Standard Normal Curve Areas z

Size: px
Start display at page:

Download "Standard Normal Curve Areas z"

Transcription

1

2 Table A.3 Standard Normal Curve Areas z

3

4 Z N(0, 1), calculate (a)p(z 1.61); (b)p(z > 1.12); and (c)p( 1.12 < Z 1.61).

5 Z N(0, 1), calculate (a)p(z 1.61); (b)p(z > 1.12); and (c)p( 1.12 < Z 1.61). z

6 Z N(0, 1), calculate (a)p(z 1.61); (b)p(z > 1.12); and (c)p( 1.12 < Z 1.61). z P(Z 1.61) = ;

7 Z N(0, 1), calculate (a)p(z 1.61); (b)p(z > 1.12); and (c)p( 1.12 < Z 1.61). z P(Z 1.61) = ; P(Z > 1.12) = 1 P(Z 1.12) = = ;

8 Z N(0, 1), calculate (a)p(z 1.61); (b)p(z > 1.12); and (c)p( 1.12 < Z 1.61). z P(Z 1.61) = ; P(Z > 1.12) = 1 P(Z 1.12) = = ; P( 1.12 < Z 1.61) = P(Z 1.61) P(Z 1.12) = =

9

10 Many tables for the normal distribution contain only the nonnegative part.

11 Many tables for the normal distribution contain only the nonnegative part. z What is P(Z < 1.63)?

12 Many tables for the normal distribution contain only the nonnegative part. z What is P(Z < 1.63)? By symmetry of the pdf of Z, we know that P(Z < 1.63) = P(Z > 1.63) = 1 P(Z 1.63) = =

13 Many tables for the normal distribution contain only the nonnegative part. z What is P(Z < 1.63)? By symmetry of the pdf of Z, we know that P(Z < 1.63) = P(Z > 1.63) = 1 P(Z 1.63) = =

14

15 Recall: The (100p)th percentile of the distribution of a continuous rv X, η(p), is defined by p = F (η(p)) = η(p) f (y)dy

16 Recall: The (100p)th percentile of the distribution of a continuous rv X, η(p), is defined by p = F (η(p)) = η(p) f (y)dy Similarly, the (100p)th percentile of the standard normal rv Z is defined by η(p) 1 p = F (η(p)) = e y 2 /2 dy 2π

17 Recall: The (100p)th percentile of the distribution of a continuous rv X, η(p), is defined by p = F (η(p)) = η(p) f (y)dy Similarly, the (100p)th percentile of the standard normal rv Z is defined by η(p) 1 p = F (η(p)) = e y 2 /2 dy 2π We need to use the table for normal distribution to find (100p)th percentile.

18

19 e.g. Find the 95th percentile for the standard normal rv Z

20 e.g. Find the 95th percentile for the standard normal rv Z z

21 e.g. Find the 95th percentile for the standard normal rv Z z η(95) = 1.645, a linear interpolation of 1.64 and 1.65.

22 e.g. Find the 95th percentile for the standard normal rv Z z η(95) = 1.645, a linear interpolation of 1.64 and Remark: If p does not appear in the table, we can either use the number closest to it, or use the linear interpolation of the closest two.

23

24 In statistical inference, the percentiles corresponding to right small tails are heavily used. Notation z α will denote the value on the z axis for which α of the area under the z curve lies to the right of z α.

25 In statistical inference, the percentiles corresponding to right small tails are heavily used. Notation z α will denote the value on the z axis for which α of the area under the z curve lies to the right of z α. z α

26

27 Remark: 1. z α is the 100(1 α)th percentile of the standard normal distribution.

28 Remark: 1. z α is the 100(1 α)th percentile of the standard normal distribution. 2. By symmetry the area under the standard normal curve to the left of z α is also α.

29 Remark: 1. z α is the 100(1 α)th percentile of the standard normal distribution. 2. By symmetry the area under the standard normal curve to the left of z α is also α. 3. The z α s are usually referred to as z critical values. Percentile α (tail area) z α

30

31 Proposition If X has a normal distribution with mean µ and stadard deviation σ, then Z = X µ σ has a standard normal distribution. Thus P(a X b) = P( a µ Z b µ σ σ ) = Φ( b µ σ ) Φ(a µ σ ) P(X a) = Φ( a µ µ ) P(X b) = 1 Φ(b σ σ )

32

33 Example (Problem 38): There are two machines available for cutting corks intended for use in wine bottles. The first produces corks with diameters that are normally distributed with mean 3cm and standard deviation 0.1cm. The second produces corks with diameters that have a normal distribution with mean 3.04cm and standard deviation 0.02cm. Acceptable corks have diameters between 2.9cm and 3.1cm. Which machine is more likely to produce an acceptable cork?

34 Example (Problem 38): There are two machines available for cutting corks intended for use in wine bottles. The first produces corks with diameters that are normally distributed with mean 3cm and standard deviation 0.1cm. The second produces corks with diameters that have a normal distribution with mean 3.04cm and standard deviation 0.02cm. Acceptable corks have diameters between 2.9cm and 3.1cm. Which machine is more likely to produce an acceptable cork? P(2.9 X 1 3.1) = P( Z ) = P( 1 Z 1) = = P(2.9 X 2 3.1) = P( Z ) = P( 7 Z 3) = =

35

36 Example (Problem 44): If bolt thread length is normally distributed, what is the probability that the thread length of a randomly selected bolt is (a)within 1.5 SDs of its mean value? (b)between 1 and 2 SDs from its mean value?

37 Example (Problem 44): If bolt thread length is normally distributed, what is the probability that the thread length of a randomly selected bolt is (a)within 1.5 SDs of its mean value? (b)between 1 and 2 SDs from its mean value? P(µ 1.5σ X 1 µ + 1.5σ) = P( µ 1.5σ µ Z µ + 1.5σ µ ) σ σ = P( 1.5 Z 1.5) = =

38 Example (Problem 44): If bolt thread length is normally distributed, what is the probability that the thread length of a randomly selected bolt is (a)within 1.5 SDs of its mean value? (b)between 1 and 2 SDs from its mean value? P(µ 1.5σ X 1 µ + 1.5σ) = P( µ 1.5σ µ Z µ + 1.5σ µ ) σ σ = P( 1.5 Z 1.5) = = P(µ + σ X 1 µ + 2σ) = 2P( µ + σ µ Z µ + 2σ µ ) σ σ = 2P(1 Z 2) = 2( ) =

39

40 Proposition {(100p)th percentile for N(µ, σ 2 )} = µ + {(100p)th percentile for N(0, 1)} σ

41 Proposition {(100p)th percentile for N(µ, σ 2 )} = µ + {(100p)th percentile for N(0, 1)} σ Example (Problem 39) The width of a line etched on an integrated circuit chip is normally distributed with mean µm and standard deviation What width value separates the widest 10% of all such lines from the other 90%?

42 Proposition {(100p)th percentile for N(µ, σ 2 )} = µ + {(100p)th percentile for N(0, 1)} σ Example (Problem 39) The width of a line etched on an integrated circuit chip is normally distributed with mean µm and standard deviation What width value separates the widest 10% of all such lines from the other 90%? η N(3, )(90) = η N(0,1) (90) = =

43

44 Proposition Let X be a binomial rv based on n trials with success probability p. Then if the binomial probability histogram is not too skewed, X has approximately a normal distribution with µ = np and σ = npq, where q = 1 p. In particular, for x = a posible value of X, ( ) area under the normal curve P(X x) = B(x; n, p) to the left of x+0.5 x+0.5 np = Φ( ) npq In practice, the approximation is adequate provided that both np 10 and nq 10, since there is then enough symmetry in the underlying binomial distribution.

45

46 A graphical explanation for ( ) area under the normal curve P(X x) = B(x; n, p) to the left of x+0.5 x+0.5 np = Φ( ) npq

47 A graphical explanation for ( ) area under the normal curve P(X x) = B(x; n, p) to the left of x+0.5 x+0.5 np = Φ( ) npq

48

49 Example (Problem 54) Suppose that 10% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked. What is the (approximate) probability that X is between 15 and 25 (inclusive)?

50 Example (Problem 54) Suppose that 10% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked. What is the (approximate) probability that X is between 15 and 25 (inclusive)? In this problem n = 200, p = 0.1 and q = 1 p = 0.9. Thus np = 20 > 10 and nq = 180 > 10

51 Example (Problem 54) Suppose that 10% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked. What is the (approximate) probability that X is between 15 and 25 (inclusive)? In this problem n = 200, p = 0.1 and q = 1 p = 0.9. Thus np = 20 > 10 and nq = 180 > 10 P(15 X 25) = Bin(25; 200, 0.1) Bin(14; 200, 0.1) Φ( ) Φ( ) = Φ(0.3056) Φ( ) = =

Probability Density Functions

Probability Density Functions Probability Density Functions Probability Density Functions Definition Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f (x) such that

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

28. Let ^ be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate.

28. Let ^ be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate. Exercises Section 4.3 [page 154] 28. Let ^ be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate. a. T Ð! Ÿ ^ Ÿ #Þ"(Ñ b. TÐ! Ÿ ^ Ÿ "Ñ c.

More information

Introduction to Probability and Statistics Twelfth Edition

Introduction to Probability and Statistics Twelfth Edition Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver Introduction to Probability and

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

II. The Normal Distribution

II. The Normal Distribution II. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Math438 Actuarial Probability

Math438 Actuarial Probability Math438 Actuarial Probability Jinguo Lian Department of Math and Stats Jan. 22, 2016 Continuous Random Variables-Part I: Definition A random variable X is continuous if its set of possible values is an

More information

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable.

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable. Continuous Random Variables Today we are learning... What continuous random variables are and how to use them. I will know if I have been successful if... I can give a definition of a continuous random

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Chapter 4 - Lecture 3 The Normal Distribution

Chapter 4 - Lecture 3 The Normal Distribution Chapter 4 - Lecture 3 The October 28th, 2009 Chapter 4 - Lecture 3 The Standard Chapter 4 - Lecture 3 The Standard Normal distribution is a statistical unicorn It is the most important distribution in

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( )

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) UCLA STAT 35 Applied Computational and Interactive Probability Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Chris Barr Continuous Random Variables and Probability

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

Biostatistics in Dentistry

Biostatistics in Dentistry Biostatistics in Dentistry Continuous probability distributions Continuous probability distributions Continuous data are data that can take on an infinite number of values between any two points. Examples

More information

Lecture 10: The Normal Distribution. So far all the random variables have been discrete.

Lecture 10: The Normal Distribution. So far all the random variables have been discrete. Lecture 10: The Normal Distribution 1. Continuous Random Variables So far all the random variables have been discrete. We need a different type of model (called a probability density function) for continuous

More information

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions Week 5 Random Variables and Their Distributions Week 5 Objectives This week we give more general definitions of mean value, variance and percentiles, and introduce the first probability models for discrete

More information

3.4. The Binomial Probability Distribution

3.4. The Binomial Probability Distribution 3.4. The Binomial Probability Distribution Objectives. Binomial experiment. Binomial random variable. Using binomial tables. Mean and variance of binomial distribution. 3.4.1. Four Conditions that determined

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

Smoking Habits. Moderate Smokers Heavy Smokers Total. Hypertension No Hypertension Total

Smoking Habits. Moderate Smokers Heavy Smokers Total. Hypertension No Hypertension Total Math 3070. Treibergs Final Exam Name: December 7, 00. In an experiment to see how hypertension is related to smoking habits, the following data was taken on individuals. Test the hypothesis that the proportions

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

Continuous Random Variables and Probability Distributions

Continuous Random Variables and Probability Distributions Continuous Random Variables and Probability Distributions Instructor: Lingsong Zhang 1 4.1 Probability Density Functions Probability Density Functions Recall from Chapter 3 that a random variable X is

More information

6.2 Normal Distribution. Ziad Zahreddine

6.2 Normal Distribution. Ziad Zahreddine 6.2 Normal Distribution Importance of Normal Distribution 1. Describes Many Random Processes or Continuous Phenomena 2. Can Be Used to Approximate Discrete Probability Distributions Example: Binomial 3.

More information

Lecture 6: The Normal distribution

Lecture 6: The Normal distribution Lecture 6: The Normal distribution 18th of November 2015 Lecture 6: The Normal distribution 18th of November 2015 1 / 29 Continous data In previous lectures we have considered discrete datasets and discrete

More information

Test 3 SOLUTIONS. x P(x) xp(x)

Test 3 SOLUTIONS. x P(x) xp(x) 16 1. A couple of weeks ago in class, each of you took three quizzes where you randomly guessed the answers to each question. There were eight questions on each quiz, and four possible answers to each

More information

Ch. 5 Joint Probability Distributions and Random Samples

Ch. 5 Joint Probability Distributions and Random Samples Ch. 5 Joint Probability Distributions and Random Samples 5. 1 Jointly Distributed Random Variables In chapters 3 and 4, we learned about probability distributions for a single random variable. However,

More information

Normal Distribution. Distribution function and Graphical Representation - pdf - identifying the mean and variance

Normal Distribution. Distribution function and Graphical Representation - pdf - identifying the mean and variance Distribution function and Graphical Representation - pdf - identifying the mean and variance f ( x ) 1 ( ) x e Distribution function and Graphical Representation - pdf - identifying the mean and variance

More information

Math 141. Quantile-Quantile Plots. Albyn Jones 1. jones/courses/ Library 304. Albyn Jones Math 141

Math 141. Quantile-Quantile Plots. Albyn Jones 1.  jones/courses/ Library 304. Albyn Jones Math 141 Math 141 Quantile-Quantile Plots Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline: Quantile-Quantile Plots Quantiles and Order Statistics Quantile-Quantile Plots

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553 Test 2 Review: Solutions 1) The following outcomes have at least one Head: HHH, HHT, HTH, HTT, THH, THT, TTH Thus, P(at least one head) = 7/8 2) The following outcomes have a sum of 9: (6,3), (5,4), (4,5),

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

Math/Stat 352 Lecture 9. Section 4.5 Normal distribution

Math/Stat 352 Lecture 9. Section 4.5 Normal distribution Math/Stat 352 Lecture 9 Section 4.5 Normal distribution 1 Abraham de Moivre, 1667-1754 Pierre-Simon Laplace (1749 1827) A French mathematician, who introduced the Normal distribution in his book The doctrine

More information

An interval estimator of a parameter θ is of the form θl < θ < θu at a

An interval estimator of a parameter θ is of the form θl < θ < θu at a Chapter 7 of Devore CONFIDENCE INTERVAL ESTIMATORS An interval estimator of a parameter θ is of the form θl < θ < θu at a confidence pr (or a confidence coefficient) of 1 α. When θl =, < θ < θu is called

More information

11/16/2017. Chapter. Copyright 2009 by The McGraw-Hill Companies, Inc. 7-2

11/16/2017. Chapter. Copyright 2009 by The McGraw-Hill Companies, Inc. 7-2 7 Chapter Continuous Probability Distributions Describing a Continuous Distribution Uniform Continuous Distribution Normal Distribution Normal Approximation to the Binomial Normal Approximation to the

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem Math/Stat 352 Lecture 10 Section 4.11 The Central Limit Theorem 1 Summing random variables Summing random variables Summing random variables Generally summation changes the shape of the distribution: range

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Math 3 Chapter 6 Continuous Probability Distributions The observations generated by different statistical experiments have the same general type of behavior. The followings are the probability distributions

More information

Chapter 4: Continuous Probability Distributions

Chapter 4: Continuous Probability Distributions Chapter 4: Continuous Probability Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 57 Continuous Random Variable A continuous random

More information

STAT509: Continuous Random Variable

STAT509: Continuous Random Variable University of South Carolina September 23, 2014 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Random Variables and Probability Distributions Chapter 4

Random Variables and Probability Distributions Chapter 4 Random Variables and Probability Distributions Chapter 4 4.2 a. The closing price of a particular stock on the New York Stock Echange is discrete. It can take on only a countable number of values. b. The

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

Lecture 10: Normal RV. Lisa Yan July 18, 2018

Lecture 10: Normal RV. Lisa Yan July 18, 2018 Lecture 10: Normal RV Lisa Yan July 18, 2018 Announcements Midterm next Tuesday Practice midterm, solutions out on website SCPD students: fill out Google form by today Covers up to and including Friday

More information

CHAPTER 7. Parameters are numerical descriptive measures for populations.

CHAPTER 7. Parameters are numerical descriptive measures for populations. CHAPTER 7 Introduction Parameters are numerical descriptive measures for populations. For the normal distribution, the location and shape are described by µ and σ. For a binomial distribution consisting

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work.

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work. 1. A worker bee inspects a hexagonal honeycomb cell, starting at corner A. When done, she proceeds to an adjacent corner (always facing inward as shown), either by randomly moving along the lefthand edge

More information

Chapter 4: Continuous Random Variable

Chapter 4: Continuous Random Variable Chapter 4: Continuous Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 57 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite

More information

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions ACMS 20340 Statistics for Life Sciences Chapter 13: Sampling Distributions Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments,

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Review of previous lecture We showed if S n were a binomial random variable, where

More information

Will Landau. Feb 28, 2013

Will Landau. Feb 28, 2013 Iowa State University The F Feb 28, 2013 Iowa State University Feb 28, 2013 1 / 46 Outline The F The F Iowa State University Feb 28, 2013 2 / 46 The normal (Gaussian) distribution A random variable X is

More information

CHAPTER 8. Normal distribution Introduction. A synonym for normal is Gaussian. The first thing to do is show that this is a density.

CHAPTER 8. Normal distribution Introduction. A synonym for normal is Gaussian. The first thing to do is show that this is a density. CHAPTER 8 Normal distribution 8.. Introduction A r.v. is a standard normal written N, )) if it has density e x /. A synonym for normal is Gaussian. The first thing to do is show that this is a density.

More information

Functions of Several Random Variables (Ch. 5.5)

Functions of Several Random Variables (Ch. 5.5) (Ch. 5.5) Iowa State University Mar 7, 2013 Iowa State University Mar 7, 2013 1 / 37 Outline Iowa State University Mar 7, 2013 2 / 37 several random variables We often consider functions of random variables

More information

Continuous Distributions

Continuous Distributions Chapter 3 Continuous Distributions 3.1 Continuous-Type Data In Chapter 2, we discuss random variables whose space S contains a countable number of outcomes (i.e. of discrete type). In Chapter 3, we study

More information

2009 GCE A Level H1 Mathematics Solution

2009 GCE A Level H1 Mathematics Solution 2009 GCE A Level H1 Mathematics Solution 1) x + 2y = 3 x = 3 2y Substitute x = 3 2y into x 2 + xy = 2: (3 2y) 2 + (3 2y)y = 2 9 12y + 4y 2 + 3y 2y 2 = 2 2y 2 9y + 7 = 0 (2y 7)(y 1) = 0 y = 7 2, 1 x = 4,

More information

13. Sampling distributions

13. Sampling distributions 13. Sampling distributions The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 13) Sampling distributions Parameter versus statistic Sampling

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33 BIO5312 Biostatistics Lecture 03: Discrete and Continuous Probability Distributions Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 9/13/2016 1/33 Introduction In this lecture,

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

Continuous Random Variables and Probability Distributions

Continuous Random Variables and Probability Distributions 4 Continuous Random Variables and Probability Distributions INTRODUCTION Chapter 3 concentrated on the development of probability distributions for discrete random variables. In this chapter, we consider

More information

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice 1. We have seen that the TI-83 calculator random number generator X = rand defines a uniformly-distributed random

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

Statistics 100A Homework 5 Solutions

Statistics 100A Homework 5 Solutions Chapter 5 Statistics 1A Homework 5 Solutions Ryan Rosario 1. Let X be a random variable with probability density function a What is the value of c? fx { c1 x 1 < x < 1 otherwise We know that for fx to

More information

Lesson 100: The Normal Distribution. HL Math - Santowski

Lesson 100: The Normal Distribution. HL Math - Santowski Lesson 100: The Normal Distribution HL Math - Santowski Objectives Introduce the Normal Distribution Properties of the Standard Normal Distribution Introduce the Central Limit Theorem Normal Distributions

More information

S2 QUESTIONS TAKEN FROM JANUARY 2006, JANUARY 2007, JANUARY 2008, JANUARY 2009

S2 QUESTIONS TAKEN FROM JANUARY 2006, JANUARY 2007, JANUARY 2008, JANUARY 2009 S2 QUESTIONS TAKEN FROM JANUARY 2006, JANUARY 2007, JANUARY 2008, JANUARY 2009 SECTION 1 The binomial and Poisson distributions. Students will be expected to use these distributions to model a real-world

More information

Multivariate distributions

Multivariate distributions CHAPTER Multivariate distributions.. Introduction We want to discuss collections of random variables (X, X,..., X n ), which are known as random vectors. In the discrete case, we can define the density

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 003, 2018 Page 0 Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative

More information

BUSINESS MATHEMATICS XII - STANDARD MODEL QUESTION PAPER

BUSINESS MATHEMATICS XII - STANDARD MODEL QUESTION PAPER BUSINESS MATHEMATICS XII - STANDARD MODEL QUESTION PAPER (ENGLISH VERSION) Time Allowed : 3 Hours Maximum Marks : 00 Section - A Section A N.B. : (i) Answer all the 40 questions (ii) Each question carries

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

Mark Scheme (Results) Summer 2009

Mark Scheme (Results) Summer 2009 Mark (Results) Summer 009 GCE GCE Mathematics (6684/01) June 009 6684 Statistics S Mark Q1 [ X ~ B(0,0.15) ] P(X 6), = 0.8474 awrt 0.847 Y ~ B(60,0.15) Po(9) for using Po(9) P(Y < 1), = 0.8758 awrt 0.876

More information

IUT of Saint-Etienne Sales and Marketing department Mr Ferraris Prom /10/2015

IUT of Saint-Etienne Sales and Marketing department Mr Ferraris Prom /10/2015 IUT of Saint-Etienne Sales and Marketing department Mr Ferraris Prom 2014-2016 22/10/2015 MATHEMATICS 3 rd semester, Test 1 length : 2 hours coefficient 1/3 The graphic calculator is allowed. Any personal

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Chapter 7. Sampling Distributions and the Central Limit Theorem If you can t explain it simply, you don t understand it well enough Albert Einstein. Theorem

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Lecture 8 Sampling Theory

Lecture 8 Sampling Theory Lecture 8 Sampling Theory Thais Paiva STA 111 - Summer 2013 Term II July 11, 2013 1 / 25 Thais Paiva STA 111 - Summer 2013 Term II Lecture 8, 07/11/2013 Lecture Plan 1 Sampling Distributions 2 Law of Large

More information

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.6 PROBABILITY 6 (Statistics for the binomial distribution) by A.J.Hobson 19.6.1 Construction of histograms 19.6.2 Mean and standard deviation of a binomial distribution 19.6.3

More information

The Normal Distribution

The Normal Distribution The Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 10, 2004 Statistics 371 Last modified: February 11, 2004 The The (AKA Gaussian Distribution) is our first distribution

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information