IV. The Normal Distribution

Size: px
Start display at page:

Download "IV. The Normal Distribution"

Transcription

1 IV. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact in modeling quantitative phenomena across the physical, social, and biological sciences that it s founder has even found his way on to a major currency (before the Euro):

2 Utility of the Normal Distribution The normal distribution has such broad applicability in part because phenomena in the natural world that t result from the interaction of many environmental and genetic factors tend to follow the normal distribution (e.g., height, weight, measurable intelligence). the sums and averages of random samples have distributions that look roughly normal as the sample size gets larger, the normal approximation gets better. This result is known as the Central Limit Theorem. As we will discuss later, this applies even to samples of categorical variables!

3 Characteristics of the Normal Distribution Symmetric (about the mean), unimodal, bell-shaped. If X ~ N(μ,σ 2 ) where μ is the mean and σ 2 is the variance then the density function of X is given by f ( x, ) exp{ ( x ) / 2 }, for x. 2 Of the subjects in a normally distributed population, 68.3% lie within one standard deviation of the mean, 95.4% lie within 2 s.d. s, and 99.7% lie within 3 s.d. s.

4 Computing Probabilities using the Normal Distribution Recall that for a continuous random variable X with probability density function (pdf) f(x), one cannot compute P(X = x). That is, the pdf does not yield probabilities as does a discrete probability mass function. Technically, for a continuous random variable X, P(X = x) = 0. However, we can compute probabilities over intervals of X that is, the probability that X lies between two numbers a and b is equal to the area under the density curve between a and b, for example: a b

5 Computing Probabilities using the Normal Distribution To this point, we have computed areas under a density curve by using integration. However, since the normal density (i) cannot be integrated in closed form and (ii) is used by researchers with access to modern computing tools, probabilities based on the normal distribution can be obtained using tables or computer software. A normal probability bilit table looks something like what is shown on the last pages of this handout (reproduced from a previous edition of the text). Such a table is based on the standard normal distribution, or the normal distribution with zero mean and variance of 1. Using this table, what is the probability that a randomly sampled Using this table, what is the probability that a randomly sampled N(0,1) variable is less than 1.34? Less than 0.28? Between 2.54 and 1.68? For what x does P(Z < x) = 0.975?

6 Standardizing a N(μ,σ 2 ) Random Variable How do we compute probabilities for a normal distribution with arbitrary mean and variance using a standard normal table? Another unique aspect of the normal distribution is that if we have X ~ N(μ,σ 2 ), then any linear function of X is also normally distributed. That is, if we have Y = a + bx for arbitrary constants a and b, then Y ~ N(a + bμ, b 2 σ 2 ). If we define Z =(X μ)/σ, then (using the notation above) a = μ/σ, and b = 1/σ, so that Z ~ N(0,1). Computing Z is called standardizing X. Once we ve converted X into standard units, we can compute probabilities over intervals of X by using the standard normal or Z distribution.

7 Example IV.A Data from a study of king crabs on Kodiak Island, AK, (carried out by the Alaska Department of Fish and Game) show that male crab length is normally distributed with a mean of mm and a standard deviation of 25.5 mm. What proportion of the male crab population on Kodiak Island is less than 140 mm? What proportion is between 100 and 140 mm? What is the probability that a randomly selected male crab will measure at least 170 mm? What is the 75 th percentile of this population? The 99 th percentile?

8 Sums of Normally Distributed Random Variables Yet another interesting feature of the normal distribution is that sums of normally distributed independent variables are also normally distributed. Suppose we have two independent random variables X 1 and X 2 such that X 1 ~ N(μ 1,σ, 12 ), and X 2 ~ N(μ 2,σ, 22 ), and we define Y such that Y = c 1 X 1 + c 2 X 2, where c 1 and c 2 are constants. Then Y ~ N(c μ 1 + c 2 μ 2, c 1 σ 1 + c 2 σ 2 ).

9 Distribution of the Sample Mean Recall from our discussion of random variables that if we sample n subjects X 1,,X n at random from a population with an underlying expected value of μ and variance of σ 2, then the expectation of the distribution of the sample mean X is μ, and the variance of X is σ 2 /n. From the previous slide, we can see further that if the sample comes from a normally distributed population p then X ~ N(, 2 / n).

10 Example IV.B Consider again the population of Kodiak crabs discussed in Example IV.A. Suppose that we randomly sample 20 specimens from this population. What is the probability that the sample mean will lie between and mm? C t i t l t d tth hth t l Compute an interval centered at the mean μ such that a sample average of 20 male crabs will lie within that interval with 95% probability. What sample size is required to reduce the total width of this interval to 20 mm?

11 The Central Limit Theorem Suppose that we have a sample X 1,XX 2,,XX n from some distribution with mean μ and variance σ 2. If n is sufficiently large, then the sample mean X ~ N(μ,σ 2 /n). This is true even if the underlying population is not normal the approximation improves for relatively larger n. We refer to this result as the Central Limit Theorem,, or CLT. It represents one of the most remarkable results in mathematical statistics. The CLT applies even to samples from some categorical The CLT applies even to samples from some categorical distributions, including the binomial and Poisson distributions.

12 Example IV. The CLT is fairly easy to simulate. There are many applets on the web that do this. A simple example using dice is found at A more interesting example is found at

13 Approximating the Binomial and Poisson Distributions In light of the CLT, it s not surprising that the normal distribution can provide a fairly accurate approximation under certain (not necessarily uncommon) circumstances of binomial and Poisson probabilities. Can you explain why? For example, the plots below superimpose normal curves on binomial distributions with different values of n and p. For what sorts of binomial distributions will the normal distribution prove more accurate? n = 10, p = 0.50 n = 10, p = 0.10 n = 100, p = 0.10

14 Example IV.D What are the mean and variance of the number of diabetic seniors in Example III.E? Use a normal approximation to compute P(X 8). When using a normal approximation to compute binomial probabilities, we can improve our accuracy with a continuity correction. That is, if X ~ Bin(n, p), and we wish to compute P( a X b), then using the normal distribution we would approximate this with P(a ½ < X < b + ½). For the diabetes example, use the continuity correction to compute P(X 8) as well as P(X = 2). How accurate are these approximations? Example IV.E IVE What are the mean and variance of the number of Logan traffic accidents in Example III.H? Use a normal approximation to compute the same probabilities computed in that example.

15 Probability Calculators For homework problems, data analyses, research projects, etc., it s handy to have tools that compute probabilities for a variety of frequently used distributions. These kinds of functions are available in programmable calculators, as well as through smartphone apps, desktop packages (such as Excel, Matlab, or R), and websites. For example, this website computes probabilities for a variety of common distributions:

16 The Chi-Square Distribution A related distribution that we will use later on during this semester is the chi-square distribution. If Z is a standard normal random variable, then Z 2 2 is a chi-square random variable with 1 degree of freedom, or 1. The sum of n independent chi-square random variables follows a chi- 2 square distribution with n degrees of freedom, denoted by A chi-square random variable has a range that is nonnegative, and its distribution ib ti is positively skewed. For example the pdf for the chi-square distribution with five degrees of freedom looks something like this: n.

17 The t Distribution Another distribution related to the normal and one upon which we will heavily rely is the t distribution. If Z is a standard normal random variable, and X 2 is an independent χ n2 random variable, then the random variable Z T 2 X / n fll follows a t distribution ib ti with n degrees of freedom. A t distribution actually looks quite similar to the standard normal distribution: it s mean is zero, it is unimodal, bell-shaped, and symmetric. One distinction is that the variability of the t distribution is slightly greater than the Z distribution. As n gets very large, however, the t distribution converges to (i.e., is nearly indistinguishable from) a Z distribution.

18 The F Distribution The third related distribution that we will use is the F distribution. If U and V are independent χ 2 2 n and χ m random variables, respectively, then the variable U / n F V / m follows an F distribution with n and m degrees of freedom. We denote this distribution by F n,m. The F distribution has a range that is nonnegative, and its distribution is positively skewed. For example the pdf for the F 5,10 distribution looks something like this:

19 Example IV.F Note that we cannot tabulate the χ 2, t, and F distributions in the same way that we do for the Z distribution there are an infinite number of distributions in each of these families (as many as there are values for the degrees of freedom). Instead of areas under the curve, then, you are given tables in your textbook that contain quantiles from a given χ 2, t, or F distribution. For example, the χ 2 table in the back of your book looks something like what you see on the following slide. Each row corresponds to a value for the degrees of freedom, and each column corresponds to a right tail area. Hence, the upper 95% quantile from the χ distribution is We denote this by. 0.05,6

20 Chi-square Table Stat 3000 Statistics for Scientists and Engineers

21 Example IV.F, cont d 2 2 Find the values of 0.025,20, 0.10,11. Find the values of t 0 t..05,15, 0.025, 30.05,5,10, 0.10,9, 20 Find the values of F 0 F.

22 In Review Let s take a breath and summarize some very important points. We now have laid a foundation that allows us to describe and analyze data. From this point forward, we will focus on sampling data, and making inferences about the underlying population based on that sample. We denote our sample by X 1, X 2,, X n. The underlying mean for this population is μ and the variance is σ 2. I i f i di d 2 lh h d In practice, we are often interested in μ and σ 2, although we don t know what they are. That s why we re gathering the data. We will therefore focus much attention on inferring something about population quantities (such as μ, for example) based on the sampled data.

23 IMPORTANT SUMMARY POINTS! 1. X is a random variable: its distribution has a mean of μ, and a variance of σ 2 /n. 2. If the underlying population is normally distributed, then is normally distributed. X 3. Even if the underlying population is not normally distributed, ib t d the Central Limit it Theorem tells us that t for sufficiently large sample size n, X will be approximately normally distributed.

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

II. The Normal Distribution

II. The Normal Distribution II. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

CVE NORMAL DISTRIBUTION

CVE NORMAL DISTRIBUTION CVE 472 Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus CVE 472 Statistical Techniques in Hydrology. 1/47 Outline General Normal Distribution

More information

The Normal Distribution

The Normal Distribution The Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 10, 2004 Statistics 371 Last modified: February 11, 2004 The The (AKA Gaussian Distribution) is our first distribution

More information

Common ontinuous random variables

Common ontinuous random variables Common ontinuous random variables CE 311S Earlier, we saw a number of distribution families Binomial Negative binomial Hypergeometric Poisson These were useful because they represented common situations:

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

Chapter 11 Sampling Distribution. Stat 115

Chapter 11 Sampling Distribution. Stat 115 Chapter 11 Sampling Distribution Stat 115 1 Definition 11.1 : Random Sample (finite population) Suppose we select n distinct elements from a population consisting of N elements, using a particular probability

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary Patrick Breheny October 13 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction Introduction What s wrong with z-tests? So far we ve (thoroughly!) discussed how to carry out hypothesis

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

Biostatistics in Dentistry

Biostatistics in Dentistry Biostatistics in Dentistry Continuous probability distributions Continuous probability distributions Continuous data are data that can take on an infinite number of values between any two points. Examples

More information

7 Estimation. 7.1 Population and Sample (P.91-92)

7 Estimation. 7.1 Population and Sample (P.91-92) 7 Estimation MATH1015 Biostatistics Week 7 7.1 Population and Sample (P.91-92) Suppose that we wish to study a particular health problem in Australia, for example, the average serum cholesterol level for

More information

Normal Distribution and Central Limit Theorem

Normal Distribution and Central Limit Theorem Normal Distribution and Central Limit Theorem Josemari Sarasola Statistics for Business Josemari Sarasola Normal Distribution and Central Limit Theorem 1 / 13 The normal distribution is the most applied

More information

Standard Normal Curve Areas z

Standard Normal Curve Areas z Table A.3 Standard Normal Curve Areas z.00.01.02.03.04.09-1.2 0.1151 0.1131 0.1112 0.1094 0.1075 0.0985-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1170 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9545 1.7 0.9554

More information

Summarizing Measured Data

Summarizing Measured Data Summarizing Measured Data 12-1 Overview Basic Probability and Statistics Concepts: CDF, PDF, PMF, Mean, Variance, CoV, Normal Distribution Summarizing Data by a Single Number: Mean, Median, and Mode, Arithmetic,

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Math/Stat 352 Lecture 9. Section 4.5 Normal distribution

Math/Stat 352 Lecture 9. Section 4.5 Normal distribution Math/Stat 352 Lecture 9 Section 4.5 Normal distribution 1 Abraham de Moivre, 1667-1754 Pierre-Simon Laplace (1749 1827) A French mathematician, who introduced the Normal distribution in his book The doctrine

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

a table or a graph or an equation.

a table or a graph or an equation. Topic (8) POPULATION DISTRIBUTIONS 8-1 So far: Topic (8) POPULATION DISTRIBUTIONS We ve seen some ways to summarize a set of data, including numerical summaries. We ve heard a little about how to sample

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 213 8.128.73 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 23. April 213 What we ve learned so far Fundamental

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Statistics and Data Analysis in Geology

Statistics and Data Analysis in Geology Statistics and Data Analysis in Geology 6. Normal Distribution probability plots central limits theorem Dr. Franz J Meyer Earth and Planetary Remote Sensing, University of Alaska Fairbanks 1 2 An Enormously

More information

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 4 Student Lecture Notes 4-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 4 Using Probability and Probability Distributions Fundamentals of Business Statistics Murali Shanker

More information

7.3 The Chi-square, F and t-distributions

7.3 The Chi-square, F and t-distributions 7.3 The Chi-square, F and t-distributions Ulrich Hoensch Monday, March 25, 2013 The Chi-square Distribution Recall that a random variable X has a gamma probability distribution (X Gamma(r, λ)) with parameters

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( )

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) UCLA STAT 35 Applied Computational and Interactive Probability Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Chris Barr Continuous Random Variables and Probability

More information

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment.

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Course information: Instructor: Tim Hanson, Leconte 219C, phone 777-3859. Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Text: Applied Linear Statistical Models (5th Edition),

More information

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives STA 2023 Module 6 The Sampling Distributions Module Objectives In this module, we will learn the following: 1. Define sampling error and explain the need for sampling distributions. 2. Recognize that sampling

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. er15 Chapte Chi-Square Tests d Chi-Square Tests for -Fit Uniform Goodness- Poisson Goodness- Goodness- ECDF Tests (Optional) Contingency Tables A contingency table is a cross-tabulation of n paired observations

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Probability Density Functions

Probability Density Functions Probability Density Functions Probability Density Functions Definition Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f (x) such that

More information

An introduction to biostatistics: part 1

An introduction to biostatistics: part 1 An introduction to biostatistics: part 1 Cavan Reilly September 6, 2017 Table of contents Introduction to data analysis Uncertainty Probability Conditional probability Random variables Discrete random

More information

Will Landau. Feb 28, 2013

Will Landau. Feb 28, 2013 Iowa State University The F Feb 28, 2013 Iowa State University Feb 28, 2013 1 / 46 Outline The F The F Iowa State University Feb 28, 2013 2 / 46 The normal (Gaussian) distribution A random variable X is

More information

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions ACMS 20340 Statistics for Life Sciences Chapter 13: Sampling Distributions Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments,

More information

Analysis of Experimental Designs

Analysis of Experimental Designs Analysis of Experimental Designs p. 1/? Analysis of Experimental Designs Gilles Lamothe Mathematics and Statistics University of Ottawa Analysis of Experimental Designs p. 2/? Review of Probability A short

More information

The normal distribution

The normal distribution The normal distribution Patrick Breheny September 29 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/28 A common histogram shape The normal curve Standardization Location-scale families A histograms

More information

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 The aspect of the data we want to describe/measure is relative position z scores tell us how many standard deviations above or below

More information

Using Tables and Graphing Calculators in Math 11

Using Tables and Graphing Calculators in Math 11 Using Tables and Graphing Calculators in Math 11 Graphing calculators are not required for Math 11, but they are likely to be helpful, primarily because they allow you to avoid the use of tables in some

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

ACMS Statistics for Life Sciences. Chapter 11: The Normal Distributions

ACMS Statistics for Life Sciences. Chapter 11: The Normal Distributions ACMS 20340 Statistics for Life Sciences Chapter 11: The Normal Distributions Introducing the Normal Distributions The class of Normal distributions is the most widely used variety of continuous probability

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2017 Dr. Michael O. Distler

More information

Introduction to Probability and Statistics Twelfth Edition

Introduction to Probability and Statistics Twelfth Edition Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver Introduction to Probability and

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

4.2 Continuous Models

4.2 Continuous Models Ismor Fischer, 8//8 Stat 54 / 4-3 4. Continuous Models Horseshoe Crab (Limulus polyphemus) Not true crabs, but closely related to spiders and scorpions. Living fossils eisted since Carboniferous Period,

More information

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean Confidence Intervals Confidence interval for sample mean The CLT tells us: as the sample size n increases, the sample mean is approximately Normal with mean and standard deviation Thus, we have a standard

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions In the chapter about descriptive statistics sample data were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter

More information

7 Random samples and sampling distributions

7 Random samples and sampling distributions 7 Random samples and sampling distributions 7.1 Introduction - random samples We will use the term experiment in a very general way to refer to some process, procedure or natural phenomena that produces

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

lim F n(x) = F(x) will not use either of these. In particular, I m keeping reserved for implies. ) Note:

lim F n(x) = F(x) will not use either of these. In particular, I m keeping reserved for implies. ) Note: APPM/MATH 4/5520, Fall 2013 Notes 9: Convergence in Distribution and the Central Limit Theorem Definition: Let {X n } be a sequence of random variables with cdfs F n (x) = P(X n x). Let X be a random variable

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Probability and statistics: Module 25. Inference for means

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Probability and statistics: Module 25. Inference for means 1 Supporting Australian Mathematics Project 2 3 4 6 7 8 9 1 11 12 A guide for teachers Years 11 and 12 Probability and statistics: Module 2 Inference for means Inference for means A guide for teachers

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R Random Variables Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R As such, a random variable summarizes the outcome of an experiment

More information

Lecture 3. Biostatistics in Veterinary Science. Feb 2, Jung-Jin Lee Drexel University. Biostatistics in Veterinary Science Lecture 3

Lecture 3. Biostatistics in Veterinary Science. Feb 2, Jung-Jin Lee Drexel University. Biostatistics in Veterinary Science Lecture 3 Lecture 3 Biostatistics in Veterinary Science Jung-Jin Lee Drexel University Feb 2, 2015 Review Let S be the sample space and A, B be events. Then 1 P (S) = 1, P ( ) = 0. 2 If A B, then P (A) P (B). In

More information

Unit 14: Nonparametric Statistical Methods

Unit 14: Nonparametric Statistical Methods Unit 14: Nonparametric Statistical Methods Statistics 571: Statistical Methods Ramón V. León 8/8/2003 Unit 14 - Stat 571 - Ramón V. León 1 Introductory Remarks Most methods studied so far have been based

More information

Review of Statistics I

Review of Statistics I Review of Statistics I Hüseyin Taştan 1 1 Department of Economics Yildiz Technical University April 17, 2010 1 Review of Distribution Theory Random variables, discrete vs continuous Probability distribution

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny September 27 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 31 Kerrich s experiment Introduction 10,000 coin flips Expectation and

More information

Class 15. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 15. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 15 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 17 by D.B. Rowe 1 Agenda: Recap Chapter 7.1 7. Lecture Chapter 7. Discussion of Chapters Problem Solving

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 18 Sampling Distribution Models Copyright 2010, 2007, 2004 Pearson Education, Inc. Normal Model When we talk about one data value and the Normal model we used the notation: N(μ, σ) Copyright 2010,

More information

1; (f) H 0 : = 55 db, H 1 : < 55.

1; (f) H 0 : = 55 db, H 1 : < 55. Reference: Chapter 8 of J. L. Devore s 8 th Edition By S. Maghsoodloo TESTING a STATISTICAL HYPOTHESIS A statistical hypothesis is an assumption about the frequency function(s) (i.e., pmf or pdf) of one

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

CSE 312, 2017 Winter, W.L. Ruzzo. 7. continuous random variables

CSE 312, 2017 Winter, W.L. Ruzzo. 7. continuous random variables CSE 312, 2017 Winter, W.L. Ruzzo 7. continuous random variables The new bit continuous random variables Discrete random variable: values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability

More information

3 Random Samples from Normal Distributions

3 Random Samples from Normal Distributions 3 Random Samples from Normal Distributions Statistical theory for random samples drawn from normal distributions is very important, partly because a great deal is known about its various associated distributions

More information

Ch. 7 Statistical Intervals Based on a Single Sample

Ch. 7 Statistical Intervals Based on a Single Sample Ch. 7 Statistical Intervals Based on a Single Sample Before discussing the topics in Ch. 7, we need to cover one important concept from Ch. 6. Standard error The standard error is the standard deviation

More information

Confidence Intervals 1

Confidence Intervals 1 Confidence Intervals 1 November 1, 2017 1 HMS, 2017, v1.1 Chapter References Diez: Chapter 4.2 Navidi, Chapter 5.0, 5.1, (Self read, 5.2), 5.3, 5.4, 5.6, not 5.7, 5.8 Chapter References 2 Terminology Point

More information

Continuous Probability Distributions

Continuous Probability Distributions Continuous Probability Distributions Called a Probability density function. The probability is interpreted as "area under the curve." 1) The random variable takes on an infinite # of values within a given

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

13. Sampling distributions

13. Sampling distributions 13. Sampling distributions The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 13) Sampling distributions Parameter versus statistic Sampling

More information

ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES

ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES 1. Order statistics Let X 1,...,X n be n real-valued observations. One can always arrangetheminordertogettheorder statisticsx (1) X (2) X (n). SinceX (k)

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

STA Module 8 The Sampling Distribution of the Sample Mean. Rev.F08 1

STA Module 8 The Sampling Distribution of the Sample Mean. Rev.F08 1 STA 2023 Module 8 The Sampling Distribution of the Sample Mean Rev.F08 1 Module Objectives 1. Define sampling error and explain the need for sampling distributions. 2. Find the mean and standard deviation

More information

Purposes of Data Analysis. Variables and Samples. Parameters and Statistics. Part 1: Probability Distributions

Purposes of Data Analysis. Variables and Samples. Parameters and Statistics. Part 1: Probability Distributions Part 1: Probability Distributions Purposes of Data Analysis True Distributions or Relationships in the Earths System Probability Distribution Normal Distribution Student-t Distribution Chi Square Distribution

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences Random Variables Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

3.4. The Binomial Probability Distribution

3.4. The Binomial Probability Distribution 3.4. The Binomial Probability Distribution Objectives. Binomial experiment. Binomial random variable. Using binomial tables. Mean and variance of binomial distribution. 3.4.1. Four Conditions that determined

More information

Chapter 4. Probability and Statistics. Probability and Statistics

Chapter 4. Probability and Statistics. Probability and Statistics Chapter 4 Probability and Statistics Figliola and Beasley, (999) Probability and Statistics Engineering measurements taken repeatedly under seemingly ideal conditions will normally show variability. Measurement

More information

Prof. Thistleton MAT 505 Introduction to Probability Lecture 13

Prof. Thistleton MAT 505 Introduction to Probability Lecture 13 Prof. Thistleton MAT 55 Introduction to Probability Lecture 3 Sections from Text and MIT Video Lecture: Sections 5.4, 5.6 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-4- probabilisticsystems-analysis-and-applied-probability-fall-2/video-lectures/lecture-8-continuousrandomvariables/

More information

Joint Probability Distributions, Correlations

Joint Probability Distributions, Correlations Joint Probability Distributions, Correlations What we learned so far Events: Working with events as sets: union, intersection, etc. Some events are simple: Head vs Tails, Cancer vs Healthy Some are more

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

Other Continuous Probability Distributions

Other Continuous Probability Distributions CHAPTER Probability, Statistics, and Reliability for Engineers and Scientists Second Edition PROBABILITY DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clar School of Engineering Department of Civil

More information