Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments

Size: px
Start display at page:

Download "Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments"

Transcription

1 Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments PRIYA KAMESH KAMATCHI*, VISHNU POOVIAH*, PISHARADY.J.C ** *Department of Mechanical Engineering Amrita School of Engineering Clappana P.O., Kollam , Kerala INDIA ** Scientist/Engineer SF, ISRO, Trivandrum Abstract - Computational predictions were done for a typical subsonic thrust chamber plume and a parametric study was carried out for both impinging plate orientation and configuration. The CFD predictions were validated by conducting table top experiments in a heat sink chamber using a heat sink chamber of air-acetylene combustor. The exhaust plume from the chamber was directed to a plate and temperature variation across the system was measured. An Inverse conduction analysis was carried out to get heat fluxes. A parametric study was done for the deflector plate orientation and thickness to arrive at an optimized configuration so that this design tool could be used for the design of actual ground level testing of liquid propulsion rocket engines. Key-Words: - Exhaust plume, Deflector Plate, CFD, Subsonic, Inverse Conduction 1 Introduction Liquid propulsion rocket engines that have applications in space exploration require thorough design check, testing and qualification before usage in flight. Thrust chamber assembly with injectors and sea level extension nozzle is tested in ground level. For conducting the ground level test, the high temperature exhaust gases from the nozzle exit are to be guided through a properly designed deflector pit/plate. The high temperature plume gases will impinge on the pit/plates and heat them extensively. The plate thicknesses used in the pit, orientation of them etc are to be designed by taking into account the heat transfer from the plume in such a way that the plate temperature is within the operating limit of the temperature of plate material. The final arrangement of plate is arrived at after a series of CFD analysis and evaluation of them before implementation. The system configuration to be finalized for a typical semi cryogenic cluster of four engines having around 700 KN thrust giving a total of 2800 KN, the inlet pressure is around 70 bar, inlet temperature around 3300 K, fuel Flow rate 25kg/s, mixture ratio (oxygen/fuel) 5, outlet temperature is 2000 K and Mach number at the exit of the nozzle is 3.2. In the present study, the heat transfer from the exhaust plume to the deflector plates that carry the plume out of the system. In order to define the plume characteristics coming out of the exhaust nozzle, we have conducted experiments to replicate the plume coming out of a nozzle. In combustion chamber acetylene fuel is mixed with air and ignited by a spark plug. The mass flow rate in the acetylene combustion chamber is 0.4 kg/s, mixture ratio is 150, inlet temperature is 600 K, inlet pressure is 1.2 bar and Mach number is Nomenclature T g Temperature of the plume striking the ISSN: ISBN:

2 plate. T ip Inner wall temperature of plate T op Outer wall temperature of the plate h Heat transfer coefficient k Thermal Conductivity of the deflector plate. t Thickness of the deflector plate Q Heat transferred to the plate A s Area of the plate (520x520) mm F Force exerted by the plume gases on the deflector plate. ρ Density of the plume V θ Velocity of the Plume Angle of the deflector plate with respect to the central axis of the combustion chamber. computer analysis is not always reliable or useful for making predictions of many of the plume characteristics. However the models help in understanding the plumes and in extrapolating test results to different conditions of operation. 4 Problem Formulation 3 Plume Studies The source of exhaust plume heating is the rocket engines including the main propulsion, control, ullage and retro engines. Radiation and convection from plume gases splashing from the launch pad can be significant at lift off. The heating is transmitted to the structure by a combination of convection, particle impingement and radiation. Portions of the vehicle structure, which lie within the exhaust plume, are heated by gaseous convection, particle impingement and due to a lesser degree by radiation. In most liquid propellant engine plumes, only the convection mode of heat transfer may require consideration.the influence of the launch pad on base heating depends upon flame deflector geometry and whether the flame deflector operates dry or water-cooled. Simulations are aimed at predicting different plume parameters such as temperature, velocity or pressure profiles, and impact forces. The analysis has many different assumptions about the dynamics or steadiness of the flow. The mathematical models are complex and use one, two or three dimensional mesh models. The analysis of a plume often requires more than one model to solve for different predictions. Many solutions are based in part on extrapolating measured data from actual plumes to guide the analysis. The result of Fig. 2a Fig 1: Schematic of Test setup I X A C B D J Y ISSN: ISBN:

3 A B I C D J X Y 5 Problem Solution To present the design and orientation of the deflector plate, contours of temperature, velocity and velocity vectors were examined for the plume from the combustion chamber and the deflector plate. From the temperature contour we computed the heat transfer coefficient of the plume. The amount of heat transferred by convection from the plume to the plate is equated with the heat conducted in the plate. Fig. 2b Figure-1 gives the schematic of the test set up and Figure-2a &2b illustrate the geometry and mesh used in the present simulation. The cell system involves four regions. The wall of the combustion chamber is above AC and below BD. AB and CD are the inlet and outlet of the combustion gases in the chamber respectively. After CD the exhaust gases expand in the region IJ. The deflector plate XY is kept at a distance of 400 mm. The dimension of the deflector plate used is (520x520x2.5) mm. In the first case, the deflector plate is kept at an angle of 0 degree and in the second case at an angle of 30 degree. The flow is in the sub sonic region. The experiment was performed in the lab under same conditions and cases. The flow conditions for the cases are listed below. Table-1. Flow Conditions/Cases h[t g - T ip ] = k/t [T ip - T op ] (1) The heat transferred to the plate is calculated by Q = ha s [T g T ip ] (2) The temperature and velocity vector contours show the deflection of plume after they hot the deflector plate. The backflow of plume to the system can be detrimental so we observe plume behavior after they hit the deflector plate. From the velocity contour and velocity vector contour we calculate the force exerted by the plume gases on the deflector plate. From this we can design an appropriate cooling mechanism for the deflector plate. F = ρa s V 2 sinθ (3) Case 1: Plate on vertical position Chamber Temperature Chamber Pressure Jet Mach Number Ambient Temperature Ambient Pressure T0 601 K P0 1.2 bar M Ta 300 K Pa 1 bar Fig. 3 Temperature Contour of exhaust plume for the plate kept at 0º. (i.e. Vertical position) ISSN: ISBN:

4 Fig. 4 Contours of velocity magnitude for the exhaust plume for the plate kept at 0º Fig. 7 Contours of Velocity Magnitude of exhaust plume for plate kept at 30º inclination Fig. 5 Contours of velocity vectors for exhaust plume for the plate kept at 0º Fig. 8 Contours of velocity vector of the exhaust plume for plate kept at 30 º inclination Case-2. Plate at 30º inclination Fig. 6 Contours of Temperature of exhaust plume for plate kept at 30º inclination For both the cases we found the variables T g (Temperature of the plume striking the plate), T ip (Inner wall temperature of plate), T op (Outer wall temperature of the plate) are 619 K, 515 K, and 507 K respectively from the temperature contours. Therefore, from equation 1 we got the value h of the exhaust plume gas as W/m2K. This value of h is used to calculate the heat transfer into the plate using equation 2. We got the value of Q as J. The maximum velocity of the plume when it strikes the deflector plate is 5.46 m/s. Therefore, the force acting on the plate due to the impingement of the plume is calculated by equation 3 and was found to be 1.15 N. ISSN: ISBN:

5 For Case 1, from the temperature/velocity profiles we see that the flow field of the plume is restricted to midway of the distance between the plate and the exit of the chamber. This gives us an idea of the minimum distance that the plate must be placed from the exhaust to protect the components from backflow of the plume. However, for Case 2 we see that the flow field of the plume extends beyond the exhaust. This could damage the system components particularly for plume coming from rocket nozzles which are at temperatures around 1500 K. 5.1 Case 1 Plate in vertical position Considering the section XYZ in Figure 3, temperature of the plume varies from 587 K at Point Y to ambient temperature at Point X. Along this temperature variation line the temperature is 533 K at a point which is at a distance of 70mm from the plate, 475 K at a point which is at a distance of 110mm from the plate and then it reaches ambient temperature at a distance of 200mm (which is at the midway of the exit of the combustion chamber and the plate) from the plate to Point X. The exit velocity from the combustion chamber is 6.66m/s. Analyzing the velocity contour along the line XY in Figure 4, at a distance of 25mm from the plate the velocity is 5.4m/s and this reduces to zero at a distance 175mm from plate. Due to collision of the plume from the combustion chamber and the backflow of plume from the plate the velocity is zero at the point O (Mid point of the plate). Figure 5 shows the velocity vector diagram for this case. The same temperature and velocity profiles are observed in section ABC also due to axissymmetry. 5.2 Case 2 Plate at 30º from vertical Along the section XYZ in Figure 6 just above the plate the temperature was found to be 587K and this reaches 523K at about 10mm from plate and it reaches ambient temperature at about 200mm from plate. The system components lie in this region. Analyzing the velocity contours along XY in Figure 7, impinging velocity on the plate is found to be 4.7m/s and this reduces to zero at midpoint of XY. Now analyzing the temperature contour along the section ABC the temperature at the point where the plume strikes the plate is 619K, it reduces to 491 K at 185mm from plate and finally to ambient temperature at 280mm from plate. Analyzing the velocity contour along AB in Figure in 7 the impinging velocity of the plume is 5.13 m/s. At the point O, the velocity is zero. Figure 8 shows the velocity vector diagram for this case. 5.3 Computation/convergence history The execution speed of the code for the flow considered in the study, measured by CPU time/particle/time step, is about 6 microseconds on a pentium WX processor. The flow domain consists of about 1,49,000 cells in four sub regions. The flow is sampled for convergence every one time step for 20,000 time steps. The CPU time for the computation was about 1.5 and 2 days for Cases 1 and 2 respectively. 6 Conclusion The heat transfer coefficient of the plume that has been calculated from the CFD simulations helps in designing the required thickness of the deflector plate. This value of h is verified by performing table top experiments. The force calculated can be used to determine the required holding forces for the deflector plate. The flow fields clearly indicate that using a straight deflector plate is much safer than one kept at an angle of 30 degrees because the plume gas after backflow from the deflector plate can affect the components of the system. The straight plate when used along with another connecting plate kept at 90 degrees with respect to it will be able to divert the plume gases entirely from the system. For high temperature plumes emerging from typical nozzle divergent may require adequate additional water cooling. ISSN: ISBN:

6 References: [1] George P. Sutton, An Introduction to the Engineering of Rockets. [2] John D. Anderson Jr., Computational Fluid Dynamics The Basics with Approach,McGrawHill. ISSN: ISBN:

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Volume 119 No. 12 2018, 59-63 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Ramprasad T and Jayakumar

More information

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T.

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Vinitha 2 1 Research Scholar, Department of Mechanical Engineering,

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 119-124 Research India Publications http://www.ripublication.com/aasa.htm Design and Optimization of De Lavel

More information

Numerical Simulation of Supersonic Expansion in Conical and Contour Nozzle

Numerical Simulation of Supersonic Expansion in Conical and Contour Nozzle Numerical Simulation of Supersonic Expansion in Conical and Contour Nozzle Madhu B P (1), Vijaya Raghu B (2) 1 M.Tech Scholars, Mechanical Engineering, Maharaja Institute of Technology, Mysore 2 Professor,

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

TRANSIENT THERMAL ANALYSIS & HOT TEST OF AN ABLATIVE COOLED THRUST CHAMBER OF SEMI CRYOGENIC ENGINE

TRANSIENT THERMAL ANALYSIS & HOT TEST OF AN ABLATIVE COOLED THRUST CHAMBER OF SEMI CRYOGENIC ENGINE ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

MODELING & SIMULATION OF ROCKET NOZZLE

MODELING & SIMULATION OF ROCKET NOZZLE MODELING & SIMULATION OF ROCKET NOZZLE Nirmith Kumar Mishra, Dr S Srinivas Prasad, Mr Ayub Padania Department of Aerospace Engineering MLR Institute of Technology Hyderabad, T.S Abstract This project develops

More information

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis Chemical Rocket Propellant Performance Analysis Sapienza Activity in ISP-1 Program 15/01/10 Pagina 1 REAL NOZZLES Compared to an ideal nozzle, the real nozzle has energy losses and energy that is unavailable

More information

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet Lecture 41 1 Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet 2 Problem-1 Ramjet A ramjet is flying at Mach 1.818 at an altitude 16.750 km altitude (Pa = 9.122 kpa, Ta= - 56.5 0 C = 216.5

More information

Computational Fluid Dynamics Analysis of Advanced Rocket Nozzle

Computational Fluid Dynamics Analysis of Advanced Rocket Nozzle Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Computational

More information

Optimization of Divergent Angle of a Rocket Engine Nozzle Using Computational Fluid Dynamics

Optimization of Divergent Angle of a Rocket Engine Nozzle Using Computational Fluid Dynamics The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 2 Pages 196-207 2013 Issn: 2319 1813 Isbn: 2319 1805 Optimization of Divergent Angle of a Rocket Engine Nozzle Using Computational

More information

Modelling Nozzle throat as Rocket exhaust

Modelling Nozzle throat as Rocket exhaust Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2502-2506 ISSN: 2249-6645 Modelling Nozzle throat as Rocket exhaust Keshava Rao P. 1, Komma Rahul 2, Souda Dinesh 3 1 (Mechanical Engineering, CBIT College, India)

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems Propulsion Systems Design Rocket engine basics Solid rocket motors Liquid rocket engines Monopropellants Bipropellants Propellant feed systems Hybrid rocket engines Auxiliary propulsion systems 2004 David

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Rocket Propulsion. Combustion chamber Throat Nozzle

Rocket Propulsion. Combustion chamber Throat Nozzle Rocket Propulsion In the section about the rocket equation we explored some of the issues surrounding the performance of a whole rocket. What we didn t explore was the heart of the rocket, the motor. In

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 79-88 Open Access Journal Effect of Variable

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

Applied CFD Project 1. Christopher Light MAE 598

Applied CFD Project 1. Christopher Light MAE 598 Applied CFD Project 1 Christopher Light MAE 598 October 5, 2017 Task 1 The hot water tank shown in Fig 1 is used for analysis of cool water flow with the heat from a hot plate at the bottom. For all tasks,

More information

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

More information

NPC Abstract

NPC Abstract NPC-2013-15002 Development of Mach 3.6 water cooled Facility Nozzle By Jayaprakash C*, Sathiyamoorthy K*, Ashfaque A. Khan*, Venu G*, Venkat S Iyengar*, Srinivas J**, Pratheesh Kumar P** and Manjunath

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

Aerospace Science and Technology

Aerospace Science and Technology Aerospace Science and Technology 24 (2013) 187 197 Contents lists available at SciVerse ScienceDirect Aerospace Science and Technology www.elsevier.com/locate/aescte Numerical analysis of regenerative

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.0 ACOUSTIC ENVIRONMENT

More information

Flow Characteristic Through Convergent-Divergent Nozzle

Flow Characteristic Through Convergent-Divergent Nozzle 2018 IJSRST Volume 4 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Flow Characteristic Through Convergent-Divergent Nozzle S. Sathyapriya 1, R. Swathi 2, P.

More information

Flow Analysis and Optimization of Supersonic Rocket Engine Nozzle at Various Divergent Angle using Computational Fluid Dynamics (CFD)

Flow Analysis and Optimization of Supersonic Rocket Engine Nozzle at Various Divergent Angle using Computational Fluid Dynamics (CFD) IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 6 Ver. IV (Nov- Dec. 2014), PP 01-10 Flow Analysis and Optimization of Supersonic Rocket

More information

NAPC Numerical investigation of axisymmetric underexpanded supersonic jets. Pratikkumar Raje. Bijaylakshmi Saikia. Krishnendu Sinha 1

NAPC Numerical investigation of axisymmetric underexpanded supersonic jets. Pratikkumar Raje. Bijaylakshmi Saikia. Krishnendu Sinha 1 Proceedings of the 1 st National Aerospace Propulsion Conference NAPC-2017 March 15-17, 2017, IIT Kanpur, Kanpur NAPC-2017-139 Numerical investigation of axisymmetric underexpanded supersonic jets Pratikkumar

More information

HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS

HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS Mihai MIHAILA-ANDRES 1 Paul Virgil ROSU 2 Ion FUIOREA 3 1 PhD., Structure Analysis and Simulation Division,

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 11 Area Ratio of Nozzles: Under Expansion and Over Expansion (Refer Slide Time:

More information

nozzle which is fitted to a pipe through which the liquid is flowing under pressure.

nozzle which is fitted to a pipe through which the liquid is flowing under pressure. Impact of Jets 1. The liquid comes out in the form of a jet from the outlet of a nozzle which is fitted to a pipe through which the liquid is flowing under pressure. The following cases of the impact of

More information

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc.

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc. SOLUTIONS MANUAL to ROCKET PROPULSION ELEMENTS, 8 th EDITION By George P. Sutton and Oscar Biblarz Published by John Wiley & Sons, Inc. in 1 This manual is in part an outgrowth of courses taught by Prof.

More information

Solid Rocket Motor Internal Ballistics Using a. Least-Distance Surface-Regression Method

Solid Rocket Motor Internal Ballistics Using a. Least-Distance Surface-Regression Method 23 rd ICDERS July 24-29, 211 Irvine, USA Solid Rocket Motor Internal Ballistics Using a Least-Distance Surface-Regression Method C. H. Chiang Department of Mechanical and Automation Engineering I-Shou

More information

Increase Productivity Using CFD Analysis

Increase Productivity Using CFD Analysis Increase Productivity Using CFD Analysis CFD of Process Engineering Plants for Performance Estimation and Redesign Vinod Taneja Vidhitech Solutions Abhishek Jain abhishek@zeusnumerix.com +91 9819009836

More information

Numerical Simulation of Tail Flow Field of Four - Nozzle Solid Rocket Engine

Numerical Simulation of Tail Flow Field of Four - Nozzle Solid Rocket Engine Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical Simulation of Tail Flow Field of Four - Nozzle Solid Rocket Engine To cite this article: Bailin Zha et al 2018 J. Phys.: Conf. Ser. 1064

More information

Numerical Modelling For Hydro Energy Convertor: Impulse Turbine

Numerical Modelling For Hydro Energy Convertor: Impulse Turbine International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 1003-1008, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERSONIC JET IMPINGING ON AN AXI-SYMMETRIC DEFLECTOR

NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERSONIC JET IMPINGING ON AN AXI-SYMMETRIC DEFLECTOR ICAS 2002 CONGRESS NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERSONIC JET IMPINGING ON AN AXI-SYMMETRIC DEFLECTOR S.Sankaran, M.Rajeswara Rao, T.N.V.Satyanarayana, N.Satyanarayana K.Visvanathan

More information

Richard Nakka's Experimental Rocketry Web Site

Richard Nakka's Experimental Rocketry Web Site Página 1 de 7 Richard Nakka's Experimental Rocketry Web Site Solid Rocket Motor Theory -- Nozzle Theory Nozzle Theory The rocket nozzle can surely be described as the epitome of elegant simplicity. The

More information

Civil aeroengines for subsonic cruise have convergent nozzles (page 83):

Civil aeroengines for subsonic cruise have convergent nozzles (page 83): 120 Civil aeroengines for subsonic cruise have convergent nozzles (page 83): Choked convergent nozzle must be sonic at the exit A N. Consequently, the pressure (p 19 ) at the nozzle exit will be above

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Numerical Study of Pressure Waves Generated by H-IIA Launch Vehicle at Lift-off

Numerical Study of Pressure Waves Generated by H-IIA Launch Vehicle at Lift-off Numerical Study of Pressure Waves Generated by H-IIA Launch Vehicle at Lift-off Seiji Tsutsumi, Taro Shimizu, Ryoji Takaki, Eiji Shima, and Kozo Fujii Japan Aerospace Exploration Agency 3-1-1 Yoshinodai,

More information

CFD ANALYSIS OF HYPERSONIC NOZZLE THROAT ANALYSIS

CFD ANALYSIS OF HYPERSONIC NOZZLE THROAT ANALYSIS Vol-4 Issue-4 218 CFD ANALYSIS OF HYPERSONIC NOZZLE THROAT ANALYSIS Gaurav Kumar 1, Sachin Baraskar 2 1 Research Scholar, Department of Mechanical Engineering, SOE, SSSUTMS, M.P., INDIA 2 Assistant Professor,

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle June 30 - July 3, 2015 Melbourne, Australia 9 P-10 A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle Ruoyu Deng Department of Mechanical Engineering Andong National University,

More information

Design and Performance Characteristics of a Rocket Using Potassium Nitrate and Sucrose as Propellants

Design and Performance Characteristics of a Rocket Using Potassium Nitrate and Sucrose as Propellants Design and Performance Characteristics of a Rocket Using Potassium Nitrate and Sucrose as Propellants O. S. Olaoye 1, O. A. Abdulhafeez 2 1, 2 Mechanical Engineering Department, Ladoke Akintola University

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

Consider a control volume in the form of a straight section of a streamtube ABCD.

Consider a control volume in the form of a straight section of a streamtube ABCD. 6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

COMPUTATIONAL ANALYSIS OF CD NOZZLE FOR SOLID PROPELLANT ROCKET

COMPUTATIONAL ANALYSIS OF CD NOZZLE FOR SOLID PROPELLANT ROCKET COMPUTATIONAL ANALYSIS OF CD NOZZLE FOR SOLID PROPELLANT ROCKET Mohammed iliyaas.a PG Student Aeronautical Engineering, Anna University Tirunelveli Region, Tirunelveli, Dr.K.Karuppasamy Assisant Professor,

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel National Aeronautics and Space Administration Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel Karl Edquist (Karl.T.Edquist@nasa.gov) and Ashley Korzun NASA Langley

More information

Advances in Fluid Mechanics and Heat & Mass Transfer

Advances in Fluid Mechanics and Heat & Mass Transfer Performance Study of Nozzle Geometry on Heat Transfer Characteristics Part I: Local Heat Transfer M. Attalla Mechanical Power and Energy Department, Faculty of Engineering, South Valley University, Qena

More information

Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary Design Optimization Algorithm

Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary Design Optimization Algorithm Avestia Publishing Journal of Fluid Flow, Heat and Mass Transfer Volume 2, Year 2015 ISSN: 2368-6111 DOI: 10.11159/jffhmt.2015.006 Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary

More information

Engineering Sciences and Technology. Trip to Mars

Engineering Sciences and Technology. Trip to Mars PART 2: Launch vehicle 1) Introduction : A) Open this file and save it in your directory, follow the instructions below. B) Watch this video (0 to 1min03s) and answer to questions. Give the words for each

More information

equation 4.1 INTRODUCTION

equation 4.1 INTRODUCTION 4 The momentum equation 4.1 INTRODUCTION It is often important to determine the force produced on a solid body by fluid flowing steadily over or through it. For example, there is the force exerted on a

More information

Homework # cm. 11 cm cm. 100 cm. MAE Propulsion Systems, II

Homework # cm. 11 cm cm. 100 cm. MAE Propulsion Systems, II Homework #3.1 Nitrous Oxide HTPB Hybrid Rocket design Desired Thrust of 8 knt Operate near optimal mixture ratio (based on C*) Nozzle A/A * =16.4, exit diameter = 19.17 cm, Nozzle Exit Divergence angle

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

CFD Simulation of Internal Flowfield of Dual-mode Scramjet

CFD Simulation of Internal Flowfield of Dual-mode Scramjet CFD Simulation of Internal Flowfield of Dual-mode Scramjet C. Butcher, K. Yu Department of Aerospace Engineering, University of Maryland, College Park, MD, USA Abstract: The internal flowfield of a hypersonic

More information

Computational Analysis of Bell Nozzles

Computational Analysis of Bell Nozzles Proceedings of the 4 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) Toronto, Canada August 21 23, 2017 Paper No. 110 DOI: 10.11159/ffhmt17.110 Computational Analysis of Bell

More information

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS 1) State the difference between compressible fluid and incompressible fluid? 2) Define stagnation pressure? 3) Express the stagnation enthalpy in terms of static enthalpy

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Performance of Rectangular Baffle Plate Shell and Tube Heat Exchanger using Computational

More information

ANALYSIS OF THE FLOW IN A PROPULSION NOZZLE SUBJECTED TO A FLUID INJECTION

ANALYSIS OF THE FLOW IN A PROPULSION NOZZLE SUBJECTED TO A FLUID INJECTION ANALYSIS OF THE FLOW IN A PROPULSION NOZZLE SUBJECTED TO A FLUID INJECTION Nassir CHELLOU Department of Meanical Engineering, Faculty of Tenology, University Hassiba Benbouali, Chlef, Algeria Student City

More information

2Dimensional CFD Simulation of Gas Fired Furnace during Heat Treatment Process

2Dimensional CFD Simulation of Gas Fired Furnace during Heat Treatment Process 2Dimensional CFD Simulation of Gas Fired Furnace during Heat Treatment Process Vivekanand D. Shikalgar 1, Umesh C.Rajmane 2, Sanjay S. Kumbhar 3, Rupesh R.bidkar 4, Sagar M. Pattar 5, Ashwini P. Patil

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 32 Efficiencies due to Mixture Ratio Distribution and Incomplete Vaporization (Refer

More information

Lift-Off Acoustics Predictions for the Ares I Launch Pad

Lift-Off Acoustics Predictions for the Ares I Launch Pad 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) 11-13 May 2009, Miami, Florida AIAA 2009-3163 Lift-Off Acoustics Predictions for the Ares I Launch Pad Kenneth J. Plotkin *

More information

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators ISSN 2395-1621 Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators #1 Sonali S Nagawade, #2 Prof. S Y Bhosale, #3 Prof. N K Chougule 1 Sonalinagawade1@gmail.com

More information

PLATE COOLING DESIGN BY MEANS OF CFD ANALYSIS

PLATE COOLING DESIGN BY MEANS OF CFD ANALYSIS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) P. Natale, D. Ricci,

More information

Thermal Desktop / STAR-CCM+ Co-Simulation. Prepared for the STAR Global Conference Matt Garrett CRTech March 17, 2015

Thermal Desktop / STAR-CCM+ Co-Simulation. Prepared for the STAR Global Conference Matt Garrett CRTech March 17, 2015 Thermal Desktop / STAR-CCM+ Co-Simulation Prepared for the STAR Global Conference Matt Garrett CRTech March 17, 2015 THERMAL DESKTOP OVERVIEW 2 CRTech Background Founded in 1992 5000 users in 40 countries

More information

Lecture1: Characteristics of Hypersonic Atmosphere

Lecture1: Characteristics of Hypersonic Atmosphere Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of

More information

Engine. n N. P Pamb. Pr T TLH. Tco. Twc. u v. w x I. INTRODUCTION SYMBOLS. is one of the most common cooling methods used in rocket

Engine. n N. P Pamb. Pr T TLH. Tco. Twc. u v. w x I. INTRODUCTION SYMBOLS. is one of the most common cooling methods used in rocket Comparison of Different Aspect Ratio Cooling Channel Designs for a Liquid Propellant Rocket Engine M. E. Boysan', A. Ulas2, K. A. Tokerl, B. Seckin' IRoketsan Missile Industries Inc., P.K. 30 Elmadag,

More information

Combustion and Mixing Analysis of a Scramjet Combustor Using CFD Pradeep Halder 1 Edla Franklin 2 Dr. P. Ravinder Reddy 3

Combustion and Mixing Analysis of a Scramjet Combustor Using CFD Pradeep Halder 1 Edla Franklin 2 Dr. P. Ravinder Reddy 3 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 09, 2014 ISSN (online): 2321-0613 Combustion and Mixing Analysis of a Scramjet Combustor Using CFD Pradeep Halder 1 Edla

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2018 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS ELECTRIC POWER 2003 March 4-6, 2003 George R Brown Convention Center, Houston, TX EP 03 Session 07C: Fuels, Combustion and Advanced Cycles - Part II ASME - FACT Division CHARACTERISTICS OF ELLIPTIC CO-AXIAL

More information

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF TAU Extensions for High Enthalpy Flows Sebastian Karl AS-RF Contents Motivation Extensions available in the current release: Numerical schemes for super- and hypersonic flow fields Models for gas mixtures,

More information

Rocket Propulsion Overview

Rocket Propulsion Overview Rocket Propulsion Overview Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating some matter (the propellant) and exhausting it from the rocket Most

More information

Aeroacoustics, Launcher Acoustics, Large-Eddy Simulation.

Aeroacoustics, Launcher Acoustics, Large-Eddy Simulation. Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-2012-3104 ICCFD7-3104 Analysis of Acoustic Wave from Supersonic Jets Impinging to an

More information

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE ISSN (O): 393-869 DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE Lokesh Silwal lokusilwal@gmail.com Sajan Sharma thesajansharma@gm ail.com Nitish Acharya nitishacharya1818@g mail.com

More information

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA)

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) Title 3 Column (full page) 2 Column What is Finite Element Analysis? 1 Column Half page The Finite Element Method The Finite Element Method (FEM)

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

NUMERICAL ANALYSIS OF MISSILE WITH MODIFIED FOREBODY IN DRAG REDUCTION

NUMERICAL ANALYSIS OF MISSILE WITH MODIFIED FOREBODY IN DRAG REDUCTION International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 2018, pp. 972 978, Article ID: IJMET_09_09_106 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=9

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW

SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW THERMAL SCIENCE: Year 2012, Vol. 16, No. 4, pp. 1165-1174 1165 SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW by Rajagapal

More information

IJRASET: All Rights are Reserved

IJRASET: All Rights are Reserved CFD analysis of De Laval Nozzle Geometry & Reverse Flow Cavitation Phenomenon Sree Harsha Bandaru 1, Arjun Singh 2 School of Engineering & Technology, Indira Gandhi National Open University, New Delhi

More information

Study on Impingement of Air Jet from Orifice on Convex Surface for Unconfined Flow

Study on Impingement of Air Jet from Orifice on Convex Surface for Unconfined Flow Study on Impingement of Air Jet from Orifice on Convex Surface for Unconfined Flow Prof. A. M. Hanchinal 1 Krishna Alias Aditya B. 2 Rahul Torgal 3 Naveed Sudarji 4 Aishwarya Chhapre 5 2, 3, 4, 5 UG Students

More information

Experimental Investigation of Heat Transfer from a Flat and Surface Indented Plate Impinged with Cold Air Jet- Using Circular Nozzle

Experimental Investigation of Heat Transfer from a Flat and Surface Indented Plate Impinged with Cold Air Jet- Using Circular Nozzle International Journal of Emerging Engineering Research and Technology Volume 2, Issue 5, August 2014, PP 160-170 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Experimental Investigation of Heat Transfer

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

Università degli Studi della Basilicata

Università degli Studi della Basilicata Università degli Studi della Basilicata SCUOLA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Tesi di Laurea in Macchine e Sistemi Energetici Titolo tesi Development of LRE Cooling System Module

More information

MASTER'S THESIS. Simulating Combustion Flow in a Rocket Chamber

MASTER'S THESIS. Simulating Combustion Flow in a Rocket Chamber MASTER'S THESIS 2008:091 Simulating Combustion Flow in a Rocket Chamber Anselm Ho Yen Phing Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information