ME 6139: High Speed Aerodynamics

Size: px
Start display at page:

Download "ME 6139: High Speed Aerodynamics"

Transcription

1 Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture November 2017 teacher.buet.ac.bd/toufiquehasan/ 1 Aerodynamics is the study of dynamics of gaseous fluids (air/gas), especially the atmospheric interaction with moving objects. This field of engineering deals with the aerodynamic forces namely lift and drag and moments and the heat transfer rates acting on a vehicle in flight. These mechanical parameters greatly depends on the pattern of flow around the vehicle. And the resultant flow pattern depends on the geometry of the vehicle (i.e. shape of the airfoil: NACA, SC, RAE, ONERA, BGK, NLR, DLR, OAT ) its orientation with respect to undisturbed free-stream (angle of attack-aoa), speed (Mach No.) and altitude (density) at which the vehicle is moving. 2 1

2 Very recent. Indian Space Research Organisation (ISRO) Satellite GSAT-9 blasts into orbit on 05/05/2017 *Indian Express (India) *Daily Star (Bangladesh) Geosynchronous Satellite Launch Vehicle GSLV-F09, carrying the 2230-kg GSAT-9 South Asia satellite, lifted off from the Satish Dhawan Space Centre in Sriharikota, Andhra Pradesh, on Friday 05 May 2017 at 4.57 pm. This communication satellite can be used for a variety of purposes like broadcast services, tele-medicine and tele-education, banking networks, and direct-to-home television. 3 High speed flows & Compressibility High speed flows deals with the fluid velocity which is atleast comparable to the speed of sound. In this massive velocity, the change of fluid density becomes very significant and must be accounted for the prediction of other fluid dynamic and thermodynamic property changes. Compressibility plays a great role. Compressibility of a fluid is basically a measure of the change of density that will be produced in the fluid by a specific change in pressure. In a fluid flow there are usually changes in pressure associated, for example, with change in velocity in the flow. These pressure changes will in general induce density changes, which will have an influence on the flow. If these density changes are important, thetemperature changes are becoming also important. The study of flows in which the changes in density and temperature are important is basically what is known as Aerothermodynamics, compressible fluid flow or gas dynamics. It usually only being in gas flows that compressibility effects are important. 4 2

3 Compressibility cont A change in the pressure applied to a certain amount of a substance (solid, liquid or gas) always produces some change in its volume. The proportionate change in volume of a particular material during the compression is directly related to the change in the pressure. The compressibility of fluid is defined by 1 v dv dp Here dp represents a small increase in pressure applied to the material and dv the corresponding small increase in the original volume v. Since a rise in pressure always causes a decrease in volume, dv is always negative, and the minus sign is included in the equation to give a positive value of τ In case of isothermal process i.e. if the temperature of the fluid element is held constant, the isothermal compressibility is defined by T 1 v v p T For water, τ T = 5x10-10 m 2 /N at 1 atm air, τ T = 10-5 m 2 /N at 1 atm (more than four orders of magnitude higher than water) 5 Mach Number In fluid mechanics, the effect of compressibility in the flow field can be assessed by a number called the Mach number. This dimensionless number is defined as V M a where V is the flow velocity and a is the local speed of sound in the fluid. Why speed of sound??? This is the speed at which signal (disturbance) can travel through the medium. In case when an object moves through a fluid, it generates disturbances (infinitesimal pressure waves, which are sound waves) that emanate from the object in all director. When the speed of object becomes comparable or higher than the speed of sound, then the propagation and interaction of disturbance (signal) become complicated and different compared to low speed cases. 6 3

4 Flow Classification In aerodynamics, the following flow classes are classified roughly depending on the Mach number- M <0.3 : Incompressible flow (density effects are negligible) 0.3< M < 0.8 : Subsonic flow, where density effects are important but no appearance of shock waves 0.8< M <1.2 : Transonic flow, where shock waves first appear, dividing the subsonic and supersonic flows. 1.2 < M <3.0 : Supersonic flow, where shock waves are present but there are no subsonic regions. M>3.0 : Hypersonic flow, where shock waves and other flow changes are especially strong. (Surface Chemistry, Plasma dynamics) 7 Applications of High speed flows The most obvious applications of compressible flow theory areinthedesignofhigh speed aircraft. These includes: Commercial civil aircraft Military fighters Ramjet vehicle Scramjet vehicle Rockets etc. However, the knowledge of compressible fluid flow theory is required in the design and operation of many devices commonly encountered in engineering practice. Among these applications are: Gas turbines: The flow in the blades and nozzles is compressible. Steam turbines: here the flow in the nozzles and blades must be treated as compressible. Reciprocating engines: the flow of the gases through the valves and in the intake and the exhaust systems must be treated as compressible. Combustion chambers: the study of combustion, in many cases requires a knowledge of compressible fluid flow. 8 4

5 Flight Envelope Engines can operate only over a certain range of altitudes and velocities (Mach numbers) which correspond to differing atmospheric pressure, temperature and densities (all changes with altitude). This range is known as the engine s flight envelope. Source: T. A. Ward, Aerospace Propulsion Systems, John Wiley & Sons (Asia), Pte Ltd., Singapore (2010) 9 Atmosphere Reynolds number and Mach number significantly vary with altitude at the same flow velocity. 10 5

6 Shock Waves Shock waves are obvious in internal or external aerothermodynamics. The extremely thin region in which the transition from the initial supersonic velocity (M>1), relatively low-pressure state to the state that involves a relatively low velocity (M<1) and high pressure is termed as a normal shock wave. The thickness is usually only a few mean free paths. Supersonic initial flow (M>1) is mandatory for the generation of a shock wave. 11 Physical Examples shocks the essential ingredients of these flows including: presence of multiple shock waves, separated zones, andwakes, and large scale structures.* shadowgraph of supersonic flow around space crew modules: Mach 2.2 flow around an Apollo-like capsule at 25 angle-of-attack *Source: T. B. Gatski & J P Bonnet, Compressibility, Turbulence and High Speed Flow, Elsevier, The Netherlands (2013) 12 6

7 Physical Examples Shock wave/boundary layer interaction (SWBLI) Flow, M = Physical Examples M>1 Shock waves in Compression ramp flow 14 7

8 Physical Examples Flow 15 Physical Examples Flow Flow λ-shock wave Symmetric shock waves Flow Shock wave structure in propulsion C-D nozzle Asymmetric shock waves 16 8

9 Physical Examples Schlieren photograph of high speed (transonic) flow over an airfoil. The nearly vertical shock wave is followed by boundary layer separation that adversely affects lift, drag, and other flight parameters. A generic missile body with Mach 5 embeds many flow structures occurring simultaneously; oblique shock wave at the tip of the body, expansion fan at the shoulder, a dead air region at the compression corner due to shockwave- boundary layer interaction (SWBLI). 17 Physical Examples Test of a rocket nozzle F-16 Fighter plane Shock diamond 18 9

10 Physical Examples Interaction of shock waves in compressor cascade 19 Physical Examples (a) (b) High speed flow (Compressible flow) in fan (a) and compressor blades (b) 20 10

11 Course Outline Introduction to low speed flow and high speed flows; Review of thermodynamics of compressible flow; Integral form of conservation equations; Isentropic flow relations; Normal shock waves; One dimensional flow with heat addition and friction; Oblique shock waves; Shock reflections and interactions; Prandtl-Meyer expansion waves; Airfoils and wings in transonic and supersonic flows; Supercritical airfoils; Linearized theory; Method of characteristics for supersonic flow; Design of propulsion nozzles; Characteristics of supersonic jets; Thrust vectoring; Measurement in high speed flows. Reference Texts Modern compressible flow- J D Anderson Introduction to compressible fluid flow- P H Oosthuizen and W E Carscallen Fundamentals of gas dynamics- R D Zucker and O Biblarz 21 11

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

More information

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist Compressible Flow Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist What is Compressible Flow? Compressible Flow is a type of flow in which the density can not be treated as constant.

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight References Jack N. Nielsen, Missile Aerodynamics, AIAA Progress in Astronautics and Aeronautics, v104, 1986 Michael

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

Introduction and Basic Concepts

Introduction and Basic Concepts Topic 1 Introduction and Basic Concepts 1 Flow Past a Circular Cylinder Re = 10,000 and Mach approximately zero Mach = 0.45 Mach = 0.64 Pictures are from An Album of Fluid Motion by Van Dyke Flow Past

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

Athena A C A D E M I C. V. Babu

Athena A C A D E M I C. V. Babu Athena A C A D E M I C V. Babu Fundamentals of Gas Dynamics (2nd Edition) Cover illustration: Schlieren picture of an under-expanded flow issuing from a convergent divergent nozzle. Prandtl-Meyer expansion

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2018 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

Summer AS5150# MTech Project (summer) **

Summer AS5150# MTech Project (summer) ** AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

More information

Propulsion Thermodynamics

Propulsion Thermodynamics Chapter 1 Propulsion Thermodynamics 1.1 Introduction The Figure below shows a cross-section of a Pratt and Whitney JT9D-7 high bypass ratio turbofan engine. The engine is depicted without any inlet, nacelle

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

Concept: AERODYNAMICS

Concept: AERODYNAMICS 1 Concept: AERODYNAMICS 2 Narayanan Komerath 3 4 Keywords: Flow Potential Flow Lift, Drag, Dynamic Pressure, Irrotational, Mach Number, Reynolds Number, Incompressible 5 6 7 1. Definition When objects

More information

SARDAR RAJA COLLEGES

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM. DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION CLASS : III Year / VI SEM STAFF:

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

Continuity Equation for Compressible Flow

Continuity Equation for Compressible Flow Continuity Equation for Compressible Flow Velocity potential irrotational steady compressible Momentum (Euler) Equation for Compressible Flow Euler's equation isentropic velocity potential equation for

More information

1. For an ideal gas, internal energy is considered to be a function of only. YOUR ANSWER: Temperature

1. For an ideal gas, internal energy is considered to be a function of only. YOUR ANSWER: Temperature CHAPTER 11 1. For an ideal gas, internal energy is considered to be a function of only. YOUR ANSWER: Temperature 2.In Equation 11.7 the subscript p on the partial derivative refers to differentiation at

More information

Lecture1: Characteristics of Hypersonic Atmosphere

Lecture1: Characteristics of Hypersonic Atmosphere Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of

More information

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag 2.1. The design of supersonic airfoils For efficient lift generation at subsonic speeds, airfoils look like : So why can t a similar

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

Flow Characteristic Through Convergent-Divergent Nozzle

Flow Characteristic Through Convergent-Divergent Nozzle 2018 IJSRST Volume 4 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Flow Characteristic Through Convergent-Divergent Nozzle S. Sathyapriya 1, R. Swathi 2, P.

More information

The Turbofan cycle. Chapter Turbofan thrust

The Turbofan cycle. Chapter Turbofan thrust Chapter 5 The Turbofan cycle 5. Turbofan thrust Figure 5. illustrates two generic turbofan engine designs. The upper figure shows a modern high bypass ratio engine designed for long distance cruise at

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. #03 Jet Engine Basic Performance Parameters We are talking

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

Missile Interceptor EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P Ryan Donnan, Herman Ryals

Missile Interceptor EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P Ryan Donnan, Herman Ryals EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P- 2011121203 Ryan Donnan, Herman Ryals Georgia Institute of Technology School of Aerospace Engineering Missile Interceptor December 12, 2011 EXTROVERT ADVANCED

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Modelling Nozzle throat as Rocket exhaust

Modelling Nozzle throat as Rocket exhaust Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2502-2506 ISSN: 2249-6645 Modelling Nozzle throat as Rocket exhaust Keshava Rao P. 1, Komma Rahul 2, Souda Dinesh 3 1 (Mechanical Engineering, CBIT College, India)

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? 1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

Compression and Expansion of Fluids

Compression and Expansion of Fluids CH2303 Chemical Engineering Thermodynamics I Unit V Compression and Expansion of Fluids Dr. M. Subramanian 26-Sep-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 119-124 Research India Publications http://www.ripublication.com/aasa.htm Design and Optimization of De Lavel

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 6: D potential flow, method of characteristics Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Gas Dynamics and Jet Propulsion

Gas Dynamics and Jet Propulsion Gas Dynamics and Jet Propulsion (For B.E. Mechanical Engineering Students) (As per Anna University and Leading Universities New Revised Syllabus) Prof. K. Pandian Dr. A.Anderson, M.E., Ph.D., Professor

More information

Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle

Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle Modelling and Computational Fluid Dynamic Analysis on Jet Nozzle 1 Shaik Khaja Hussain, 2 B V Amarnath Reddy, 3 A V Hari Babu 1 Research Scholar, 2 Assistant Professor, 3 HOD Mechanical Engineering Department

More information

Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras. Lecture 01 Introduction

Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras. Lecture 01 Introduction Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras Lecture 01 Introduction Good morning. I will start our lecture today with brief

More information

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGraw-Hill, Inc.

More information

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS 1) State the difference between compressible fluid and incompressible fluid? 2) Define stagnation pressure? 3) Express the stagnation enthalpy in terms of static enthalpy

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

MODELING & SIMULATION OF ROCKET NOZZLE

MODELING & SIMULATION OF ROCKET NOZZLE MODELING & SIMULATION OF ROCKET NOZZLE Nirmith Kumar Mishra, Dr S Srinivas Prasad, Mr Ayub Padania Department of Aerospace Engineering MLR Institute of Technology Hyderabad, T.S Abstract This project develops

More information

Numerical Investigation of Shock wave Turbulent Boundary Layer Interaction over a 2D Compression Ramp

Numerical Investigation of Shock wave Turbulent Boundary Layer Interaction over a 2D Compression Ramp Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 25-32 Research India Publications http://www.ripublication.com/aasa.htm Numerical Investigation of Shock wave

More information

Computational Analysis of Scramjet Inlet

Computational Analysis of Scramjet Inlet ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 IEEE International Conference

More information

Richard Nakka's Experimental Rocketry Web Site

Richard Nakka's Experimental Rocketry Web Site Página 1 de 7 Richard Nakka's Experimental Rocketry Web Site Solid Rocket Motor Theory -- Nozzle Theory Nozzle Theory The rocket nozzle can surely be described as the epitome of elegant simplicity. The

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 79-88 Open Access Journal Effect of Variable

More information

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range AME 436 Energy and Propulsion Lecture 11 Propulsion 1: Thrust and aircraft range Outline!!!!! Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust

More information

Module3: Waves in Supersonic Flow Lecture14: Waves in Supersonic Flow (Contd.)

Module3: Waves in Supersonic Flow Lecture14: Waves in Supersonic Flow (Contd.) 1 Module3: Waves in Supersonic Flow Lecture14: Waves in Supersonic Flow (Contd.) Mach Reflection: The appearance of subsonic regions in the flow complicates the problem. The complications are also encountered

More information

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW COMRESSIBLE FLOW COMRESSIBLE FLOW Introduction he compressibility of a fluid is, basically, a measure of the change in density that will be produced in the fluid by a specific change in pressure and temperature.

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

PREDICTION OF SOUND PRESSURE LEVELS ON ROCKET VEHICLES DURING ASCENT Revision E

PREDICTION OF SOUND PRESSURE LEVELS ON ROCKET VEHICLES DURING ASCENT Revision E PREDICTION OF SOUND PRESSURE LEVELS ON ROCKET VEHICLES DURING ASCENT Revision E By Tom Irvine Email: tomirvine@aol.com July 0, 011 Figure 0. Schlieren Photo, Wind Tunnel Test Engineers conducted wind tunnel

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Jet Propulsion - Classification 1. A heated and compressed atmospheric air, mixed with products of combustion,

More information

Applied Aerodynamics - I

Applied Aerodynamics - I Applied Aerodynamics - I o Course Contents (Tentative) Introductory Thoughts Historical Perspective Flow Similarity Aerodynamic Coefficients Sources of Aerodynamic Forces Fundamental Equations & Principles

More information

Comparison of drag measurements of two axisymmetric scramjet models at Mach 6

Comparison of drag measurements of two axisymmetric scramjet models at Mach 6 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Comparison of drag measurements of two axisymmetric scramjet models at Mach 6 Katsuyoshi Tanimizu, D. J.

More information

Rocket Thermodynamics

Rocket Thermodynamics Rocket Thermodynamics PROFESSOR CHRIS CHATWIN LECTURE FOR SATELLITE AND SPACE SYSTEMS MSC UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 25 TH APRIL 2017 Thermodynamics of Chemical Rockets ΣForce

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

Simulation of Condensing Compressible Flows

Simulation of Condensing Compressible Flows Simulation of Condensing Compressible Flows Maximilian Wendenburg Outline Physical Aspects Transonic Flows and Experiments Condensation Fundamentals Practical Effects Modeling and Simulation Equations,

More information

What is the crack propagation rate for 7075-T6 aluminium alloy.

What is the crack propagation rate for 7075-T6 aluminium alloy. - 130 - APPENDIX 4A 100 QUESTIONS BASED ON SOURCE DOCUMENTS LISTED IN APPENDIX 4B 20-06 Magnitude of reductions in heat transfer on the nose region of a body when ablation of the surface takes place. (PI2002)

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

4 Compressible Fluid Dynamics

4 Compressible Fluid Dynamics 4 Compressible Fluid Dynamics 4. Compressible flow definitions Compressible flow describes the behaviour of fluids that experience significant variations in density under the application of external pressures.

More information

Egon Krause. Fluid Mechanics

Egon Krause. Fluid Mechanics Egon Krause Fluid Mechanics Egon Krause Fluid Mechanics With Problems and Solutions, and an Aerodynamic Laboratory With 607 Figures Prof. Dr. Egon Krause RWTH Aachen Aerodynamisches Institut Wüllnerstr.5-7

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 11 Area Ratio of Nozzles: Under Expansion and Over Expansion (Refer Slide Time:

More information

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion AME 436 Energy and Propulsion Lecture 5 Propulsion 5: Hypersonic propulsion Outline!!!!!! Why hypersonic propulsion? What's different about it? Conventional ramjet heat addition at M

More information

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on.

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on. Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module -2 Lecture - 27 Measurement of Fluid Velocity We have been

More information

Supersonic Aerodynamics. Methods and Applications

Supersonic Aerodynamics. Methods and Applications Supersonic Aerodynamics Methods and Applications Outline Introduction to Supersonic Flow Governing Equations Numerical Methods Aerodynamic Design Applications Introduction to Supersonic Flow What does

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution I II III IV V VI VII VIII Total 28 22 25 24 25 28 18 14 184 SEMESTER I AS1010 Introduction to Aerospace

More information

Configuration Aerodynamics

Configuration Aerodynamics Configuration Aerodynamics William H. Mason Virginia Tech Blacksburg, VA The front cover of the brochure describing the French Exhibit at the Montreal Expo, 1967. January 2018 W.H. Mason CONTENTS i CONTENTS

More information

Vishwakarma Institute of Technology. Honors in Aerospace Engineering

Vishwakarma Institute of Technology. Honors in Aerospace Engineering Page 1 of 15 Bansilal Ramnath Agarwal Charitable Trust s Vishwakarma Institute of Technology (An Autonomous Institute affiliated to Savitribai Phule Pune University formerly University of Pune) Structure

More information

UOT Mechanical Department / Aeronautical Branch

UOT Mechanical Department / Aeronautical Branch Chapter One/Introduction to Compressible Flow Chapter One/Introduction to Compressible Flow 1.1. Introduction In general flow can be subdivided into: i. Ideal and real flow. For ideal (inviscid) flow viscous

More information

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet Lecture 41 1 Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet 2 Problem-1 Ramjet A ramjet is flying at Mach 1.818 at an altitude 16.750 km altitude (Pa = 9.122 kpa, Ta= - 56.5 0 C = 216.5

More information

Turn Performance of an Air-Breathing Hypersonic Vehicle

Turn Performance of an Air-Breathing Hypersonic Vehicle Turn Performance of an Air-Breathing Hypersonic Vehicle AIAA Aircraft Flight Mechanics Conference Derek J. Dalle, Sean M. Torrez, James F. Driscoll University of Michigan, Ann Arbor, MI 4809 August 8,

More information

The Challenges of Hypersonic and Space. Flight. Charlie Muir

The Challenges of Hypersonic and Space. Flight. Charlie Muir The Challenges of Hypersonic and Space Flight Charlie Muir The Challenges of Hypersonic Flight Overview Definition Background Propulsion Methods Aerodynamics Aero-thermal Effects Industrial Standards }

More information