Jet Propulsion. Lecture Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Size: px
Start display at page:

Download "Jet Propulsion. Lecture Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati"

Transcription

1 Lecture - 27 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

2 Propellant Properties High specific impulse high gas temperature and/or low molecular mass. For minimum variation in thrust (or chamber pressure), the pressure or burning rate exponent and the temperature coefficient should be small. Simple, reproducible, safe, low-cost, controllable, lowhazard manufacturing. High density allowing a small-volume motor. Low absorption of moisture, which often cause chemical deterioration. Non-toxic exhaust gases. 2

3 Grain Manufacture: Extrusion: Ingredients are mechanically mixed and pushed through a die under high pressure. Limit to the grain size. Casting: Ingredients are mechanically mixed, cast and cured (solidified). Large sizes can be made. 3

4 Burning Rate: Classical relations are only helpful in preliminary design, data extrapolation, and understanding the phenomena; however, supportive research has yet to predict the burning rate of a new propellant in a new motor. Burning Rate is expressed for 294 K (prior to ignition) at a reference pc = 6.9 MPa r = = ( c ) f p ap n c Within certain limits Empirical relation 4

5 where a = n = temp. coefficient. (empirical constant) (influenced by ambient grain temperature) combustion index (burning rate exponent) (describe the influence of p c on ) r r = ap n c r DBP CP CDBP from 0.05 mm/s to 75 mm/s High values of burning rate is difficult to achieve even with more catalyst, embedded wire or higher pressure (above 14 Mpa) 5

6 Observation: is sensitive to For stable operation, 0<n<1 High value of n implies a rapid change of burning rate with chamber pressure. Usually, 0.2< n <0.6 when n 1, r and p c becomes sensitive to one another. n 0, Also, r burning becomes unstable & can extinguish. zero change in burning rate over the wide range of pressure. n = 0, n 6

7 Grain Holding/Loading Cartridge loaded grain (Free-standing grain) Manufactured separately by casting or extrusion and loaded. Easily replaceable Low cost Used in small missiles/medium sized motors. Case-bonded grain Propellant is directly cast in the motor case and bonded to the case. Lower inert mass (no holding devices/pads) Difficult to manufacture Batter Performance Tactical Missiles/Large motors. 7

8 8

9 Burning Rates The Burn Rate increases as both the pressure and temperature rise. Classification by variation in burn rate: Regressive: As it burns, the burning surface area decreases. Neutral: The burning surface area remains constant Progressive: Burning surface area increases as it burns. 9

10 The shape of the fuel block for a rocket is chosen for the particular type of mission it will perform. Since the combustion of the block progresses from its free surface, as this surface grows, geometrical considerations determine whether the thrust increases, decreases or stays constant. A solid-fuel rocket immediately before and after ignition 10

11 11

12 12

13 13

14 Fuel blocks with a cylindrical channel (1) develop their thrust progressively. Those with a channel and also a central cylinder of fuel (2) produce a relatively constant thrust, which reduces to zero very quickly when the fuel is used up. The five pointed star profile (3) develops a relatively constant thrust which decreases slowly to zero as the last of the fuel is consumed. The 'cruciform' profile (4) produces progressively less thrust. Fuel in a block with a 'double anchor' profile (5) produces a decreasing thrust which drops off quickly near the end of the burn. The 'cog' profile (6) produces a strong initial thrust, followed by an almost constant lower thrust. 14

15 The idea of using 11-point starshaped perforation is to increase the surface area of the channel, thereby increasing the burn area and therefore the thrust. As the fuel burns the shape evens out into a circle. In the case of the SRBs, it gives the engine high initial thrust and lower thrust in the middle of the flight. 15

16 Diagram of successive burning surface contours of a central cylindrical cavity with five slots. The length of these contour lines are roughly the same (within ± 15 %) indicating that the burning area is roughly constant. 16

17 b γ Web thickness (b): Maximum thickness of the grain from the initial burning surface to the case. Web fraction (b f ): b b f = = radius Volumetric Loading fraction 2b diameter V f V = b = V c Propellant volume Chamber volume m = ρv b 17

18 Nozzles: Fixed Nozzle Movable Nozzle Submerged Nozzle Extendible Nozzle Blast-tube Nozzle 18

19 Mounting Options of Igniters: 19

20 Pyrotechnic Igniter: Uses solid explosives or energetic propellant as heat producing material. The common pallet basket design is a typical pyrotechnic igniter. Ignition of the main charge consisting of boron (24%), KClO 4 (71 %), binder (5 %) is done by stages. 20

21 Pyrotechnic Igniter: First, on receipt of an electrical signal the initiator releases the energy of a small amount of sensitive powdered pyrotechnic housed within the initiator (known as the squib or the primer charge). Next, the booster charge is is ignited by heat released from the squib; and finally, the main propellant is ignited. 21

22 Pyrogen Igniter: This is basically a small rocket motor used to ignite a larger rocket motor. For pyrogen igniters, the initiator and the booster charge are similar to that of pyrotechnic igniters. Reaction products from the main charge impinge on the surface of the rocket motor grain, producing motor ignition. 22

23 23

24 Solid Rocket Features High propellant density (volume-limited designs). Long-lasting chemical stability. Readily available, tried and trusted, proven in service. No field servicing equipment & straightforward handling. Cheap, reliable, easy firing and simple electrical circuits. 24

25 Solid Rocket Features Lower specific impulses (compared with liquid rockets). Difficult to vary thrust on demand. Smokey exhausts. Performance affected by ambient temperature. 25

26 Solid Propellant Rocket for GW Rapier Jet velocity: m/s Most widely used in Guided Weapons Short, medium range (< 50 km) Simple, reliable, easy storage, high T/W 26

27 References 1. Hill, P.G., and Peterson, C.R., (1992), Mechanics and Thermodynamics of Propulsion, Addison Wesley. 2. Saravanamuttoo, H.I.H, Rogers, G.F.C, and. Cohen, H, (2001), Gas Turbine Theory, Pearson Education. 3. Oates, G.C., (1988), Aerothermodynamics of Gas Turbine and Rocket Propulsion, AIAA, New York. 4. Mattingly, J.D., (1996), Elements of Gas Turbine Propulsion, McGraw Hill. 5. Cumpsty, N.A., (2000), Jet Propulsion, Cambridge University Press. 6. Bathie, W.W., (1996), Fundamentals of Gas Turbines, John Wiley. 7. Treager, I.E., (1997), Aircraft Gas Turbine Engine Technology, Tata McGraw Hill. 8. Anderson, J. D. Jr., (2000), Introduction to Flight, 4 th Edition, McGraw Hill. 9. M.J.L.Turner, (2000), Rocket and Spacecraft Propulsion, Springer. 10. Sutton, G.P. and Biblarz, O., (2001), Rocket Propulsion Elements, John Wiley & Sons. 11. Zucrow, M.J., (1958), Aircraft and Missile Propulsion, Vol. II, John Wiley. 12. Barrere, M., Jaumotte, A., Veubeke, B., and Vandenkerckhove, J., (1960), Rocket Propulsion, Elsevier. 27

28 Web Resources

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS 7. SOLID ROCKET PROPULSION (SRP) SYSTEMS Ch7 1 7.1 INTRODUCTION 7.1 INTRODUCTION Ch7 2 APPLICATIONS FOR SRM APPLICATIONS FOR SRM Strap-On Boosters for Space Launch Vehicles, Upper Stage Propulsion System

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Jet Propulsion - Classification 1. A heated and compressed atmospheric air, mixed with products of combustion,

More information

SARDAR RAJA COLLEGES

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM. DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION CLASS : III Year / VI SEM STAFF:

More information

SOLID ROCKET MOTOR INTERNAL BALLISTICS SIMULATION USING DIFFERENT BURNING RATE MODELS

SOLID ROCKET MOTOR INTERNAL BALLISTICS SIMULATION USING DIFFERENT BURNING RATE MODELS U.P.B. Sci. Bull., Series D, Vol. 76, Iss. 4, 2014 ISSN 1454-2358 SOLID ROCKET MOTOR INTERNAL BALLISTICS SIMULATION USING DIFFERENT BURNING RATE MODELS Marius Ionuţ MĂRMUREANU 1 The burning rate of solid

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 24 Design Aspects of Solid Propellant Rockets We will continue with solid propellant

More information

Solid Rocket Motor Internal Ballistics Using a. Least-Distance Surface-Regression Method

Solid Rocket Motor Internal Ballistics Using a. Least-Distance Surface-Regression Method 23 rd ICDERS July 24-29, 211 Irvine, USA Solid Rocket Motor Internal Ballistics Using a Least-Distance Surface-Regression Method C. H. Chiang Department of Mechanical and Automation Engineering I-Shou

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 119-124 Research India Publications http://www.ripublication.com/aasa.htm Design and Optimization of De Lavel

More information

IV. Rocket Propulsion Systems. A. Overview

IV. Rocket Propulsion Systems. A. Overview IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.)

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.) 16.522, Space Propulsion Prof. Manuel Martinez-Sanchez Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion Systems Considerations (Valving, tanks, etc) Characteristics of some monopropellants

More information

Rocket Propulsion Overview

Rocket Propulsion Overview Rocket Propulsion Overview Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating some matter (the propellant) and exhausting it from the rocket Most

More information

Paper: ASAT PP

Paper: ASAT PP 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

Characterization of Combustion in a Hybrid Rocket Motor Paraffin-Based

Characterization of Combustion in a Hybrid Rocket Motor Paraffin-Based 44th 13-17 July 2014, Tucson, Arizona ICES-2014-104 Characterization of Combustion in a Hybrid Rocket Motor Paraffin-Based Saulo A. Gómez 1, Shirley Pedreira 2 and Pedro Lacava 3 Instituto Tecnologico

More information

Chapter 4: Spacecraft Propulsion System Selection

Chapter 4: Spacecraft Propulsion System Selection S.1 Introduction - 1 - Chapter 4: Spacecraft Propulsion System Selection The selection of the best propulsion system for a given spacecraft missions is a complex process. Selection criteria employed in

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

11.1 Survey of Spacecraft Propulsion Systems

11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems In the progressing Space Age, spacecrafts such as satellites and space probes are the key to space exploration,

More information

Rocket Propulsion. Combustion chamber Throat Nozzle

Rocket Propulsion. Combustion chamber Throat Nozzle Rocket Propulsion In the section about the rocket equation we explored some of the issues surrounding the performance of a whole rocket. What we didn t explore was the heart of the rocket, the motor. In

More information

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T.

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Vinitha 2 1 Research Scholar, Department of Mechanical Engineering,

More information

The Nature of an Advanced Propellant

The Nature of an Advanced Propellant 1 The Nature of an Advanced Propellant RICHARD T. HOLZMANN 1 Downloaded via 148.251.232.83 on January 1, 2019 at 17:14:22 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately

More information

ISSN ; e-issn Copyright 2017 Institute of Industrial Organic Chemistry, Poland

ISSN ; e-issn Copyright 2017 Institute of Industrial Organic Chemistry, Poland Central European Journal of Energetic Materials ISSN 1733-7178; e-issn 2353-1843 Cent. Eur. J. Energ. Mater. 2017, 14(4): 917-932; DOI: 10.22211/cejem/76704 Experimental Approaches to Develop a High Thrust

More information

DEVELOPMENT OF SOLID ROCKET PROPULSION SYSTEM AT UTM

DEVELOPMENT OF SOLID ROCKET PROPULSION SYSTEM AT UTM Jurnal Mekanikal Disember 004, Bil.8, DEVELOPMENT OF SOLID ROCKET PROPULSION SYSTEM AT UTM Mohammad Nazri Mohd. Jaafar Wan Khairuddin Wan Ali Md Nizam Dahalan Department of Aeronautic & Automotive Faculty

More information

78. Design of the testing system for solid propellant rocket motor thrust measurements using mathematical modelling techniques

78. Design of the testing system for solid propellant rocket motor thrust measurements using mathematical modelling techniques 78. Design of the testing system for solid propellant rocket motor thrust measurements using mathematical modelling techniques Algimantas Fedaravičius 1, Saulius Račkauskas 2, Arvydas Survila 3, Laima

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

Structural Integrity Analysis of Propellant in Solid Rocket Motor

Structural Integrity Analysis of Propellant in Solid Rocket Motor Structural Integrity Analysis of Propellant in Solid Rocket Motor Tejas Nikam 1, Mrunal Pardeshi 2, Amit Patil 3, Akshay Patkure 4, Manoday Ramteke 5 1 UG Student, Mechanical Engineering Department, Smt.

More information

Design and Performance Characteristics of a Rocket Using Potassium Nitrate and Sucrose as Propellants

Design and Performance Characteristics of a Rocket Using Potassium Nitrate and Sucrose as Propellants Design and Performance Characteristics of a Rocket Using Potassium Nitrate and Sucrose as Propellants O. S. Olaoye 1, O. A. Abdulhafeez 2 1, 2 Mechanical Engineering Department, Ladoke Akintola University

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis Chemical Rocket Propellant Performance Analysis Sapienza Activity in ISP-1 Program 15/01/10 Pagina 1 REAL NOZZLES Compared to an ideal nozzle, the real nozzle has energy losses and energy that is unavailable

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments

Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments PRIYA KAMESH KAMATCHI*, VISHNU POOVIAH*, PISHARADY.J.C ** *Department of Mechanical

More information

Altitude Dependence of Rocket Motor Performance

Altitude Dependence of Rocket Motor Performance KIMBERLY ALBANESE, MARY MEYERS, KASSANDRA PRUSKO, AND MICHAEL COURTNEY United States Air Force Academy, 1 2354 Fairchild Drive, USAF Academy, CO, 80840 Michael.Courtney@usafa.edu Abstract: It is well known

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems Propulsion Systems Design Rocket engine basics Solid rocket motors Liquid rocket engines Monopropellants Bipropellants Propellant feed systems Hybrid rocket engines Auxiliary propulsion systems 2004 David

More information

Determination of the Internal Ballistic Properties of Solid Heterogeneous Rocket Propellants

Determination of the Internal Ballistic Properties of Solid Heterogeneous Rocket Propellants Determination of the Internal Ballistic Properties of Solid Heterogeneous... 589 Central European Journal of Energetic Materials, 2014, 11(4), 589-601 ISSN 2353-1843 Determination of the Internal Ballistic

More information

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc.

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc. SOLUTIONS MANUAL to ROCKET PROPULSION ELEMENTS, 8 th EDITION By George P. Sutton and Oscar Biblarz Published by John Wiley & Sons, Inc. in 1 This manual is in part an outgrowth of courses taught by Prof.

More information

Chapter 7 Rocket Propulsion Physics

Chapter 7 Rocket Propulsion Physics Chapter 7 Rocket Propulsion Physics To move any spacecraft off the Earth, or indeed forward at all, there must be a system of propulsion. All rocket propulsion relies on Newton s Third Law of Motion: in

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 23 Burn Rate of Solid Propellants and Equilibrium Pressure in Solid Propellant

More information

Lesson Study Final Report (Short Form)

Lesson Study Final Report (Short Form) Lesson Study Final Report (Short Form) Title: Rocketry: Design and Build a Rocket Body, Fabricate a Chemical Motor and Determine the Total Altitude Achieved Team members: Roberta L. Koch, Lecturer of Physics

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information

Electric Rocket Engine System R&D

Electric Rocket Engine System R&D Electric Rocket Engine System R&D In PROITERES, a powered flight by an electric rocket engine is planed; that is, orbital transfer will be carried out with a pulsed plasma thruster (PPT). We introduce

More information

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I.

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. IEPC-97-130 826 Multiple Thruster Propulsion Systems Integration Study Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. Central Research Institute of Machine Building (TsNIIMASH)

More information

YUsend-1 Solid Propellant Microthruster Design, Fabrication and Testing

YUsend-1 Solid Propellant Microthruster Design, Fabrication and Testing YUsend-1 Solid Propellant Microthruster Design, Fabrication and Testing 24 th AIAA/USU Conference on Small Satellites Authors: Kartheephan Sathiyanathan, Regina Lee, Hugh Chesser (York University) Charles

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

Increase of Pulse at Interaction of Gas Masses in the Exhaust Unit of the Jet Engine with Pulsing or Spin Detonation Fuel Burn

Increase of Pulse at Interaction of Gas Masses in the Exhaust Unit of the Jet Engine with Pulsing or Spin Detonation Fuel Burn AASCIT Journal of Physics 2015; 1(4): 334-340 Published online July 30, 2015 (http://www.aascit.org/journal/physics) Increase of Pulse at Interaction of Gas Masses in the Exhaust Unit of the Jet Engine

More information

The Speed of Sound in Air

The Speed of Sound in Air Experiment #21 The Speed of Sound in Air References 1. Your first year physics textbook e.g. Resnick, R., Halliday, D. and Krane, K.S., Physics, Fifth Edition, Wiley, 2002. 2. Lord Rayleigh, The Theory

More information

ME-662 CONVECTIVE HEAT AND MASS TRANSFER

ME-662 CONVECTIVE HEAT AND MASS TRANSFER ME-66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India LECTURE- INTRODUCTION () March 7, 00 / 7 LECTURE- INTRODUCTION

More information

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle June 30 - July 3, 2015 Melbourne, Australia 9 P-10 A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle Ruoyu Deng Department of Mechanical Engineering Andong National University,

More information

Summer AS5150# MTech Project (summer) **

Summer AS5150# MTech Project (summer) ** AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

More information

PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION

PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION IEPC-2013-318 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

INNOVATIVE STRATEGY FOR Z9 REENTRY

INNOVATIVE STRATEGY FOR Z9 REENTRY INNOVATIVE STRATEGY FOR Z9 REENTRY Gregor Martens*, Elena Vellutini**, Irene Cruciani* *ELV, Corso Garibaldi, 34 Colleferro (Italy) **Aizoon, Viale Città d Europa 681, 144, Roma (Italy) Abstract Large

More information

Engineering Sciences and Technology. Trip to Mars

Engineering Sciences and Technology. Trip to Mars PART 2: Launch vehicle 1) Introduction : A) Open this file and save it in your directory, follow the instructions below. B) Watch this video (0 to 1min03s) and answer to questions. Give the words for each

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

Richard Nakka's Experimental Rocketry Web Site

Richard Nakka's Experimental Rocketry Web Site Página 1 de 7 Richard Nakka's Experimental Rocketry Web Site Solid Rocket Motor Theory -- Nozzle Theory Nozzle Theory The rocket nozzle can surely be described as the epitome of elegant simplicity. The

More information

ROCKET PROPULSION. the pressure of the ambient atmosphere, P e. their ejection speed. Thrust is specified either at sea level or in a vacuum.

ROCKET PROPULSION. the pressure of the ambient atmosphere, P e. their ejection speed. Thrust is specified either at sea level or in a vacuum. Page 1 ROCKET PROPULSION Thrust Conservation of Momentum Impulse & Momentum Combustion & Exhaust Velocity Specific Impulse Rocket Engines Power Cycles Engine Cooling Solid Rocket Motors Monopropellant

More information

An Investigation into the Combustion and Performance of Small Solid-Propellant Rocket Motors

An Investigation into the Combustion and Performance of Small Solid-Propellant Rocket Motors An Investigation into the Combustion and Performance of Small Solid-Propellant Rocket Motors Morgan G. Carter 1 University of New South Wales (UNSW) at the Australian Defence Force Academy (ADFA) This

More information

DESIGN OF A CANDY PROPELLANT ROCKET MOTOR BY A COMPUTER AIDED SYSTEM AND ITS PERFORMANCE IN STATIC TESTING

DESIGN OF A CANDY PROPELLANT ROCKET MOTOR BY A COMPUTER AIDED SYSTEM AND ITS PERFORMANCE IN STATIC TESTING 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) DESIGN OF A CANDY PROPELLANT ROCKET MOTOR BY A COMPUTER AIDED SYSTEM AND ITS PERFORMANCE IN STATIC TESTING Galarza Camilo 1, Pulido

More information

Calculation of Solid Fuel Rockets Optimal Values by Analytical Method

Calculation of Solid Fuel Rockets Optimal Values by Analytical Method American International Journal of Contemporary Research Vol. 6 No. 3; June 2016 Calculation of Solid Fuel Rockets Optimal Values by Analytical Method Ján Tvarožek Faculty of Special Technology Alexander

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

Certain Ballistic Performance and Thermal Properties Evaluation for Extruded Modified Double-base Propellants

Certain Ballistic Performance and Thermal Properties Evaluation for Extruded Modified Double-base Propellants Central European Journal of Energetic Materials ISSN 1733-7178; e-issn 2353-1843 Cent. Eur. J. Energ. Mater. 2017, 14(3): 621-635; DOI: 10.22211/cejem/70206 Certain Ballistic Performance and Thermal Properties

More information

Nanoenergetic Material (nem) Performance, Aging, and Sensitivity. Prof. Steve Son

Nanoenergetic Material (nem) Performance, Aging, and Sensitivity. Prof. Steve Son Nanoenergetic Material (nem) Performance, Aging, and Sensitivity Prof. Steve Son sson@purdue.edu http://web.ics.purdue.edu/~sson/ What energetic materials are needed? Improved performance Energy? Composites

More information

Modelling Nozzle throat as Rocket exhaust

Modelling Nozzle throat as Rocket exhaust Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2502-2506 ISSN: 2249-6645 Modelling Nozzle throat as Rocket exhaust Keshava Rao P. 1, Komma Rahul 2, Souda Dinesh 3 1 (Mechanical Engineering, CBIT College, India)

More information

Influence of Firing Temperature on Properties of Gun Propellants

Influence of Firing Temperature on Properties of Gun Propellants J. Chem. Chem. Eng. 9 (2015) 415-427 doi: 10.17265/1934-7375/2015.06.005 D DAVID PUBLISHING Influence of Firing Temperature on Properties of Gun Propellants Karim Moulai Boulkadid 1*, Michel Lefebvre 1,

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

EXTERNAL-JET (FLUID) PROPULSION ANALOGY FOR PHOTONIC (LASER) PROPULSION By John R. Cipolla, Copyright February 21, 2017

EXTERNAL-JET (FLUID) PROPULSION ANALOGY FOR PHOTONIC (LASER) PROPULSION By John R. Cipolla, Copyright February 21, 2017 EXTERNAL-JET (FLUID) PROPULSION ANALOGY FOR PHOTONIC (LASER) PROPULSION By John R. Cipolla, Copyright February 21, 2017 ABSTRACT External-jet propulsion uses a narrow jet of high velocity water or conceptually

More information

The application of nano aluminum powder on solid propellant

The application of nano aluminum powder on solid propellant The application of nano aluminum powder on solid propellant Metal incendiary agent is one of the important components of modern solid propellant, which can improve the explosion heat and density of propellant.

More information

A Gravitational Tractor for Towing Asteroids

A Gravitational Tractor for Towing Asteroids 1 A Gravitational Tractor for Towing Asteroids Edward T. Lu and Stanley G. Love NASA Johnson Space Center We present a concept for a spacecraft that can controllably alter the trajectory of an Earth threatening

More information

Fundamentals of explosive chemistry. Synopsis:

Fundamentals of explosive chemistry. Synopsis: Fundamentals of explosive chemistry Synopsis: This book is used as a textbook for Ammunition Technical Officers Course and Artillery Course in Chemistry Department, Faculty of Science, Universiti Teknologi

More information

Six-Axis Monopropellant Propulsion System for Pico-Satellites

Six-Axis Monopropellant Propulsion System for Pico-Satellites Six-Axis Monopropellant Propulsion System for Pico-Satellites Mariella Creaghan, Orland Lamce, and Cody Slater 14 October 2015 Overview Background Spacecraft Capabilities Thruster System Design Ground

More information

MODELING & SIMULATION OF ROCKET NOZZLE

MODELING & SIMULATION OF ROCKET NOZZLE MODELING & SIMULATION OF ROCKET NOZZLE Nirmith Kumar Mishra, Dr S Srinivas Prasad, Mr Ayub Padania Department of Aerospace Engineering MLR Institute of Technology Hyderabad, T.S Abstract This project develops

More information

Solid Rocket Motors with Particle-Free Composite Propellant at Bayern-Chemie

Solid Rocket Motors with Particle-Free Composite Propellant at Bayern-Chemie Solid Rocket Motors with Particle-Free Composite Propellant at Bayern-Chemie K. W. Naumann, C. M. Rienäcker, A. Weigand Bayern-Chemie GmbH, D-84454, P.O. Box 1131, Aschau am Inn, Germany ESA technical

More information

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Igal Kronhaus and Matteo Laterza Aerospace Plasma Laboratory, Faculty of Aerospace Engineering, Technion - Israel Institute of Technology,

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

A Realistic Thermal Mitigation Strategy for Solid Rocket Motors

A Realistic Thermal Mitigation Strategy for Solid Rocket Motors A GenCorp Company 2013 Insensitive Munitions & Energetic Materials Technology Symposium A Realistic Thermal Mitigation Strategy for Solid Rocket Motors Peter J. Cahill and Kenneth J. Graham Aerojet-Rocketdyne

More information

ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR

ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR Journal of KONES Powertrain and Transport, Vol. 22, No. 3 2015 ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR Robert Jakubowski Rzeszow University of Technology Department

More information

Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras. Lecture 09 Theory of Nozzles

Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras. Lecture 09 Theory of Nozzles Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 09 Theory of Nozzles (Refer Slide Time: 00:14) Good morning. We will develop the

More information

Computational Fluid Dynamics Analysis of Advanced Rocket Nozzle

Computational Fluid Dynamics Analysis of Advanced Rocket Nozzle Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Computational

More information

INTRODUCTION. Smooth Passage for an Artificial Satellite - Combustion Test Title - Necessity of Next Term Solid Rocket. Designing the Launch Complex

INTRODUCTION. Smooth Passage for an Artificial Satellite - Combustion Test Title - Necessity of Next Term Solid Rocket. Designing the Launch Complex R E S E A R C H INTRODUCTION Smooth Passage for an Artificial Satellite - Combustion Test Title - Necessity of Next Term Solid Rocket In September 2006, the "M-V (Mu (µ)-five)," a rocket developed by the

More information

2 Introduction. Fig. 2.1: ASCI Program advances national strengths in computational and simulation science. Introduction 2.1

2 Introduction. Fig. 2.1: ASCI Program advances national strengths in computational and simulation science. Introduction 2.1 2 Introduction DOE ASCI/ASAP Program The Center for Simulation of Advanced Rockets (CSAR) is one of five university-based research centers funded by the U. S. Department of Energy as part of the Advanced

More information

Development of Infrared Tracers

Development of Infrared Tracers Development of Infrared Tracers Isabelle Theobald GD-OTS Canada 1 Objectives Features and Benefits Development Steps Formulation Selection Tracer Composition Process Tracer Assembly Process Ballistic Performances

More information

flflflflflflflfl II END3

flflflflflflflfl II END3 AD-A13 301 VERNIER ROCKET MOTOR MK 84 MOO 0 QUALITY EVALUATION(u) 1/1 NAVAL ORDNANCE STATION INDIAN HEAD MO W G MITCHELL 14 SEP 83 UNCLASSIFIE /21/8RN flflflflflflflfl II END3 I8 iii. 1111.0 t'2 Ji' jw

More information

Introduction to the Combustion of Energetic Materials

Introduction to the Combustion of Energetic Materials Introduction to the Combustion of Energetic Materials Steve Son There is not a law under which any part of this universe is governed which does not come into play, and is not touched upon, in [the phenomena

More information

FOX7/GAP ROCKET PROPELLANTS FOR A SHOULDER LAUNCHED PROJECTILE

FOX7/GAP ROCKET PROPELLANTS FOR A SHOULDER LAUNCHED PROJECTILE 27TH INTERNATIONAL SYMPOSIUM ON BALLISTICS FREIBURG, GERMANY, APRIL 22 2, 13 FOX7/GAP ROCKET PROPELLANTS FOR A SHOULDER LAUNCHED PROJECTILE Hendrik Lips 1 and Klaus Menke 2 1 Dynamit Nobel Defence, 57299

More information

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust,

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 1 Concept: Propulsion 2 Narayanan Komerath 3 4 Keywords: compressor, turbine Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 5 6 7 8 9 1. Definition Propulsion is the

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

ARIANE 5 SOLID ROCKET BOOSTER DYNAMIC BEHAVIOR WITH RESPECT TO PRESSURE OSCILLATIONS

ARIANE 5 SOLID ROCKET BOOSTER DYNAMIC BEHAVIOR WITH RESPECT TO PRESSURE OSCILLATIONS Progress in Propulsion Physics 2 (2011) 149-162 Owned by the authors, published by EDP Sciences, 2011 ARIANE 5 SOLID ROCKET BOOSTER DYNAMIC BEHAVIOR WITH RESPECT TO PRESSURE OSCILLATIONS G. Durin 1,F.Bouvier

More information

Lift-Off Acoustics Predictions for the Ares I Launch Pad

Lift-Off Acoustics Predictions for the Ares I Launch Pad 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) 11-13 May 2009, Miami, Florida AIAA 2009-3163 Lift-Off Acoustics Predictions for the Ares I Launch Pad Kenneth J. Plotkin *

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

UNIFIED ENGINEERING Fall 2003 Ian A. Waitz

UNIFIED ENGINEERING Fall 2003 Ian A. Waitz Ian A. Waitz Problem T6. (Thermodynamics) Consider the following thermodynamic cycle. Assume all processes are quasi-static and involve an ideal gas. 3 p Const. volume heat addition 2 adiabatic expansion

More information

PRACTICE NO. PD-ED-1259 PREFERRED May 1996 RELIABILITY PAGE 1 OF 6 PRACTICES ACOUSTIC NOISE REQUIREMENT

PRACTICE NO. PD-ED-1259 PREFERRED May 1996 RELIABILITY PAGE 1 OF 6 PRACTICES ACOUSTIC NOISE REQUIREMENT PREFERRED May 1996 RELIABILITY PAGE 1 OF 6 PRACTICES Practice: Impose an acoustic noise requirement on spacecraft hardware design to ensure the structural integrity of the vehicle and its components in

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

Effect of Fuel-to-Oxidiser Ratio on Thrust Generation of a Hybrid Al + NaOH + H 2 O Propulsion System for CubeSat Applications

Effect of Fuel-to-Oxidiser Ratio on Thrust Generation of a Hybrid Al + NaOH + H 2 O Propulsion System for CubeSat Applications Effect of Fuel-to-Oxidiser Ratio on Thrust Generation of a Hybrid Al + NaOH + H 2 O Propulsion System for CubeSat Applications Ahmed, O. D. and Knoll, A. K. Surrey Space Centre, University of Surrey, GU2

More information

Some Questions We ll Address Today

Some Questions We ll Address Today Some Questions We ll Address Today What makes a rocket go? How can a rocket work in outer space? How do things get into orbit? What s s special about geo-synchronous orbit? How does the force of gravity

More information

Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion. By F. Winterberg University of Nevada, Reno

Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion. By F. Winterberg University of Nevada, Reno Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion By F. Winterberg University of Nevada, Reno Abstract In DT fusion 80% of the energy released goes into 14MeV neutrons,

More information

proptools Documentation

proptools Documentation proptools Documentation Release 0.0.0 Matthew Vernacchia Feb 17, 2019 Contents 1 Tutorials 3 1.1 Nozzle Flow............................................... 3 1.2 Solid-Propellant Rocket Motors.....................................

More information