Oxidizer to Fuel Ratio=1.65 Hypergolic (combusts on contact with each other) Utilized on the Space Shuttle RCS system

41 Propulsion: Translational Conclusions II For our translational propulsion requirements we will need: NTO: Mass = kg Volume = m^3 Tank (PMD) Mass = kg MMH: Mass = kg Volume = m^3 Tank (PMD) Mass = kg

42 Propulsion: Translational Conclusions III From NASA 2 the pressurization system with He to keep the fuel and oxidizer vapor stable is about 2 kg He per 55 kg (fuel+oxidizer) Thus: Mass He= ATM (Mass Opt. Tank) and 293 K Volume He= 1.09 x 10-4 m^3 Tank Mass He= kg

43 Propulsion: Dead Band Assumptions The amount of acceptable drift in roll, pitch, and yaw assumed for the dead band drift during the trip to Earth is 5 degrees in either direction from the desired path. It was also assumed that the lowest burn time for the thrusters is 0.1 seconds as limited by the solenoid valves that control the flow of propellant through the engine.

44 Propulsion: Dead Band Reasoning An angular velocity can be calculated from the torque that each set of thrusters delivers when fired, the moment of inertia about the axis of rotation, and the lowest burn time assumed.

45 Propulsion: Dead Band Reasoning Once an angular velocity can be determined as the result of an impulse bit delivered from a set of thrusters, the approximate amount of fuel consumed to correct the dead band drift over the entire trip to Earth can be calculated. After the first initial drift, the time before the next adjustment is completely dependent on the angular velocity generated by the impulse bit, which is extremely small.

46 Propulsion: Dead Band Data The amount of fuel required to correct for drift during the 3 day trip to Earth is negligible. The masses of fuel consumed were less than a gram of propellant total. Because the force requirements of the thrusters are so low as the result of strategic placement, the mass flow-rate of fuel through the engines is very small: 34.8 g/s for the roll thrusters and 44.1 g/s for the pitch and yaw thrusters.

47 Propulsion: Dead Band Conclusion The conclusion that can be drawn regarding fuel consumption for corrections to the dead band drift is that the craft barely drifts at all, and thus negligible amounts of propellant are consumed. This finding can be attributed to the use of a Isp propellant and a high moment of inertia on the craft, as well as a very strategic arrangement of thrusters around the spacecraft. Extraneous factors that were not included in this analysis justify applying a safety factor to the amount of propellant allocated for the translational propulsion to ensure enough fuel in case adjustments must be made to attitude.

48 Propulsion: Pitch and Yaw Assumptions In order to be able to counteract a moment of 500 N-m, two coordinated thrusters, positioned at the top of the craft and along the bottom, are fired. The two thrusters also generate equal forces, negating any translational velocity that might be imparted to the craft.

49 Propulsion: Pitch and Yaw Reasoning In order to calculate the required force to negate a 500 N-m moment during re-entry, the two thrusters must deliver combined moments that equal 500 N-m. The forces required to generate those moments are significantly lower due to the large moment arm for the thrusters positioned at the top of the vehicle.

50 Propulsion: Pitch and Yaw Data and Conclusion When taking this into consideration, each pitch/yaw thruster needs to be able to deliver 70 N of force. This also means that each thruster has a mass flow-rate of 44.1 g/s, as listed before. Such a low mass flow-rate is especially useful for a re-entry situation, where a long, continuous burn may be necessary to keep the vehicle stable.

51 Propulsion: Roll Assumptions The roll thrusters are positioned azimuthally in a ring as close to the base of the vehicle as possible without risking damage from reentry heating to give the highest possible moment arm. Each roll thruster is also assumed to deliver the same amount of force.

52 Propulsion: Roll Reasoning An equation from the lecture notes on propulsion was used to find the required torque to achieve the requirement of rotating 180 degrees in 30 seconds or less.

53 Propulsion: Roll Reasoning By applying a constant torque to accelerate the roll of the craft to 12 degrees/sec and an equal and opposite torque to bring the craft to rest, the vehicle will experience the smoothest possible acceleration from a constant burn.

54 Propulsion: Roll Data and Conclusion The total constant applied torque needed to execute a 180 degree roll maneuver in 30 seconds is N-m. When divided by the radius of the ring of roll thrusters, the required force for each thruster is very low: 27.7 N. This means that the mass flow-rate for the roll thrusters is 34.8 g/s of propellant. This is lower than the mass flow-rate for pitch and yaw control, and the 180 degree roll maneuver, when performed over 30 seconds, consumes half a kilogram of propellant.

55 Summation Mass Tabulation System Component Mass (kg) Mass (kg) Crew Module Power Li-Ion Cell 1298 Solar Panels 4.16 Thermal 30 Radiator 30 Propulsion Fuel (MMH) Fuel Tank Oxidizer (NTO) Oxidizer Tank RC Nozzles 64 He Mass (at 200 atm) 3.64 He Tank Total 2660

56 Sources Hutton, R. E. Lunar Surface Models. Tech. no. SP Washington, D.C: National Aeronautics and Space Administration, Print. Zhongmin, Deng. "Optimization of a Space Based Radiator." Applied Thermal Engineering31 (2011): Web Vasavada, Ashwin R. Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Publication no. Icarus 141. Los Angeles, CA: Academic, Print. "Thermal Control System Design." N.p., n.d. Web. 8 Nov <

ENAE483: Principles of Space System Design Power Propulsion Thermal System

ENAE483: Principles of Space System Design Power Propulsion Thermal System Power Propulsion Thermal System Team B4: Ben Abresch Jason Burr Kevin Lee Scott Wingate November 8th, 2012 Presentation Overview Mission Guidelines Project Specifications Initial Design Power Thermal Insulation

More information

Power, Propulsion and Thermal Design Project ENAE483 Fall 2012

Power, Propulsion and Thermal Design Project ENAE483 Fall 2012 Power, Propulsion and Thermal Design Project ENAE483 Fall 2012 Team B8: Josh Sloane Matt Rich Rajesh Yalamanchili Kiran Patel Introduction This project is an extension of Team A2's Crew Systems Project

More information

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Outline 1. Crew Systems Design Selection 2. Thermal Requirements and Design 3. Power

More information

PPT Design Project. ENAE483 November 8, 2010 Stef Bilyk, Kip Hart, John Pino, Tim Russell

PPT Design Project. ENAE483 November 8, 2010 Stef Bilyk, Kip Hart, John Pino, Tim Russell PPT Design Project ENAE483 November 8, 2010 Stef Bilyk, Kip Hart, John Pino, Tim Russell Project Overview 1) Design the power system, reaction control system, and perform the thermal equilibrium calculations

More information

11.1 Survey of Spacecraft Propulsion Systems

11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems In the progressing Space Age, spacecrafts such as satellites and space probes are the key to space exploration,

More information

ENAE 483: Principles of Space System Design Loads, Structures, and Mechanisms

ENAE 483: Principles of Space System Design Loads, Structures, and Mechanisms ENAE 483: Principles of Space System Design Loads, Structures, and Mechanisms Team: Vera Klimchenko Kevin Lee Kenneth Murphy Brendan Smyth October 29 th, 2012 Presentation Overview Project Overview Mission

More information

Rocket Propulsion Overview

Rocket Propulsion Overview Rocket Propulsion Overview Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating some matter (the propellant) and exhausting it from the rocket Most

More information

IV. Rocket Propulsion Systems. A. Overview

IV. Rocket Propulsion Systems. A. Overview IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

Solar Thermal Propulsion

Solar Thermal Propulsion AM A A A01-414 AIAA 2001-77 Solar Thermal Propulsion SOLAR THERMAL PROPULSION FOR AN INTERSTELLAR PROBE Ronald W. Lyman, Mark E. Ewing, Ramesh S. Krishnan, Dean M. Lester, Thiokol Propulsion Brigham City,

More information

Preliminary Design Review: Loads, Structures, and Mechanisms. Michael Cunningham, Shimon Gewirtz, Rajesh Yalamanchili, Thomas Noyes

Preliminary Design Review: Loads, Structures, and Mechanisms. Michael Cunningham, Shimon Gewirtz, Rajesh Yalamanchili, Thomas Noyes Preliminary Design Review: Loads, Structures, and Mechanisms Michael Cunningham, Shimon Gewirtz, Rajesh Yalamanchili, Thomas Noyes Crew Cabin Structure Height of ~3.7m from heat shield to top of the cone

More information

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration Dr. Michael Holmes, AFRL/PRSS Solar Thermal Propulsion Concept Parabolic Mirror Sun Create thrust by collecting and focusing sunlight to

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations.

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations. ADN Micro Propulsion System 13066300-01 The VACCO / ECAPS CubeSat ADN Delta-V Propulsion System is a high performance micro propulsion system (MiPS) specifically designed for CubeSats. The ADN Delta-V

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F.

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: U N I V E R S I T Y O F MARYLAND 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric Design

More information

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL Anthony Paris Kevin Anderson Jet Propulsion Laboratory Prasanna Chandrasekhar, Brian Zay, Terrance McQueeney Ashwin-Ushas Corporation, Inc.,

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-4435 Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations Christian

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F.

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F MARYLAND 2004 David L. Akin - All rights reserved http://spacecraft.ssl.

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F MARYLAND 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

Rocket Propulsion Basics Thrust

Rocket Propulsion Basics Thrust Rockets 101: A Quick Primer on Propulsion & Launch Vehicle Technologies Steve Heister, Professor School of Aeronautics and Astronautics Purdue University Presentation to AFSAB, 13 January, 2010 Rocket

More information

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components 2003 David L. Akin - All

More information

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft D.Gibbon, I.Coxhill, A.Baker, M.Sweeting Surrey Satellite Technology Ltd, University of Surrey, Guildford, England

More information

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review U N I V E R S I T Y O F MARYLAND 2008 David L. Akin - All rights reserved

More information

Thermal Systems Design

Thermal Systems Design Thermal Systems Design Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components

More information

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Kevin Pryor, Bong Wie, and Pavlos Mikellides Arizona State University 18 th Annual AIAA/USU

More information

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773 ENAE 483/788D MIDTERM FALL, 208 NAME: One 8.5 x piece of paper allowed for notes (both sides). No Internet-enabled devices allowed. Put your name on the cover page, and on each page if you disassemble

More information

The Integrated Structural Electrodynamic Propulsion (ISEP) Experiment

The Integrated Structural Electrodynamic Propulsion (ISEP) Experiment The Integrated Structural Electrodynamic Propulsion (ISEP) Experiment Nestor Voronka, Robert Hoyt, Tyrel Newton, Ian Barnes Brian Gilchrist (UMich( UMich), Keith Fuhrhop (UMich) TETHERS UNLIMITED, INC.

More information

Initial Experiments of a New Permanent Magnet Helicon Thruster

Initial Experiments of a New Permanent Magnet Helicon Thruster Initial Experiments of a New Permanent Magnet Helicon Thruster J. P. Sheehan 1, B. W. Longmier 1, I. M. Reese 2, T. A. Collard 1, F. H. Ebersohn 1, E. T. Dale 1, B. N. Wachs 1, and M. E. Ostermann 1 1

More information

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in Titan Martin E Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in our solar system to have a dense atmosphere.

More information

Chapter 4: Spacecraft Propulsion System Selection

Chapter 4: Spacecraft Propulsion System Selection S.1 Introduction - 1 - Chapter 4: Spacecraft Propulsion System Selection The selection of the best propulsion system for a given spacecraft missions is a complex process. Selection criteria employed in

More information

EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR ALBEDO

EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR ALBEDO ISSN 76-58 nd International Congress of Mechanical Engineering (COBEM 3) November 3-7, 3, Ribeirão Preto, SP, Brazil Copyright 3 by ABCM EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR

More information

THERMAL CONTROL DESIGN FOR A MICROSATELLITE. Kaipo Kent Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822

THERMAL CONTROL DESIGN FOR A MICROSATELLITE. Kaipo Kent Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 THERMAL CONTROL DESIGN FOR A MICROSATELLITE Kaipo Kent Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Conventional satellites are extremely large, highly

More information

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.)

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.) 16.522, Space Propulsion Prof. Manuel Martinez-Sanchez Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion Systems Considerations (Valving, tanks, etc) Characteristics of some monopropellants

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON

XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON D. Nicolini (a), D. Robertson (a), E. Chesta (a), G. Saccoccia (a), D. Gibbon (b), A. Baker

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. A grinding wheel is used to sharpen chisels in a school workshop. A chisel is forced against the edge of the grinding wheel so that the tangential force on the wheel is a

More information

SPACE SHUTTLE ROLL MANEUVER

SPACE SHUTTLE ROLL MANEUVER SPACE SHUTTLE ROLL MANEUVER Instructional Objectives Students will analyze space shuttle schematics and data to: demonstrate graph and schematic interpretation skills; apply integration techniques to evaluate

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM Print your name and section clearly on all nine pages. (If you do not know your section number, write your TA s name.) Show all

More information

Final Examination 2015

Final Examination 2015 THE UNIVERSITY OF SYDNEY School of Aerospace, Mechanical and Mechatronic Engineering AERO 2705: Space Engineering 1 Final Examination 2015 READ THESE INSTRUCTIONS CAREFULLY! Answer at least 4 (four of

More information

INNOVATIVE STRATEGY FOR Z9 REENTRY

INNOVATIVE STRATEGY FOR Z9 REENTRY INNOVATIVE STRATEGY FOR Z9 REENTRY Gregor Martens*, Elena Vellutini**, Irene Cruciani* *ELV, Corso Garibaldi, 34 Colleferro (Italy) **Aizoon, Viale Città d Europa 681, 144, Roma (Italy) Abstract Large

More information

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence Space Missions DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence International Lunar Conference 2005 Toronto, Canada Paul Fulford 1, Karen

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects

Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components 2002 David L. Akin - All

More information

Toward Venus orbit insertion of Akatsuki

Toward Venus orbit insertion of Akatsuki Toward Venus orbit insertion of Akatsuki Takeshi Imamura (JAXA, Japan) Lightning and Airglow Camera Mid-IR Camera UV Imager Ultra-Stable Oscillator 1µm Camera 2µm Camera Development and launch Objective:

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

Toward Venus orbit insertion of Akatsuki

Toward Venus orbit insertion of Akatsuki Toward Venus orbit insertion of Akatsuki Takeshi Imamura (JAXA, Japan) Lightning and Airglow Camera Mid-IR Camera UV Imager Ultra-Stable Oscillator 1µm Camera 2µm Camera Development and launch Objective:

More information

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Pk_43-Pk_50, 2014 Original Paper Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail By Jun MATSUMOTO 1), Ryu FUNASE

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

IMPACT OF SPACE DEBRIS MITIGATION REQUIREMENTS ON THE MISSION DESIGN OF ESA SPACECRAFT

IMPACT OF SPACE DEBRIS MITIGATION REQUIREMENTS ON THE MISSION DESIGN OF ESA SPACECRAFT IMPACT OF SPACE DEBRIS MITIGATION REQUIREMENTS ON THE MISSION DESIGN OF ESA SPACECRAFT Rüdiger Jehn (1), Florian Renk (1) (1 ) European Space Operations Centre, Robert-Bosch-Str. 5, 64293 Darmstadt, Germany,

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

Satellite Engineering

Satellite Engineering Satellite Engineering Universidad de Concepción November 2009 Gaëtan Kerschen Space Structures & Systems Lab University of Liège Satellite Engineering Universidad de Concepción November 2009 Day 3: Satellite

More information

Lunar Orbit Propellant Transfer

Lunar Orbit Propellant Transfer Lunar Orbit Propellant Transfer Steven S. Pietrobon An investigation of various crewed Lunar transportation schemes using liquid oxygen and liquid hydrogen is made. These include the traditional direct

More information

Ball Aerospace & Technologies Corp. & L Garde Inc.

Ball Aerospace & Technologies Corp. & L Garde Inc. Ball Aerospace & Technologies Corp. & L Garde Inc. Rapid De-Orbit of LEO Space Vehicles Using Towed owed Rigidizable Inflatable nflatable Structure tructure (TRIS) Technology: Concept and Feasibility Assessment

More information

HYPER Industrial Feasibility Study Final Presentation Orbit Selection

HYPER Industrial Feasibility Study Final Presentation Orbit Selection Industrial Feasibility Study Final Presentation Orbit Selection Steve Kemble Astrium Ltd. 6 March 2003 Mission Analysis Lense Thiring effect and orbit requirements Orbital environment Gravity Atmospheric

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

Accessing the Lunar Poles for Human Exploration Missions

Accessing the Lunar Poles for Human Exploration Missions B. KENT JOOSTEN NASA Lyndon B. Johnson Space Center Houston, Texas The National Vision for Space Exploration calls for an American return to the Moon in preparation for the human exploration of Mars and

More information

Propellantless deorbiting of space debris by bare electrodynamic tethers

Propellantless deorbiting of space debris by bare electrodynamic tethers Propellantless deorbiting of space debris by bare electrodynamic tethers Juan R. Sanmartín Universidad Politécnica de Madrid Presentation to the 51 th Session of the Scientific and Technical Subcommittee

More information

ENAE 483/788D FINAL EXAMINATION FALL, 2015

ENAE 483/788D FINAL EXAMINATION FALL, 2015 ENAE 48/788D FINAL EXAMINATION FALL, 2015 No phones, computers, or internet-enabled devices. Use the spaces following the questions to write your answers; you can also use the backs of the pages as necessary,

More information

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis Mass Estimating Relationships Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis 2006 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites 1/25 Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites Igal Kronhaus, Mathias Pietzka, Klaus Schilling, Jochen Schein Department of Computer

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts) AAE 439 Exam #1 October 20, 2008 4:30 pm 6:00 pm ARMS B71 or ARMS 1109 NAME: SOLUTIONS Read all problems carefully before attempting to solve them. Your work must be legible, and the organization must

More information

Asteroid Impact Mission AIM Workshop. Electric Propulsion for Attitude & Orbit Control

Asteroid Impact Mission AIM Workshop. Electric Propulsion for Attitude & Orbit Control Asteroid Impact Mission AIM Workshop Electric Propulsion for Attitude & Orbit Control ESA, ESTEC, Noordwijk, The Netherlands, 22-23 February 2016 Christophe R. Koppel Consulting Ind., 75008 Paris, France

More information

Spacecraft Thermal Control

Spacecraft Thermal Control Spacecraft Thermal Control February 17-18, 2010 Beltsville, Maryland $990 (8:30am - 4:00pm) "Register 3 or More & Receive $100 00 each Off The Course Tuition." Summary This is a fast paced two-day course

More information

NAVIGATION & MISSION DESIGN BRANCH

NAVIGATION & MISSION DESIGN BRANCH c o d e 5 9 5 National Aeronautics and Space Administration Michael Mesarch Michael.A.Mesarch@nasa.gov NAVIGATION & MISSION DESIGN BRANCH www.nasa.gov Outline Orbital Elements Orbital Precession Differential

More information

Optimal Control based Time Optimal Low Thrust Orbit Raising

Optimal Control based Time Optimal Low Thrust Orbit Raising Optimal Control based Time Optimal Low Thrust Orbit Raising Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P., India 2

More information

Case Studies for Uncertainty Quantification of a High-fidelity Spacecraft Oriented Break-up Tool. Bent Fritsche, HTG Stijn Lemmens, ESA

Case Studies for Uncertainty Quantification of a High-fidelity Spacecraft Oriented Break-up Tool. Bent Fritsche, HTG Stijn Lemmens, ESA Case Studies for Uncertainty Quantification of a High-fidelity Spacecraft Oriented Break-up Tool Bent Fritsche, HTG Stijn Lemmens, ESA 8th European Symposium on Aerothermodynamics for Space Vehicles Lisbon,

More information

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK IAC-13,C4,P,44.p1,x1754 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER Roger Shawyer C.Eng. MIET. FRAeS SPR Ltd UK sprltd@emdrive.com ABSTRACT The static operation of an EmDrive microwave

More information

JPL ISM STP Study Summary

JPL ISM STP Study Summary JPL ISM STP Study Summary Nitin Arora, Jonathan Murphy, Leon Alkalai, Jonathan Sauder and JPL Team-X Study Team Detailed Team-X report can also be provided if needed High-level Team-X Mission Requirements

More information

General Remarks and Instructions

General Remarks and Instructions Delft University of Technology Faculty of Aerospace Engineering 1 st Year Examination: AE1201 Aerospace Design and System Engineering Elements I Date: 25 August 2010, Time: 9.00, Duration: 3 hrs. General

More information

SPACE DEBRIS REMOVAL

SPACE DEBRIS REMOVAL M.K. Yangel Yuzhnoye State Design Office Ukraine SPACE DEBRIS REMOVAL The Fiftieth Session of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space Vienna International

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium January 2015 Les Johnson / NASA MSFC / ED04 www.nasa.gov Mission Statement Interstellar Probe Mission:

More information

Crew Exploration Lander for Ganymede, Callisto, and Earth s s Moon - Vehicle System Design (AIAA-2009

Crew Exploration Lander for Ganymede, Callisto, and Earth s s Moon - Vehicle System Design (AIAA-2009 Crew Exploration Lander for Ganymede, Callisto, and Earth s s Moon - Vehicle System Design (AIAA-29 29-5179), The Boeing Company AIAA 29 Joint Propulsion Conference August 3-5, 29, Denver, Colorado Slide

More information

Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects

Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Thermal Systems Design Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components

More information

Project of Lithuanian Nano-Satellite

Project of Lithuanian Nano-Satellite Project of Lithuanian Nano-Satellite Domantas BRUČAS 1), Vidmantas TOMKUS 2), Romualdas Zykus 2), Raimundas Bastys 2) 1) Department of Aviation Mechanics, Vilnius Gediminas Technical University/Space Science

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

EVOLUTION OF POTENTIAL FUTURE SPACECRAFT PROPULSION SYSTEMS

EVOLUTION OF POTENTIAL FUTURE SPACECRAFT PROPULSION SYSTEMS EVOLUTION OF POTENTIAL FUTURE SPACECRAFT PROPULSION SYSTEMS Peter Erichsen April 2005 1 PROPULSION SYSTEM SELECTION CONSIDERATIONS The most fundamental criteria for the propulsion system to be selected

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Mission Design Options for Solar-C Plan-A

Mission Design Options for Solar-C Plan-A Solar-C Science Definition Meeting Nov. 18, 2008, ISAS Mission Design Options for Solar-C Plan-A Y. Kawakatsu (JAXA) M. Morimoto (JAXA) J. A. Atchison (Cornell U.) J. Kawaguchi (JAXA) 1 Introduction 2

More information

Overview. Objective Background Design Constraints User Requirements Alternatives Selected Concept Design Evaluation Plan

Overview. Objective Background Design Constraints User Requirements Alternatives Selected Concept Design Evaluation Plan Overview Objective Background Design Constraints User Requirements Alternatives Selected Concept Design Evaluation Plan Objective To design the outer structure and material components of a lunar base to

More information

Solid Propellant Autonomous DE-Orbit System [SPADES]

Solid Propellant Autonomous DE-Orbit System [SPADES] Solid Propellant Autonomous DE-Orbit System [SPADES] Solid Propellant Rocket Motor development Presented: Rogier Schonenborg Study: T. Soares J. Huesing A. Cotuna W. van Meerbeeck I. Carnelli L. Innocenti

More information

Model Rocketry. The Science Behind the Fun

Model Rocketry. The Science Behind the Fun Model Rocketry The Science Behind the Fun Topics History of Rockets Sir Isaac Newton Laws of Motion Rocket Principles Flight of a Model Rocket Rocket Propulsion Forces at Work History Rockets and rocket

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

An Architecture of Modular Spacecraft with Integrated Structural Electrodynamic Propulsion (ISEP)

An Architecture of Modular Spacecraft with Integrated Structural Electrodynamic Propulsion (ISEP) NIAC 7 th Annual Meeting Tucson, Arizona October 18 th, 2006 An Architecture of Modular Spacecraft with Integrated Structural Electrodynamic Propulsion (ISEP) Nestor Voronka, Robert Hoyt, Brian Gilchrist,

More information