MODELING & SIMULATION OF ROCKET NOZZLE

Size: px
Start display at page:

Download "MODELING & SIMULATION OF ROCKET NOZZLE"

Transcription

1 MODELING & SIMULATION OF ROCKET NOZZLE Nirmith Kumar Mishra, Dr S Srinivas Prasad, Mr Ayub Padania Department of Aerospace Engineering MLR Institute of Technology Hyderabad, T.S Abstract This project develops a computer code which uses the Method of Characteristics and the Stream Function to define high efficiency nozzle contours for isentropic, inviscid, irrotational supersonic flows of any working fluid for any user-defined exit Mach number. The contours are compared to theoretical isentropic area ratios for the selected fluid and desired exit Mach number. The accuracy of the nozzle to produce the desired exit Mach number is also checked. The flow field of the nozzles created by the code are independently checked with the commercial Computational Fluid Dynamics (CFD) code ANSYS-FLUENT. ANSYSFLUENT predictions are used to verify the isentropic flow assumption and that the working fluid reached the user-defined desired exit Mach number. Key Words: Method of characteristics, Supersonic nozzle, Area ratio relation, Prandtl- Meyer expansion wave sufficient to reach sonic speeds, otherwise no supersonic flow is achieved and it will act as a Venturi tube; this requires the entry pressure to the nozzle to be significantly above ambient at all times (equivalently, the stagnation pressure of the jet must be above ambient). In addition, the pressure of the gas at the exit of the expansion portion of the exhaust of a nozzle must not be too low. Because pressure cannot travel upstream through the supersonic flow, the exit pressure can be significantly below ambient pressure it exhausts into, but if it is too far below ambient, then the flow will cease to be supersonic, or the flow will separate within the expansion portion of the nozzle, forming an unstable jet that may 'flop' around within the nozzle, possibly damaging it. In practice ambient pressure must be no higher than roughly 2-3 times the pressure in the supersonic gas at the exit for supersonic flow to leave the nozzle. 1. Introduction A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube that is pinched in the middle, making a carefully balanced, asymmetric hourglass-shape. It is used to accelerate a hot, pressurized gas passing through it to a supersonic speed, and upon expansion, to shape the exhaust flow so that the heat energy propelling the flow is maximally converted into directed kinetic energy. Because of this, the nozzle is widely used in some types of steam turbine, it is an essential part of the modern rocket engine, and it also sees use in supersonic jet engines. The nozzle was developed by Swedish inventor Gustaf de Laval in 1888 for use on a steam turbine. This principle was first used in a rocket engine by Robert Goddard. Very nearly all modern rocket engines that employ hot gas combustion use de Laval nozzles. A de Laval nozzle will only choke at the throat if the pressure and mass flow through the nozzle is Fig 1.1 Flow through C-D Nozzle The analysis of gas flow through de Laval nozzles involves a number of concepts and assumptions: 988

2 For simplicity, the gas is assumed to be an ideal gas. The gas flow is isentropic (i.e., at constant entropy). As a result the flow is reversible (frictionless and no dissipative losses), and adiabatic (i.e., there is no heat gained or lost). The gas flow is constant (i.e., steady) during the period of the propellant burn. The gas flow is along a straight line from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry) The gas flow behavior is compressible since the flow is at very high velocities. 1.1 ROCKET ENGINE A rocket engine is a jet engine that uses specific propellant mass for forming high speed propulsive exhaust jet. Rocket engines are reaction engines and obtain thrust in accordance with Newton's third law. Since they need no external material to form their jet, rocket engines can be used for spacecraft propulsion as well as terrestrial uses, such as missiles. Most rocket engines are internal combustion engines, although non combusting forms also exist. Rocket engines are in a group have maximum exhaust velocities, are the lightest, and are the least energy efficient of all types of jet engines. The rockets are powered by exothermic chemical reactions of the rocket propellant used. 2. Methodology 2.1 AREA MACH RELATION: For a subsonic flow (0 <= M < 1), as the area increases the velocity decreases and as the area decreases the velocity increases. For a supersonic flow (M > 1), an increase in velocity is associated with an increase in area and a decrease in velocity is associated with a decrease in area. For a sonic flow (M = 1) da=0. This corresponds to a local maxima or minima in the area distribution. Physically it corresponds to minimum area. da A = (1 M2 ) du U There it becomes clear that if one wants to accelerate a gas at rest to supersonic speeds, it must first be accelerated sub sonically in a convergent duct. The minimum area of the duct is called the throat. As soon as the sonic conditions are achieved at the throat, it must further be expanded to supersonic speeds in a divergent duct. The vice versa is also actually true. If one wants to decelerate a supersonic flow to subsonic speeds, it must first be decelerated to a sonic speed at the throat by means of a convergent duct and then be further decelerated in a divergent duct. Let us consider a duct as shown in the figure below. The Mach number, area and velocity at different stations in the duct are shown in the figure below 1.3 Rocket Engine Nozzle A nozzle is used to give the direction to the gases coming out of the combustion chamber. Nozzle is a tube with variable cross-sectional area. Nozzles are generally used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the exhaust stream that emerges from them. The nozzle is used to convert the chemical-thermal energy generated in the combustion chamber into kinetic energy. The nozzle converts the low velocity, high pressure, high temperature gas in the combustion chamber into high velocity gas of lower pressure and temperature. The general range of exhaust velocity is 2 to 4.5 kilometre per second. The convergent and divergent (also known as convergent-divergent nozzle) type of nozzle is known as DE-LAVAL nozzle. Throat is the portion with minimum area is a convergent-divergent nozzle. The divergent part of the nozzle is known as nozzle exit area or nozzle exit. Fig2.1 Geometry for Derivation of Area Mach Relation Here we assume that sonic flow exists at the throat of the nozzle. Hence all the parameters at the throat have an asterisk along with the notation to denote the sonic conditions. Applying the continuity equation to the above case 989

3 ρ u A = ρua A = ρ A ρ a = ρ ρ 0 u ρ 0 ρ a u Where ρ 0 is the stagnation density and is constant throughout the flow. We have ρ ρ 0 = 2 γ+1 1/(γ 1) ρ 0 ρ = 1 + γ 1 2 M2 1/(γ 1) u a 2 = M 2 = [(γ+1)/2]m M2 1+ γ 1 2 By performing certain mathematical manipulations we get A A 2 = ρ ρ 0 2 ρ 0 ρ 2 a u A A 2 = 1 2 γ M 2 γ+1 2 M2 (γ+1) (γ 1) The above equation is called the area-mach number relation the equation tells us that the Mach number at any location in the duct is a function of the local throat area to the sonic throat area. Also the equation yields two values for M for a given area ratio, a subsonic value and a supersonic value. 2.2 Method Of Characteristics The physical conditions of a two-dimensional, steady, isentropic, irrotational flow can be expressed mathematically by the nonlinear differential equation of the velocity potential. The method of characteristics is a mathematical formulation that can be used to find solutions to the aforementioned velocity potential, satisfying given boundary conditions for which the governing partial differential equations (PDEs) become ordinary differential equations (ODEs). The latter only holds true along a special set of curves known as characteristic curves, which will be discussed in the next section. As a consequence of the special properties of the characteristic curves, the original problem of finding a solution to the velocity potential is replaced by the problem of constructing these characteristic curves in the physical plane. The method is founded on the fact that changes in fluid properties in supersonic flows occur across these characteristics, and are brought about by pressure waves propagating along the Mach lines of the flow, which are inclined at the Mach angle to the local velocity vector. The method of characteristics was first applied to supersonic flows by prandtl and Busemann in 1929 and has been much used since. This method supersonic nozzle design made the technique more accessible to engineers. In supersonic nozzle design the conventional twodimensional nozzle is usually considered to consist of several regions as shown in the figure, these are:- Contraction part, where the flow is entirely subsonic the throat region, where the flow accelerates from high subsonic to low subsonic speeds. The initial expansion region, where the slope of the counter increases up to its maximum value the straightening, or busemann region in which the processor area increases but the wall slope decreases to zero. The test section where the flow is uniform and parallel to the axis. 2.3 Characteristics Characteristics are unique in that the derivatives of the flow properties become unbounded along them. On all other curves, the derivatives are finite. Characteristics are defined by three properties as detailed by John and Keith A characteristic in a two-dimensional supersonic flow is a line along which physical disturbances are propagated at the local speed of sound relative to the gas. A characteristics is a cut across which flow properties are continuous, although they may have discontinuous first derivatives, and along which the derivatives are indeterminate. A characteristic is a cut along which the governing partial differential equations may be manipulated into an ordinary differential equations. Fluid particles travel along our clients propagating information regarding the condition of the flow. In supersonic flow, the cost equates travel along Mach lines propagating information regarding flow disturbances. this is described in the first property. The second property says that Macklin can be considered as an infinitesimally thin interface between two smooth and uniform, but different regions. The line is a boundary between continuous flows along the streamline passing through a field of these Mach waves, the derivative of the velocity and other properties may be discontinuous. The third property speaks for itself. ordinary differential equations are often easier to solve than partial differential equations. That is why this property is considered very important. Fig 2.2 Characteristics 990

4 2.4 Discretation of Equations, Boundary Condition and Stream Function Analysis. Discretizing the Characteristic and Compatibility Equations To implement the characteristic and compatibility equations into a computer code for designing supersonic nozzle contours, the equations for axisymmetric, irrotational, inviscid flow developed in Appendix A must be discretized with boundary conditions defined and applied. The first step in designing a computer code is to discretize the characteristic and compatibility equations. They are rewritten below dr = tan(θ α) dx char 1 dr d(θ + α) = (a) M 2 1 cot θ r calculate the nozzle contours. The list of variables required is described in Table 2.1 with description below. The program then passes the necessary input variables to the subroutines that need them. All input variables are passed to subroutines. The subroutines calculate the contour of an nozzle, respectively, as well as their truncated versions if applicable. Axisymmetric, the subroutine that calculates the annular nozzle contour only requires input variables Beta, DeltaVAeroD, Gamma and M exit. A fourth subroutine, PMtoMA, is used in calculating the Mach numbers of the points in the flow field and will be discussed last. Once all subroutines return their solutions, subroutine Supersonic Nozzle plots their nozzle contours. d(θ α) = (along C Characteristic) 1 dr (b) M 2 1+cot θ r (along C + Characteristic) dr = tan(θ α) (a) dx C dr = tan(θ + α) (b) dx C + Using the Forward Difference Technique and rearranging equations 2.10a and b yields r i+1 tan(θ i α i ). x i+1 = r j tan(θ i α i ). x i (a) (along C Characteristic) r i+1 tan(θ i + α i ). x i+1 = r j+1 tan(θ i + α i ). x i (b) (along C + Characteristic) Note that all variables with subscript i are known quantities and variables with subscript i+1 are unknown quantities, the discretized characteristic equations that will define the location in the x-r space where the C- and C+ characteristics curves intersect. This collection of points is called the Characteristic Net. 2.5 Computer Program Calculation Details The supersonic nozzle discussed above is combined into one program that will calculate the nozzles' contour using the Method of Characteristics and the Stream Function. A brief description of the subroutines developed for this paper and their associated flow charts are included below. The complete set Matlab source code and program flowcharts are available in Appendix B. Since nozzle type is based on isentropic relations, the codes' error can be directly quantified using isentropic area ratios for given desired exit Mach number and ratio of specific heats. The program begins by asking the user for all necessary design variables the program will need to Program Variable Beta DeltaVAeroD Gamma M exit Percent Table 2.1 Description The throat multiplier that will be used to calculate the radius of the arc used in the expansion region for annular and internal-external aerospike nozzles The desired incremental step size of the Prandtl-Meyer expansion angle used in the calculation. It is also used as the x-space step direction for determining the x- component of the starting point for the "backward" C- characteristic Ratio of Specific Heats of the working fluid Desired Exit Mach Number The % of the ideal length the user would like in the event they choose to calculate truncated versions of the aerospike nozzles 991

5 3. CFD setup Fig: 2.3The divergent curve obtained by running code in Matlab x_cord y_cord Table 2.2 Coordinates obtained by running the code y_cord Fig 2.4 The graph obtained from table 2.2 y_cord 3.1 Complex Chemical Equilibrium Composition and Application Program The Complex Chemical Equilibrium Composition and Application (CEA) Program developed by NASA uses the minimization of Gibb's Free Energy to predict the composition of the exhaust products of a combustion system. In doing so, the properties of the exhaust fluid are predicted using mass averaging of the species produced by the combustion system. The CEA program has multiple subroutines to choose from for different combustion systems. Since we are analyzing rocket nozzles, the rocket subroutine was chosen to predict the exhaust properties. Within the rocket subroutine, the finite area combustion chamber was utilized because the test chamber of the test apparatus is small with an interior radius of 1.25 inches. To complete the simulation, the pressure at the injector, chamber to throat area ratio, oxidizer and fuel chemical formulas and amounts with respect to the desired oxidizer to fuel ratio must all be entered. Using conditions from a previous single firing of the test apparatus, the CEA program was used to predict the ratio of specific heats, chamber pressure and temperature for the exhaust fluid. The results from the CEA program give information for three planes in the apparatus, at the injector, at the end of the combustion chamber and at the throat of the nozzle. The ratio of specific heats predicted at the throat is used as the input for the supersonic nozzle program discussed in Section 3.0. The chamber pressure and temperature are used as boundary conditions in the CFD simulations discussed in the next few subsections. Table 3.1 gives the inputted data used for the CEA simulation. All nozzles designed were assumed to have the same combustion system and working fluid. Table 3.1 CEA Program Inputs Subroutine Rocket Combustion Finite Area Chamber: Chamber to Throat Area Ratio: Initial Pressure: 360 pisa Combustion 3800 K Temperature (estimate) Reactants Found N2O (Nitrous in the Oxide) Thermodynamic Library: Reactants with C 224 H 155 O 27 N User-Provided (Papi 94) Amount: 320 kg Amount: 12 kg 992

6 Names and Properties: C 667 H 999 O 5 (HTPB) Amount: 88 kg 3.2 Annular Nozzle CFD Simulation In order to run a simulation of the flow in supersonic annular nozzles, the nozzles must be built virtually so that a mesh can be generated in the fluid region. The supersonic nozzle program described in section 2 produces a set of points which define the nozzle's contour. These points are imported into Ansys. A mesh generating program used to mesh the fluid domain of the simulation. It is important to note that the points generated by the supersonic nozzle program only yields points of the wall contour after the throat. Since the fluid experiences few losses in the convergent section of a supersonic nozzle, the user can design the convergent section of the nozzle given the known geometry of the combustion chamber. All points are connected to produce a 2D axisymmetric virtual geometry. Figure 3,1 below shows the typical geometry and boundary conditions used to simulate an annular nozzle. Since the nozzle contours were built on the assumption of inviscid, irrotational, isentropic flow, the CFD simulations need to reflect this. The inviscid assumption was satisfied by selecting the inviscid model for the simulations. The isentropic assumption, which implies irrotationality, was achieved by assigning the specific heat at constant pressure as a constant property of the working fluid. 4. Results & Discussion 4.1 Theoretical Accuracy of Computer Code The first check of accuracy for the program was comparing the desired exit Mach number with the exit Mach number calculated by the program. Table 4.1 below shows the percent difference between the desired and computer calculated exit Mach numbers. Table 4.1 also shows how the code becomes more accurate as a smaller change in Prandtl-Meyer expansion angle is used during calculations. Since the equations were based on isentropic flow theory, the accuracy of the code was also checked by calculating the exit to throat area ratio using equation 4.1 substituting in the user- defined ratio of specific heats and computer calculated exit Mach number. This yields the theoretical area ratio for the Mach number actually calculated by the program. A A 2 = 1 2 γ M 2 γ+1 2 M2 (γ+1) (γ 1) The theoretical and computer calculated isentropic area ratios for the desired exit Mach number were also compared for a user-defined ratio of specific heats in Table 4.1 Fig: 3.1 Typical Annular Nozzle CFD boundary conditions Once the geometry of the nozzle has been virtually created, the fluid region can be meshed. Fig 3.2 gives a typical the meshed geometry of an annular nozzle. Fig 4.1 Typical entropy contour for annular nozzle Fig :3.2 Typical Annular Mesh it can be seen in fig 4.1 that the large majority of the fluid domain demonstrates constant entropy signifying that the isentropic flow assumption is valid. The region near the wall contour where the entropy is changing is a result of the discontinuities in the wall contour. Since the wall contour was defined by a set of points that were connected by straight line segments, it is discontinuous at the points that connect them. The change in entropy in 993

7 the flow field is a propagation of these discontinuities. Table 4.1 Code Accuracy for γ = 1. 4 M a = 3.0 β = 1. 0 A exit Com r throat =1.0 (Dimensionless) v = A exit theo A exit 33. %er 63 % M a Comp M a %error 8.3 0% A exit 5.3 Com 635 A exit 5.5 Com 1% v = % % % v = ,9 9% % % v = % % % v v = = % % % 0.3 1% 0.2 2% % Fig 4.3 Contours of Dynamic Pressure Fig 4.4 Static Temperature contours The exit Mach number is checked by the Mach contours of the simulation as well as having ANSYS-FLUENT calculate the area-weighted Mach number at the exit plane of the nozzle. The area weighted Mach number calculated by ANSYS-FLUENT is compared to the Mach number calculated by the program in Section 2 and the desired exit Mach number. Figure shows the typical Mach contours of an annular nozzle designed for a Mach number of 3.0 Fig 4.5 Entropy Plot curve Fig 4.6 Mach Plot curve Fig: Contours of Mach Number 994

8 5. Conclusions The code developed in this project proves to be a useful tool in creating annular and supersonic nozzle contours for isentropic, irrotational, inviscid flow. The program exhibits increasing accuracy in the exit Mach number and exit area ratio as the incremental Prandtl- Meyer expansion angle decreases. This accuracy increase is independent of fluid or desired exit Mach number. The exit Mach number of the nozzles calculated with the program described in Section 3 shows good agreement with the ANSYS-FLUENT simulated density contour, exit Mach numbers, dynamic pressure, static temperature contour, entropy curve, mach plot curve. The code developed in this project will enable the researchers to investigate other types of rocket nozzles besides conical. It will further advance the researchers in achieving their ultimate goal, designing a supersonic convergent divergent nozzle 6. Scope for Future Work In pursuit of their ultimate goal of developing a low-cost alternative launch platform for satellites, the research continues. A comparison of the theoretical and measured thrusts produced by each nozzle has to be conducted. These tests will validate the accuracy of the program for real-world flows and also give an indication of the energy losses observed in the nozzles. The testing will also enable the researchers to compare the thrust/weight/cost ratios to develop the most cost effective rocket engine. 7. Design of supersonic wind tunnel using Method of characteristics by Mr.Y D Dwivedi, Mr. B.Parvathavadhani. K, Mr.Nirmith Kumar Mishra. International Journal of Futuristic Science Engineering and Technology Vol.1,Issue 04.ISSN Authors Profile First Author: Nirmith Kumar Mishra received B.Tech Aeronautical Degree from MLR Institute of Technology in 2012.Currently pursuing M.Tech in Aerospace Engineering at MLR Institute of Technology, Dundigal Hyderabad. Research interests are Aerodynamics, Performance, Stability & Control of aircraft. Second Author: Dr. S.Srinivas Prasad working as Professor & Head of Department in Aerospace Engineering at MLR Institute of Technology, Dundigal Hyderabad. Third Author: Mr.Ayub Padania working as Assistant professor in Aerospace Engineering at MLR Institute of Technology, Dundigal Hyderabad References 1. Anderson, JD., 2001, Fundamentals of Aerodynamics, 3rd Edition, pp , pp Anderson, JD., 1982, Modern Compressible Flow with Historical Perspective, pp , pp Shapiro, AH., 1953, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. I, pp Shapiro, AH., 1954, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. II, pp Sutton, GP, Rocket Propulsion Elements, 7th Edition 6. Design and Analysis of Rocket Nozzle Contours for Launching Pico-Satellites By Brandon Lee Denton 995

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 119-124 Research India Publications http://www.ripublication.com/aasa.htm Design and Optimization of De Lavel

More information

Richard Nakka's Experimental Rocketry Web Site

Richard Nakka's Experimental Rocketry Web Site Página 1 de 7 Richard Nakka's Experimental Rocketry Web Site Solid Rocket Motor Theory -- Nozzle Theory Nozzle Theory The rocket nozzle can surely be described as the epitome of elegant simplicity. The

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEAR-TERM MARS SURFACE APPLICATIONS

DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEAR-TERM MARS SURFACE APPLICATIONS DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEAR-TERM MARS SURFACE APPLICATIONS Erin Blass Old Dominion University Advisor: Dr. Robert Ash Abstract This work has focused on the development

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0. bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,

More information

1. (20 pts total 2pts each) - Circle the most correct answer for the following questions.

1. (20 pts total 2pts each) - Circle the most correct answer for the following questions. ME 50 Gas Dynamics Spring 009 Final Exam NME:. (0 pts total pts each) - Circle the most correct answer for the following questions. i. normal shock propagated into still air travels with a speed (a) equal

More information

COMPUTATIONAL ANALYSIS OF CD NOZZLE FOR SOLID PROPELLANT ROCKET

COMPUTATIONAL ANALYSIS OF CD NOZZLE FOR SOLID PROPELLANT ROCKET COMPUTATIONAL ANALYSIS OF CD NOZZLE FOR SOLID PROPELLANT ROCKET Mohammed iliyaas.a PG Student Aeronautical Engineering, Anna University Tirunelveli Region, Tirunelveli, Dr.K.Karuppasamy Assisant Professor,

More information

DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS

DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS S Wasim Akram 1, S. Rajesh 2 1 M.Tech Student, Department of Mechanical Engineering, Krishna

More information

Rocket Thermodynamics

Rocket Thermodynamics Rocket Thermodynamics PROFESSOR CHRIS CHATWIN LECTURE FOR SATELLITE AND SPACE SYSTEMS MSC UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 25 TH APRIL 2017 Thermodynamics of Chemical Rockets ΣForce

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Numerical Investigation of Supersonic Nozzle Producing Maximum Thrust For Altitude Variation

Numerical Investigation of Supersonic Nozzle Producing Maximum Thrust For Altitude Variation Numerical Investigation of Supersonic Nozzle Producing Maximum Thrust For Altitude Variation Muhammad Misbah-Ul Islam 1, Mohammad Mashud 1, Md. Hasan Ali 2 and Abdullah Al Bari 1 1 Department of Mechanical

More information

Flow Characteristic Through Convergent-Divergent Nozzle

Flow Characteristic Through Convergent-Divergent Nozzle 2018 IJSRST Volume 4 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Flow Characteristic Through Convergent-Divergent Nozzle S. Sathyapriya 1, R. Swathi 2, P.

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Flow Analysis and Optimization of Supersonic Rocket Engine Nozzle at Various Divergent Angle using Computational Fluid Dynamics (CFD)

Flow Analysis and Optimization of Supersonic Rocket Engine Nozzle at Various Divergent Angle using Computational Fluid Dynamics (CFD) IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 6 Ver. IV (Nov- Dec. 2014), PP 01-10 Flow Analysis and Optimization of Supersonic Rocket

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

1. For an ideal gas, internal energy is considered to be a function of only. YOUR ANSWER: Temperature

1. For an ideal gas, internal energy is considered to be a function of only. YOUR ANSWER: Temperature CHAPTER 11 1. For an ideal gas, internal energy is considered to be a function of only. YOUR ANSWER: Temperature 2.In Equation 11.7 the subscript p on the partial derivative refers to differentiation at

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

Computational Analysis of Bell Nozzles

Computational Analysis of Bell Nozzles Proceedings of the 4 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) Toronto, Canada August 21 23, 2017 Paper No. 110 DOI: 10.11159/ffhmt17.110 Computational Analysis of Bell

More information

CFD ANALYSIS OF HYPERSONIC NOZZLE THROAT ANALYSIS

CFD ANALYSIS OF HYPERSONIC NOZZLE THROAT ANALYSIS Vol-4 Issue-4 218 CFD ANALYSIS OF HYPERSONIC NOZZLE THROAT ANALYSIS Gaurav Kumar 1, Sachin Baraskar 2 1 Research Scholar, Department of Mechanical Engineering, SOE, SSSUTMS, M.P., INDIA 2 Assistant Professor,

More information

Modelling Nozzle throat as Rocket exhaust

Modelling Nozzle throat as Rocket exhaust Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2502-2506 ISSN: 2249-6645 Modelling Nozzle throat as Rocket exhaust Keshava Rao P. 1, Komma Rahul 2, Souda Dinesh 3 1 (Mechanical Engineering, CBIT College, India)

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

Numerical Simulation of Supersonic Expansion in Conical and Contour Nozzle

Numerical Simulation of Supersonic Expansion in Conical and Contour Nozzle Numerical Simulation of Supersonic Expansion in Conical and Contour Nozzle Madhu B P (1), Vijaya Raghu B (2) 1 M.Tech Scholars, Mechanical Engineering, Maharaja Institute of Technology, Mysore 2 Professor,

More information

Aerothermodynamics of High Speed Flows

Aerothermodynamics of High Speed Flows Aerothermodynamics of High Speed Flows Lecture 5: Nozzle design G. Dimitriadis 1 Introduction Before talking about nozzle design we need to address a very important issue: Shock reflection We have already

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1 ME 131B Fluid Mechanics Solutions to Week Three Problem Session: Isentropic Flow II (1/26/98) 1. From an energy view point, (a) a nozzle is a device that converts static enthalpy into kinetic energy. (b)

More information

Lecture-2. One-dimensional Compressible Fluid Flow in Variable Area

Lecture-2. One-dimensional Compressible Fluid Flow in Variable Area Lecture-2 One-dimensional Compressible Fluid Flow in Variable Area Summary of Results(Cont..) In isoenergetic-isentropic flow, an increase in velocity always corresponds to a Mach number increase and vice

More information

SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations

SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations 1. Is it possible to accelerate a gas to a supersonic velocity in a converging nozzle? Explain. No, it is not possible. The only way to

More information

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW COMRESSIBLE FLOW COMRESSIBLE FLOW Introduction he compressibility of a fluid is, basically, a measure of the change in density that will be produced in the fluid by a specific change in pressure and temperature.

More information

Modeling and simulation of Convergent-Divergent Nozzle Using Computational Fluid Dynamics

Modeling and simulation of Convergent-Divergent Nozzle Using Computational Fluid Dynamics Modeling and simulation of Convergent-Divergent Nozzle Using Computational Fluid Dynamics B.V.V. NAGA SUDHAKAR 1, B PURNA CHANDRA SEKHAR 2, P NARENDRA MOHAN 3, MD TOUSEEF AHMAD 4 1Department of Mechanical

More information

Design and analysis of rocket nozzle contours for launching Pico-Satellites

Design and analysis of rocket nozzle contours for launching Pico-Satellites Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 3-1-2008 Design and analysis of rocket nozzle contours for launching Pico-Satellites Brandon Lee Denton Follow

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist Compressible Flow Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist What is Compressible Flow? Compressible Flow is a type of flow in which the density can not be treated as constant.

More information

Optimization of Divergent Angle of a Rocket Engine Nozzle Using Computational Fluid Dynamics

Optimization of Divergent Angle of a Rocket Engine Nozzle Using Computational Fluid Dynamics The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 2 Pages 196-207 2013 Issn: 2319 1813 Isbn: 2319 1805 Optimization of Divergent Angle of a Rocket Engine Nozzle Using Computational

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments

Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments Prediction of Transient Deflector Plate Temperature During Rocket Plume Impingment and its Validation through Experiments PRIYA KAMESH KAMATCHI*, VISHNU POOVIAH*, PISHARADY.J.C ** *Department of Mechanical

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 79-88 Open Access Journal Effect of Variable

More information

The Turbofan cycle. Chapter Turbofan thrust

The Turbofan cycle. Chapter Turbofan thrust Chapter 5 The Turbofan cycle 5. Turbofan thrust Figure 5. illustrates two generic turbofan engine designs. The upper figure shows a modern high bypass ratio engine designed for long distance cruise at

More information

Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle

Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle 1 Shaik Khaja Hussain, 2 B V Amarnath Reddy, 3 A V Hari Babu 1 Research Scholar, 2 Assistant Professor, 3 HOD Mechanical Engineering Department

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

One-Dimensional Isentropic Flow

One-Dimensional Isentropic Flow Cairo University Second Year Faculty of Engineering Gas Dynamics AER 201B Aerospace Department Sheet (1) 2011-2012 One-Dimensional Isentropic Flow 1. Assuming the flow of a perfect gas in an adiabatic,

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

Figure 1. Mach cone that arises upon supersonic flow around an object

Figure 1. Mach cone that arises upon supersonic flow around an object UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS Introduction The purpose of this applet is to simulate the operation of a converging-diverging nozzle, perhaps the most important and basic piece of engineering

More information

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS 1) State the difference between compressible fluid and incompressible fluid? 2) Define stagnation pressure? 3) Express the stagnation enthalpy in terms of static enthalpy

More information

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T.

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Vinitha 2 1 Research Scholar, Department of Mechanical Engineering,

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

DESIGN AND CFD ANALYSIS OF CONVERGENT AND DIVERGENT NOZZLE

DESIGN AND CFD ANALYSIS OF CONVERGENT AND DIVERGENT NOZZLE DESIGN AND CFD ANALYSIS OF CONVERGENT AND DIVERGENT NOZZLE 1 P.VINOD KUMAR, 2 B.KISHORE KUMAR 1 PG Scholar, Department ofmech,nalanda INSTITUTION OF ENGINEERING AND TECHNOLOGY KantepudiSattenapalli, GUNTUR,A.P,

More information

The Design and Computational Validation of a Mach 3 Wind Tunnel Nozzle Contour

The Design and Computational Validation of a Mach 3 Wind Tunnel Nozzle Contour University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2016 The Design and Computational Validation of a Mach 3 Wind Tunnel Nozzle Contour

More information

CFD ANALYSIS OF CD NOZZLE AND EFFECT OF NOZZLE PRESSURE RATIO ON PRESSURE AND VELOCITY FOR SUDDENLY EXPANDED FLOWS. Kuala Lumpur, Malaysia

CFD ANALYSIS OF CD NOZZLE AND EFFECT OF NOZZLE PRESSURE RATIO ON PRESSURE AND VELOCITY FOR SUDDENLY EXPANDED FLOWS. Kuala Lumpur, Malaysia International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249-6890; ISSN(E): 2249-8001 Vol. 8, Issue 3, Jun 2018, 1147-1158 TJPRC Pvt. Ltd. CFD ANALYSIS

More information

The deposition efficiency and spatial thickness distribution of films created by Directed

The deposition efficiency and spatial thickness distribution of films created by Directed Chapter 8 Vapor Transport Model Development The deposition efficiency and spatial thickness distribution of films created by Directed Vapor Deposition synthesis have been shown to be sensitive functions

More information

Notes #4a MAE 533, Fluid Mechanics

Notes #4a MAE 533, Fluid Mechanics Notes #4a MAE 533, Fluid Mechanics S. H. Lam lam@princeton.edu http://www.princeton.edu/ lam October 23, 1998 1 The One-dimensional Continuity Equation The one-dimensional steady flow continuity equation

More information

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Volume 119 No. 12 2018, 59-63 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Ramprasad T and Jayakumar

More information

Fluid Mechanics - Course 123 COMPRESSIBLE FLOW

Fluid Mechanics - Course 123 COMPRESSIBLE FLOW Fluid Mechanics - Course 123 COMPRESSIBLE FLOW Flow of compressible fluids in a p~pe involves not only change of pressure in the downstream direction but also a change of both density of the fluid and

More information

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle June 30 - July 3, 2015 Melbourne, Australia 9 P-10 A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle Ruoyu Deng Department of Mechanical Engineering Andong National University,

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

Civil aeroengines for subsonic cruise have convergent nozzles (page 83):

Civil aeroengines for subsonic cruise have convergent nozzles (page 83): 120 Civil aeroengines for subsonic cruise have convergent nozzles (page 83): Choked convergent nozzle must be sonic at the exit A N. Consequently, the pressure (p 19 ) at the nozzle exit will be above

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Equatorial Journal of Engineering (2018) 9-13 Journal Homepage: www.erjournals.com ISSN: 0184-7937 EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Kingsley Ejikeme

More information

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE ISSN (O): 393-869 DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE Lokesh Silwal lokusilwal@gmail.com Sajan Sharma thesajansharma@gm ail.com Nitish Acharya nitishacharya1818@g mail.com

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

Tutorial Materials for ME 131B Fluid Mechanics (Compressible Flow & Turbomachinery) Calvin Lui Department of Mechanical Engineering Stanford University Stanford, CA 94305 March 1998 Acknowledgments This

More information

INFLUENCE OF NOZZLE GEOMETRY ON THE PERFORMANCE OF RECTANGULAR, LINEAR, SUPERSONIC MICRO-NOZZLES

INFLUENCE OF NOZZLE GEOMETRY ON THE PERFORMANCE OF RECTANGULAR, LINEAR, SUPERSONIC MICRO-NOZZLES 20 th Annual CFD Symposium, August 09-10, 2018, Bangalore INFLUENCE OF NOZZLE GEOMETRY ON THE PERFORMANCE OF RECTANGULAR, LINEAR, SUPERSONIC MICRO-NOZZLES K Mukesh 1, K Vijaya Sankaran 1, G Uthaya Sankara

More information

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range AME 436 Energy and Propulsion Lecture 11 Propulsion 1: Thrust and aircraft range Outline!!!!! Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2018 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

IJRASET: All Rights are Reserved

IJRASET: All Rights are Reserved CFD analysis of De Laval Nozzle Geometry & Reverse Flow Cavitation Phenomenon Sree Harsha Bandaru 1, Arjun Singh 2 School of Engineering & Technology, Indira Gandhi National Open University, New Delhi

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

6.1 Propellor e ciency

6.1 Propellor e ciency Chapter 6 The Turboprop cycle 6. Propellor e ciency The turboprop cycle can be regarded as a very high bypass limit of a turbofan. Recall that the propulsive e ciency of a thruster with P e = P 0 and f

More information

Computational Fluid Dynamics Analysis of Advanced Rocket Nozzle

Computational Fluid Dynamics Analysis of Advanced Rocket Nozzle Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Computational

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 11 Area Ratio of Nozzles: Under Expansion and Over Expansion (Refer Slide Time:

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 6: D potential flow, method of characteristics Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

SARDAR RAJA COLLEGES

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM. DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION CLASS : III Year / VI SEM STAFF:

More information

NAPC Numerical investigation of axisymmetric underexpanded supersonic jets. Pratikkumar Raje. Bijaylakshmi Saikia. Krishnendu Sinha 1

NAPC Numerical investigation of axisymmetric underexpanded supersonic jets. Pratikkumar Raje. Bijaylakshmi Saikia. Krishnendu Sinha 1 Proceedings of the 1 st National Aerospace Propulsion Conference NAPC-2017 March 15-17, 2017, IIT Kanpur, Kanpur NAPC-2017-139 Numerical investigation of axisymmetric underexpanded supersonic jets Pratikkumar

More information

SUPERSONIC WIND TUNNEL Project One. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078

SUPERSONIC WIND TUNNEL Project One. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 41 SUPERSONIC WIND UNNEL Project One Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project One in MAE 3293 Compressible Flow September

More information

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute

More information

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON CHOKING PHENOMENA OF AXISYMMETRIC CONVERGENT NOZZLE FLOW

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON CHOKING PHENOMENA OF AXISYMMETRIC CONVERGENT NOZZLE FLOW 8 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON CHOKING PHENOMENA OF AXISYMMETRIC CONVERGENT NOZZLE FLOW Ryuta ISOZUMI*, Kazunori KUBO*, Daisuke

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY NUMERICAL ANALYSIS OF COMPRESSIBLE EFFECT IN THE FLOW METERING BY CLASSICAL VENTURIMETER Prasanna M A *, Dr V Seshadri, Yogesh

More information

William A. Sirignano Mechanical and Aerospace Engineering University of California, Irvine

William A. Sirignano Mechanical and Aerospace Engineering University of California, Irvine Combustion Instability: Liquid-Propellant Rockets and Liquid-Fueled Ramjets William A. Sirignano Mechanical and Aerospace Engineering University of California, Irvine Linear Theory Nonlinear Theory Nozzle

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

The ramjet cycle. Chapter Ramjet flow field

The ramjet cycle. Chapter Ramjet flow field Chapter 3 The ramjet cycle 3. Ramjet flow field Before we begin to analyze the ramjet cycle we will consider an example that can help us understand how the flow through a ramjet comes about. The key to

More information

Rocket Propulsion. Combustion chamber Throat Nozzle

Rocket Propulsion. Combustion chamber Throat Nozzle Rocket Propulsion In the section about the rocket equation we explored some of the issues surrounding the performance of a whole rocket. What we didn t explore was the heart of the rocket, the motor. In

More information

CFD ANALYSIS OF CONVERGENT- DIVERGENT AND CONTOUR NOZZLE

CFD ANALYSIS OF CONVERGENT- DIVERGENT AND CONTOUR NOZZLE International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 8, August 2017, pp. 670 677, Article ID: IJMET_08_08_073 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=8

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Preliminary Design Review

Preliminary Design Review Preliminary Review Supersonic Air-Breathing Redesigned Engine Customer: Air Force Research Lab Advisor: Brian Argrow Team Members: Corrina Briggs, Jared Cuteri, Tucker Emmett, Alexander Muller, Jack Oblack,

More information

UOT Mechanical Department / Aeronautical Branch

UOT Mechanical Department / Aeronautical Branch Chapter One/Introduction to Compressible Flow Chapter One/Introduction to Compressible Flow 1.1. Introduction In general flow can be subdivided into: i. Ideal and real flow. For ideal (inviscid) flow viscous

More information

equation 4.1 INTRODUCTION

equation 4.1 INTRODUCTION 4 The momentum equation 4.1 INTRODUCTION It is often important to determine the force produced on a solid body by fluid flowing steadily over or through it. For example, there is the force exerted on a

More information

Propulsion Thermodynamics

Propulsion Thermodynamics Chapter 1 Propulsion Thermodynamics 1.1 Introduction The Figure below shows a cross-section of a Pratt and Whitney JT9D-7 high bypass ratio turbofan engine. The engine is depicted without any inlet, nacelle

More information

Development of Flow over Blunt-Nosed Slender Bodies at Transonic Mach Numbers

Development of Flow over Blunt-Nosed Slender Bodies at Transonic Mach Numbers Development of Flow over Blunt-Nosed Slender Bodies at Transonic Mach Numbers Gireesh Yanamashetti 1, G. K. Suryanarayana 2 and Rinku Mukherjee 3 1 PhD Scholar & Senior Scientist, 2 Chief Scientist, 3

More information