# YORK UNIVERSITY. Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2.

Save this PDF as:

Size: px
Start display at page:

Download "YORK UNIVERSITY. Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2."

## Transcription

1 YORK UNIVERSITY Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2 June 27, 212 Surname (print): Given Name: Student No: Signature: INSTRUCTIONS: 1. Please write your name, student number and final answers in ink. 2. This is a closed-book test, duration- 75 minutes. 3. No calculator is permitted. 4. There are seven questions on eight pages. Answer all the questions. 5. Show all work necessary to justify each answer you give. Clearly indicate each time you use the back of a page for your work. 6. Remain seated until we collect all the test papers. 7. Do the easiest questions first. GOOD LUCK! Question I Points I Scored I Total: 6

2 Name: Student No: 1. (2 + 2 pts) Choose the one alternative that best completes the statement. (a) When two ratios in a simplex tableau tie for being smallest, i. there is a possibility for multiple optimum degenerate BFS will occur. iii. the problem has an unbounded solution. ANSWER: (t-'c.'), (b) In a simplex tableau that gives an optimum solution, a zero indicator for a nonbasic variable suggests i. the problem has an unbounded solution. ii. a degenerate BFS will is a possibility for multiple optimum solutions. 2. ( pts) Consider the following LP: ANSWER: (Jt-t_') max z = 2XI- X2 + X3, subject to 3XI + X2 + X3 < XI- X2 + 2X3 < XI+ X2- X3 < Xl, X2, X3 > (a) Write the initial simplex tableau for the solution of the problem by the Simplex Algorithm. O.tftf Cc_ VtJ.A/,; " 1 2- CJM.J,& 3. fu rl_ ({ff-/j st- <- +, f:tc_e_ et/tj;fvcm.- > r-eckve-4j, fo (,- fl.. LP tla fo.,vcr IM -z. s.f. o2. X 1 - X z... -t- ")C 3. A::, -t- + )C3 "'\- " -=- " x.\- X2- -t 2 x ' :X. + X - 'X -t- 1 r.l. So? cw:h.: iec;"i' M c z x, x2... JC3..4.!::>:L ":!. RttS' - { _ 1. () - v Continues... 1

3 Name: (b) After one iteration the simplex tableau for this problem is z XI X2 X3 S RHS Student No: Determine basic variables and write the basic feasible solution corresponding to this tableau. Ba._yt...'e.. \fakc: tv.. -\, A 3>., 1ke_ Cc-rre.'(1 OM..J Fe; i<; ANSWER:

4 3. (7 pts) The following LINGO program is given. Write the LP problem, which is solved using this program. MODEL: SETS: DAYS/1.. 5/:X,Y,DEMAND; ENDSETS DAYS( I) I I # GT # 1:X(1)=.9*X(I-1)+ Y(l-1)- DEMAND( 5*Y 2 DEMAND; DATA: DEMAND= 4,6,7,75,5; ENDDATA END L-L "'z_ -=- (3 'l:l\ t- 5' ca- J '"{- (3aJ Xz_ + 15 ) t -\ ( 3oO 'X.s- + 15S') ==- 3 ( ')( + '):2-* ")( -\- "')(tot -t- :X: s-'yt- 5' ( 1 +- '--\- <cj 3 + '"( k 5" ') :J S.t. X" =- Lt, x2.-, "+-(fa- Goo, X -=-. 3 'X.l. + t;f-'-- 'foo J xt -=- o.ca 'X:> +- <i 3-5> -:x: =- o. g ')(_ '< -\- lf - s-oo-> G x,- 6''(1- )- 4 > G Xz.- s-'2-" G x3.- Su_ ::rw <f.) G x4-5u > r:rso <fl.f --- > 1\ G xs- - 5 s- s-oo/ '): x X )( X u u u "., '> 3.., 4> 'S)(J"''o,(f><a4>Cf?::o. Continues... 3

5 Name: Student No: 4. (1 + 4 pts) (a) Suppose that we have five different maximization LP's and assume that, in trying to solve them, after several iterations we have arrived to the following simplex tableaus: LP 1: LP 2: LP 3: LP 4: [ [ X! X2 X3 X4 rhs ] 7/4 1/8 55 z = /2 28 X2 = 28 ' 1 1/4-1/8 9 X!= 9 X! X2 X3 X4 rhs ] -1 3/2 5 z =5 1 1/2 2 X!= 2 ' 1-1 1/2 1 X2 = 1 u X! X2 X3 X4 rhs 2 1 z = 1 1/2 1 1/2 5/2 X2 = 5/2 ' 1/2-1/2 1 3/2 X4 = 3/2 X! X2 X4 X3 a rhs [ LP 5: [ ] z=44m] 1+5M M 2+4M X2 = 2 ' a=4 X! X2 X3 X4 rhs z = bv 17 ] X3 = 8 ' X4 = where a is an artificial variable. Denote by AS = alternative optimal solutions, DEG = degeneracy, INFS = infeasible solution, UBS = unbounded solution, NONE = none of the above. Specify for each problem which one of the possible answers mentioned above is true? LP 1: NONE ; LP 2: f) B s ; LP 3: _._A--'-"S=<----_ LP 4: INJ=\$ ; LP 5: Z> EG-- Note: No explanation is required. Evaluation: +2 for each correct answer, for each unanswered part, -1 for each incorrect answer - but zero is the lowest total score for this question. (b) For the unbounded LP from part (a), find a direction of unboundedness. L.P o1. is u"'e.of. LP. FrDiM 1tu_ ) x L e.,.kwi.a--t 1H.W'C:aifL, GM J X -1 =- JJJ C4t :t?.2.-.x 3 -=-1 'X" -=-.:lo \$ - ): 2- =-{ + 3. ' Ust..e.-re... )C3 C 2A..<.._ {ku'" UMJ. /) O_ /J i..t.e-b-re.) a.. tft, re.d.c.. ef- 'j J -:::::: [ O 1 1 OJ Continues... 4

6 Name: Student No: 5. (1 + 2 pts) Consider the LP: max z = Xl +xz +2x3 subject to 2x 1 +xz +x3 < 2 3xl +4xz +2x3 > 8 x 1, Xz, x3 > (a) Solve the problem above by the Big-M Method using the largest coefficient rule. If there is a tie in choosing a leaving variable, priority should be given to an artificial variable. '"2.. "= XII ;- ')C 2-. t- c1?<:-.!:. - Mo-) s. f.. a '):-i -r -:x: Jc 3. t- -==-..L X. A + 4 "l:2-2. X 3. - e 2. + C\._ -=:. _& (! ) S<J 'X-1 )')C2.) XJ..) h" ' '- 'a_ 'V.. ) # o+ f!:,\1 s. -::::. ( : Y Ut..r<. ft ::::- 2-) 1 # o-f. /VTJV G-2-= l(j UM.J t-c sv C\W J. CL. lo e.e...\u..c.: ki. f;.:cl'a.k: Va.-Yc.-'.fY 1<'2-' 'M <;jwctd v ';} Q-z_ M a cl- to "2- -==- XA + 'XL cl. ")( 3:. - M c.-_ + 3 t-j\'x" -+ L(f-.1\.x.L * 2.M X> - MeL M a-.8 M \IWVJC-.;_ -=- ( M,f) f'jc ( 4 M -t- -i') -x.l- + ( \'-'1 -\- 2. 'yx: - M e.2.-.& M f{-u.-tu.) ch:a.r <;.:&x { t:s CD A.e.. 2- R+t S V RM-Lo M o -gm z. :::-&M -..t. ot &'\ = T =.t. -1 t1 <;:\A-u... Wwc.. va.v t' xl (JAA. tk.'vt.- & -=-& t-=cl (Q,) VM"f&_ i'<;..) ft. "lreji otaj- -& rl-- () ) u c;:{w<; ( )Ro, ) 1<-z + (4M-;-1) {:2-x.._ CJA<of Continues... A-() Px2.- to ocfcu f:gzcu..r 5

7 ),, t<2 -+G_) Rx 3 : 2--l)l2-:tl; Student No: Name: (p ")(: )C..z...? :!:> -\ e Q_ Rt-ts r3v Ra.b. o..\ _i._ -;z_ -- Lf MT1... ei.. Z-=-2 Lt '-{ s- Qi), t1.-1 ==- t:( y --l.f '1 -L( 'i " -., =- ' k L '):.2._'=c1- c1...:l -r::=4 s- --1 :; L _L Ci<- ) 2._ L M- Z--=-j_, 2- s- J_...L _.L 'X?>=- ":f- J..., ol.l- _1._ t1 -i.l :C.z._-= -.L " L 2-.. S-t."'-c..L -s t's a,u r;p+- ( 1faie_ ') 1- / -xpf--=-1.) xpf-::::- o ) x ;rt--=-o 7_ wa;(-=- L. (b) How many optimal solutions does the above given LP have? Explain. 1L_ LP 6 9uL ot+ - 4-d. af- re.oj fo Jiff-e,r lo._ refah:4 to k'fterej- 'BFS. as o of: ) {(_. l.ni -<.:c. VCVV'. x ) 'X:z._ 1 ") -\ x2. 'x3.l.) -\. x2- ; ) V- 'X:2..' e 2..1 (k_ 'Cal-J. Re.caif tfu..l Je.se...e/e Oceu S eu=- 1L. /Vt 5: f.o CL B V h1j>peua fe f e_ e.-y"o' Continues... o+- c._ CLLJ- CPYY'e..C pow. "'9-6

8 Name: Student No: 6. (7 pts) Consider the LP: max z = 2xl + 3x2 subject to 2x1 + x2 < 1 (') Xl + X2 < 6 (..2.) -xl + X2 < 4 () X1,X2 > (Be very careful with your work because it will Lj <:!. 1 (J l) 1\ h \ 1 PI / 1\ / \ la 1(.1,6 "" VJ rk 5'\ l/t o--,/),_ ;_\ h' Vj c JJ. {L, ) """- lfo tt'\ \ f-';> 7 "\ 8 f IR..1" t i \ '""' (b) Find the allowable range of change for the OFC of x2, for which the current optimal basis remains optimal. Justify your answer. J_ei z -:= ci..x., +X c...t..t r"ej-..st...'s ANSWER: [J. 1 J re.:.;:: -h.: t.<,-.e,ve,.r - 4: > C 'S.'\ 6:; C c2_ 7.v.tltv C. >O.. I Oo \. -- a vam-rc...- fp..r (.. s L..t, J (c) Find the allowable range of change for the RHS f the second constraint, for which the current optimal basis remains optimal. Justify your answer. 1U- -red- "-- {;-t.answer: [lf 1 g J t:.c (Le_ e. u_ :t-1 +- ')C:z._ =-6 H.<. a/ tv c:fr.e-e f. &} rc,k;f C(o 7 4) 9;( 7J()G). Sb/ ('2-) '('<;u:f ZJ R-11 -=-&;. (2-) fo C:. -='> fh1.s: =- L[. f-- Cont'"ues... e.>. /D fl. g1 7 t>..,t. t-s L..,) j.

9 Name: Student No: 7. (6 pts) Consider the LP: max z = 3xl + 4x2 subject to 2xl + x2 < 8 4xl + x2 < 1 X}, X2 2- In optimal tableau of the LP, the basic variables are x 1 and x 2. Use Important Formulas from Section 6.2 to find optimal simplex tableau and optimal solution to the problem. Note: No points will be given to any other answer._ - _ fl.+ (cn -1 N =-1 en'!_) )cno.v-::: e,v f:> ANSWER: l 'k 'I -\- JJ ')<:_N flv -==- B. 1 e... c v -== [ - ) )2.. " 3 Lt ],.g -=- [ " J T ) -=- \_ 4 1\ ) N-=- 1 2 c.nv [o o].., -" -==- r- 2- \ -.,.g -=- --- "z_ l c \ -:::. 1 \_ - J ">..t -A j J (; c r.,v - [-=- c.n.v ( - t;)-=- l L11 ( -=- :J..1-) c_ f!:n f!:,- ' N - c_ N (!, v = c I!> v - 1 -=- [ It J l } _\ J -t-i - J., u.z.. o- t-o...: A- trm ki"& {a._fku --z_ :x:" Jc x 3 x 4 R H s BY Ra.:h.' o t{ 3-5'.i +-- z -==J o -;, CD t "- - G ). )R R -+(s;_)r -xtt. o [). o -L 1. "'Z.'=:s' Jctr xl.- =- JS ( R xtr)

### i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! \$ f 1 :.1 f.

### 35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

- - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

### A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

### APPH 4200 Physics of Fluids

APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I \$T1P#(

### Dr. Maddah ENMG 500 Engineering Management I 10/21/07

Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Computational Procedure of the Simplex Method The optimal solution of a general LP problem is obtained in the following steps: Step 1. Express the

### February 17, Simplex Method Continued

15.053 February 17, 2005 Simplex Method Continued 1 Today s Lecture Review of the simplex algorithm. Formalizing the approach Alternative Optimal Solutions Obtaining an initial bfs Is the simplex algorithm

### Summary of the simplex method

MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

### Summary of the simplex method

MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

### In Chapters 3 and 4 we introduced linear programming

SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

### (tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

### Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

### Simplex Method for LP (II)

Simplex Method for LP (II) Xiaoxi Li Wuhan University Sept. 27, 2017 (week 4) Operations Research (Li, X.) Simplex Method for LP (II) Sept. 27, 2017 (week 4) 1 / 31 Organization of this lecture Contents:

### ORF307 Optimization Practice Midterm 1

Princeton University Department of Operations Research and inaocial Engineering OR307 Optimization Practice Midterm 1 Closed book. No computers. Calculators allowed (but not needed). You are permined to

### necessita d'interrogare il cielo

gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

### SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

### Last 4 Digits of USC ID:

Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

### PHYS 232 QUIZ minutes.

/ PHYS 232 QUIZ 1 02-18-2005 50 minutes. This quiz has 3 questions. Please show all your work. If your final answer is not correct, you will get partial credit based on your work shown. You are allowed

### 2.' -4-5 I fo. - /30 + ;3, x + G: ~ / ~ ) ~ ov. Fd'r evt.'i') cutckf' ()y\e.._o OYLt dtt:vl. t'"'i ~ _) y =.5_21/2-+. 8"'- 2.

Statistics 100 Sample FINAL Instructions: I. WORK ALL PROBLEMS. Please, give details and explanations and SHOW ALL YOUR WORK so that partial credits can be given. 2. You may use four pages of notes, tables

### The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b.

The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. Build initial tableau. z c T 0 0 A b The Simplex Method Standard

### The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

### 5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances.

5 s Tble f Generl rinnes. q=! j-j 3 -ri j -s 3s m s3 0,0 0) fife s fert " 7- CN i-l r-l - p D fife s- 3 Ph' h ^q 3 3 (j; fe QtL. S &&X* «««i s PI 0) g #r

### The Simplex Algorithm

The Simplex Algorithm How to Convert an LP to Standard Form Before the simplex algorithm can be used to solve an LP, the LP must be converted into a problem where all the constraints are equations and

### 106 70/140H-8 70/140H-8

7/H- 6 H 7/H- 7 H ffffff ff ff ff ff ff ff ff ff f f f f f f f f f f f ff f f f H 7/H- 7/H- H φφ φφ φφ φφ! H 1 7/H- 7/H- H 1 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ff ff ff ff φ φ φ

### Simplex Algorithm Using Canonical Tableaus

41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

### 2014/2015 SEMESTER 1 MID-TERM TEST. September/October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

2014/2015 SEMESTER 1 MID-TERM TEST MA1505 MATHEMATICS I September/October 2014 8:30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 1. This test paper consists of TEN (10) multiple choice

### Simplex method(s) for solving LPs in standard form

Simplex method: outline I The Simplex Method is a family of algorithms for solving LPs in standard form (and their duals) I Goal: identify an optimal basis, as in Definition 3.3 I Versions we will consider:

### 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

### Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

### The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

### r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

Name: ~s'~o--=-i Class; Date: U.;,..;...-h_D_Vl_5 _ MAC 2233 Chapter 4 Review for the test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the derivative

### Variants of Simplex Method

Variants of Simplex Method All the examples we have used in the previous chapter to illustrate simple algorithm have the following common form of constraints; i.e. a i x + a i x + + a in x n b i, i =,,,m

### 9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

### a a T = «*5S?; i; S 25* a o - 5 n s o s*- o c S «c o * * * 3 : -2 W r-< r-j r^ x w to i_q pq J ^ i_5 ft "ag i-s Coo S S o f-trj. rh.,-j,»<l,3<l) 5 s?

Tble f Generl rdnnce CP CB >J >> c; 5 fc5 5 S hh CD d; CC02 5^ CD Cb

### 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

### > DC < D CO LU > Z> CJ LU

C C FNS TCNCAL NFRMATN CNTR [itpfttiiknirike?fi-'.;t C'JM.V TC hs determined n \ _\}. L\\ tht this Technicl cment hs the istribtin Sttement checked belw. The crnt distribtin fr this dcment cn be telind

### (308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

(308 ) EXAMPLES. N 1. FIND the quotient and remainder when is divided by x 4. I. x 5 + 7x* + 3a; 3 + 17a 2 + 10* - 14 2. Expand (a + bx) n in powers of x, and then obtain the first derived function of

### Lecture 2: The Simplex method

Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

### Nrer/ \f l xeaoe Rx RxyrZH IABXAP.qAATTAJI xvbbqaat KOMnAHT1. rvfiqgrrox 3Axl4 Pn br H esep fiyraap: qa/oq YnaaH6aarap xor

4 e/ f l ee R RyZH BXP.J vbb KOMnH1 vfig 3l4 Pn b H vlun @*,/capn/t eep fiyaap: a/ YnaaH6aaap eneaneee 6ana tyail CaHafiu cafigun 2015 Hu 35 nyaap l'p 6ana4caH "Xe4ee a aylzh abap gaan" XKailH gypeu"uzn

### APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids Rotating Fluid Flow October 6, 2011 1.!! Hydrostatics of a Rotating Water Bucket (again) 2.! Bath Tub Vortex 3.! Ch. 5: Problem Solving 1 Key Definitions & Concepts Ω U Cylindrical

### A comparative study of ordinary cross-validation, r-fold cross-validation and the repeated learning-testing methods

Biometrika (1989), 76, 3, pp. 503-14 Printed in Great Britain A comparative study of ordinary cross-validation, r-fold cross-validation and the repeated learning-testing methods BY PRABIR BURMAN Division

### (includes both Phases I & II)

Minimize z=3x 5x 4x 7x 5x 4x subject to 2x x2 x4 3x6 0 x 3x3 x4 3x5 2x6 2 4x2 2x3 3x4 x5 5 and x 0 j, 6 2 3 4 5 6 j ecause of the lack of a slack variable in each constraint, we must use Phase I to find

### o C *\$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

> p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

### OPRE 6201 : 3. Special Cases

OPRE 6201 : 3. Special Cases 1 Initialization: The Big-M Formulation Consider the linear program: Minimize 4x 1 +x 2 3x 1 +x 2 = 3 (1) 4x 1 +3x 2 6 (2) x 1 +2x 2 3 (3) x 1, x 2 0. Notice that there are

### 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

### 'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

### Executive Committee and Officers ( )

Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

### Jsee x dx = In Isec x + tanxl + C Jcsc x dx = - In I cscx + cotxl + C

MAC 2312 Final Exam Review Instructions: The Final Exam will consist of 15 questions plus a bonus problem. All questions will be multiple choice, which will be graded partly on whether or not you circle

### INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations Research.

New Finite Pivoting Rules for the Simplex Method Author(s): Robert G. Bland Reviewed work(s): Source: Mathematics of Operations Research, Vol. 2, No. 2 (May, 1977), pp. 103-107 Published by: INFORMS Stable

### Chapter 4 The Simplex Algorithm Part II

Chapter 4 The Simple Algorithm Part II Based on Introduction to Mathematical Programming: Operations Research, Volume 4th edition, by Wayne L Winston and Munirpallam Venkataramanan Lewis Ntaimo L Ntaimo

### UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

WEDNESDAY MARCH 9th, 2016 UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 Version 1 Time: 2 Hours READ ALL THE INSTRUCTIONS CAREFULLY PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER

### December 2014 MATH 340 Name Page 2 of 10 pages

December 2014 MATH 340 Name Page 2 of 10 pages Marks [8] 1. Find the value of Alice announces a pure strategy and Betty announces a pure strategy for the matrix game [ ] 1 4 A =. 5 2 Find the value of

### l I I I I I Mechanics M 1 Advanced/ Advanced Subsidiary Pearson Edexcel P46705A II II I I I I II PEARSON

Write your name here Su rn ame Other names Pearson Edexcel nternational Advanced Level r Centre Number l Mechanics M 1 Advanced/ Advanced Subsidiary Candidate Number "' Wednesday 8 June 2016 Morning Time:

### (5) difference of squares,

EOCT REVIEW UNIT 5 Quadratic Functions Name Kut Write each expression in factored form. 1. X2-2x - 15 (X>5')(X f 3) 2. X2-18x + 81 (x:-q)(x-q) (1)' (X, ) z- Complete each square and write the resulting

### MAC 1147 Final Exam Review

MAC 1147 Final Exam Review nstructions: The final exam will consist of 15 questions plu::; a bonus problem. Some questions will have multiple parts and others will not. Some questions will be multiple

### Week 2. The Simplex method was developed by Dantzig in the late 40-ties.

1 The Simplex method Week 2 The Simplex method was developed by Dantzig in the late 40-ties. 1.1 The standard form The simplex method is a general description algorithm that solves any LPproblem instance.

### STANDARDISED MOUNTINGS

STANDARDISED MOUNTINGS for series 449 cylinders conforming to ISO 21287 standard Series 434 MOUNTINGS CONFORMING TO ISO 21287 - ISO 15552 - AFNOR NF ISO 15552 - DIN ISO 15552 STANDARDS applications Low

### . Choose 4 out of 5 problems. Use an X in the table below to indicate which problem to

Exam2 April 7, 2003 Page 1 Physics 263: Electromagnetism and Modern Physics Sections0101-0105 Exam 2 Prof JJ Kelly nstructions:. This is a closed book, closed notes exam to be completed in 50 minutes.

### F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

& Q f*

### z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR

### Colby College Catalogue

Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

### Total Possible Points = 150 Points. 1) David has 980 yards of fencing and wishes to enclose a rectangular area. (2.5 points) + '3 b. 7 + Ib+3, tf-.

MA180 Professor Fred Katiraie Test IT Form A (Fall 2007) Name: Total Possible Points = 150 Points 1) David has 980 yards of fencing and wishes to enclose a rectangular area. (2.5 points) a) Express the

### WALL D*TA PRINT-OUT. 3 nmth ZONE

T A B L E A 4. 3 G L A S S D A T A P R I N T - O U T H T C L».>qth» H e ig h t n u «b»r C L A S S D A T A P R I N T O U T it************************************ 1*q o v»rh # n g recm oi*ion*l orient n

### Math 273a: Optimization The Simplex method

Math 273a: Optimization The Simplex method Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 material taken from the textbook Chong-Zak, 4th Ed. Overview: idea and approach If a standard-form

### r 3 > o m > o > z m Z -< Z il r H O O H H i-» 00 a o x3 X M > I- > 1 n 0) l' 1

7J 73 Z -) r a c -< 0-73 - -0 -< C 73 FLE N. UC08-25454S - c X - a 0 TJ 0 TB - ;w - 70 () < r 3 a r w r r r Ō Z c a Z. < 7 C B D - -< a r Z J < r < < 70 TJ "s w 3 0 D < 70 -) 7) 0 TJ!! -( Z X - r 7) 77

### 10B-6 10B-6 AB 241 AB B-6 10B-6. Stroke Range. Double. type. Cylinder bore. Double brake type. Single brake type 10B-6. Cylinder bore (mm)

0 B- B- 1 Standard type, Switc Set Type Single brake type ouble brake type Series B- B- Cylinder bore (mm) Working fluid Lubrication Working pressure range roof test pressure Working speed range Working

### e) r a9".^) -FaBn^- &* B(*pl *hr_*lma:n* u

SL SIc1- tal 1. (a) State the conditions under which the Poisson distribution may be used as an approximation to the binomial distribution. (1) A farmer supplies a bakery with eggs. The manager of the

### Week 3: Simplex Method I

Week 3: Simplex Method I 1 1. Introduction The simplex method computations are particularly tedious and repetitive. It attempts to move from one corner point of the solution space to a better corner point

### MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis Ann-Brith Strömberg 2017 03 29 Lecture 4 Linear and integer optimization with

### Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices.

2 JORDAN EXCHANGE REVIEW 1 Lecture Outline The following lecture covers Section 3.5 of the textbook [?] Review a labeled Jordan exchange with pivoting. Introduce the idea of a nondegenerate tableau and

### Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

### 210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid

288 28 Type Nominal pressure Maximum allowable pressure roof test pressure Minimum operating pressure orking speed range orking temperature range (ambient/fluid temperature) Structure of cushioning Adaptable

### ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT

KYBERNETIKA- VOLUME 26 (1990), NUMBER 4 ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT VILIJANDAS BAGDONAVICIUS 1 The concept of a relation functional is defined and the accelerated life models

### Mathematics - Course 321

Mathematics - Course 321 LOGARITHMS AND EXPONENTIALS I INTRODUCTION (a) Exponential Functions DEFINITION: An exponentiaz function is a function of the form rex) ax, where "all is a real positive constant.

### OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

### '5E _ -- -=:... --!... L og...

F U T U R E O F E M B E D D I N G A N D F A N - O U T T E C H N O L O G I E S R a o T u m m a l a, P h. D ; V e n k y S u n d a r a m, P h. D ; P u l u g u r t h a M. R a j, P h. D ; V a n e s s a S m

### III Illl i 111 III illlllill 111 Illlll

t - - - - - QUQMOLY"lJl) 7 M ft Fi t FQRMRT* ;ty- - / OC../^. l_.^... FIGURE: 4 III Illl i 111 III 111 111 illlllill 111 Illlll Areal \\Jct (p~~7 v~v t 42C81NW0009 eel COWIE 200 " - t ipa- - cs-a x s\-8.xjw

### TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

### Element Cube Project (x2)

Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

### A Review of Linear Programming

A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

### PLEASE PRINT YOUR NAME IN BLOCK LETTERS. Practice Exam 3. Last 4 Digits of USC ID:

Chemistry 105 B Practice Exam 3 Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 1 18 2 14 3

### Linear Programming, Lecture 4

Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

### 8. Relax and do well.

CHEM 1314.03 Exam I John I. Gelder September 25, 1997 Name TA's Name Lab Section Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores

### Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin.

TT & L Gl v l q T l q TK v i f i ' i i T K L G ' T G!? Ti 10 (Pik 3) -F- L P ki - ik T ffl i zzll ik Fi Pikl x i f l \$3 (li 2) i f i i i - i f i jlñ i 84 6 - f ki i Fi 6 T i ffl i 10 -i i fi & i i ffl

### ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods

ORF 307: Lecture 2 Linear Programming: Chapter 2 Simplex Methods Robert Vanderbei February 8, 2018 Slides last edited on February 8, 2018 http://www.princeton.edu/ rvdb Simplex Method for LP An Example.

### Nonparametric Density and Regression Estimation

Lower Bounds for the Integrated Risk in Nonparametric Density and Regression Estimation By Mark G. Low Technical Report No. 223 October 1989 Department of Statistics University of California Berkeley,

### STAB27-Winter Term test February 18,2006. There are 14 pages including this page. Please check to see you have all the pages.

STAB27-Winter 2006 Term test February 8,2006 Last Name: First Name: Student #: Tutorial Section / Room: Dayffime (Tutorial): INSTRUCTIONS Duration: hour, 45 minutes Statistical table(s) attached at the

### p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 *

B. - - F -.. * i r > --------------------------------------------------------------------------- ^ l y ^ & * s ^ C i\$ j4 A m A ^ v < ^ 4 ^ - 'C < ^y^-~ r% ^, n y ^, / f/rf O iy r0 ^ C ) - j V L^-**s *-y

### Humanistic, and Particularly Classical, Studies as a Preparation for the Law

University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

### SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 200, 1974 SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM BY KONG-MING chongo.1) ABSTRACT. In this paper, a characterization is given

### Mathematics of Operations Research, Vol. 2, No. 2. (May, 1977), pp

New Finite Pivoting Rules for the Simplex Method Robert G. Bland Mathematics of Operations Research, Vol. 2, No. 2. (May, 1977), pp. 103-107. Stable URL: http://links.jstor.org/sici?sici=0364-765x%28197705%292%3a2%3c103%3anfprft%3e2.0.co%3b2-t

### Mathematics 222a Quiz 2 CODE 111 November 21, 2002

Student s Name [print] Student Number Mathematics 222a Instructions: Print your name and student number at the top of this question sheet. Print your name and your instructor s name on the answer sheet.

### 2. T H E , ( 7 ) 2 2 ij ij. p i s

M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L Y S I S O F T E M P E R A T U R E D I S T R I B U T I O N I N C O M P O S I T E P L A T E S D U R I N G T H E R M A

### A Stability Property of the Densest Circle Packing. (Received 9 December 1987)

Monatshefte f/it (1988) Maihemalik 9 by Springer-Verlag 1988 A Stability Property of the Densest Circle Packing By Imre Bfirfiny 1, Budapest, and N. P. Dolbilin, Moscow (Received 9 December 1987) Abstract.

### SEQUENTIAL TESTS FOR COMPOSITE HYPOTHESES

[ 290 ] SEQUENTIAL TESTS FOR COMPOSITE HYPOTHESES BYD. R. COX Communicated by F. J. ANSCOMBE Beceived 14 August 1951 ABSTRACT. A method is given for obtaining sequential tests in the presence of nuisance

### MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard