MATH 445/545 Test 1 Spring 2016

Size: px
Start display at page:

Download "MATH 445/545 Test 1 Spring 2016"

Transcription

1 MATH 445/545 Test Spring 06 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 545 level. Please read and follow all of these directions. Answer all the questions appropriate to level at which you are taking the course. You may use any calculator you have at your disposal (please not your phone). Show all of your work to get full credit. Answer all questions neatly. Work alone! If the described problem has multiple optimal solutions be sure two write them as a convex set. If the described problem is unbounded be sure and give a direction unboundedness in terms of all variables (including slack, excess, and artificial). If the direction of unboundedness comes from a simplex tableau use the tableau to state an ending feasible point and then use the tableau to establish the direction of unboundedness. NAME:

2 All Students. (5 pts) Solve the following linear program graphically, prior to stating the solution write the feasible region as a convex set. maximize z = x + x subject to x + x 4 x + x 5 x, x 0. Soltuion: We plot the feasible region to the given expressions in the Figure below. Make note that the feasible region is given by the convex combination of the points: A = (4, 0), B = (, 3), and C = (.5, 0) Thus, letting σ, σ, and σ 3 [0, ] such that 3 i= σ i = then any point in the feasible region, D = (x f, y f ) may be written as (x f, y f ) = ((σ (4) + σ () + σ 3 (.5)), (σ (0) + σ (3) + σ 3 (0))) = ((σ (4) + σ () + σ 3 (.5)), σ (3)) By increasing the countours of the objective function the maximal value of z can be seen as the convex combination of the points A and B. Thus, the optimal solution of z = 4 occurs for any point 0 in the convex set: O = { (x, y) (α4 + ( α), α(0) + ( α)3) } = { (x, y) (3α +, 3 3α) } where α [0, ].

3 . (0 pts) Solve the following linear program using the simplex method. maximize z = x + 3x subject to x + x 4 x x x, x 0. Solution: Write the program in a more standardized form: maximize z = x + 3x Ma subject to x + x e + a = 4 x + x + s = x, x, e, s, a 0. We can now write out a starting simplex tableau: Row z x x e s a RHS Basis M 0 z a s We adjust the first tableau so that the basic variable a has an identity column. Row z x x e s a RHS Basis 0 M M 3 M 0 0 4M z a s Pivot x into the basis in place of a. Row z x x e s a RHS Basis M+ 4 z 0-0 x Pivot x into the basis. Ratio test and s leaves the basis giving: Take minimum of = min { 3 s = 4, 3 } = Row z x x e s a RHS Basis M z x x

4 The above given tableau has a direction of unboundedness (Look at the column for e ), and there is no maximum value for our linear program. From the tableau we see that the point X = is feasible. We also have the constraints: x 3 e = x 3 e = Here if x and x are increased by and e is increased by 3 the constraints will remain satisfied, and the direction of unboundedness is d = Solutions of the form X un = X + αd for α > 0 will be feasible, and increasing the value of α increases the solution without bound. 4

5 3. (5 pts) Give a brief description for each of the following: (a) Explain in words the ratio test in the simplex algorithm and what the ratio test is doing. Solution: Ratio test: Once a non-basic variable is chosen to enter the basis, the ratio of the right hand side value for each constraint over the positive coefficient in the entering variables column is examined. The winner of the test is the constraint corresponding to the minimum outcome in this test. The ratio allows us to see how large we can make the entering variable. Specifically picking the minimum in the test keeps the all of the current basic variable from becoming negative during a pivot of the simplex algorithm. (b) How can you determine if a linear program using the simplex method is infeasible? Assume you have written the problem in standard form including slack, excess, and artificial variables. Solution: Linear programs will be infeasible if we can not find an initial basic feasible solution for the simplex algorithm. This occurs if we have an artificial variable variable as a Basic variable once the simplex algorithm has reached an optimal tableau. (c) Assuming a maximization problem: State Bland s rule and explain why it is used. Solution: Bland s rule is used to keep the simplex algorithm from cycling. Assume that slack and excess variables are numbered x n+, x n+,.... For a maximization problem choose the entering variable with a negative row 0 coefficient that has the smallest index. For ties in the ratio test, break the tie by choosing the winner of the ratio test to be the variable with the smallest subscript or index. 5

6 4. (0 pts) Change the following to a maximization problem, and put in all the slack, excess, and artificial variables. Write the first tableau for the problem. Don t solve. minimize z = x + 3x + x 3 + 3x 4 subject to x + 3x + 5x 3 + x 4 5 x + 3x 3 6 5x + 3x + x 4 = 7 x 0, x 0, x 4 Solution: Adding slack, excess and artificial variables gives: minimize z = x + 3x + x 3 + 3x 4 + Ma + Ma subject to x + 3x + 5x 3 + x 4 + s = 5 x + 3x 3 e + a = 6 5x + 3x + x 4 + a = 7 x 0, x 0, x 4, s 0, a 0, a 0 Doing two change of variables: x 3 = x 3 x 3 and x 4 = x 4 + x 4 = x 4 minimize z + 6 = x + 3x + x 3 x 3 + 3x 4 + Ma + Ma subject to x + 3x + 5x 3 5x 3 + x 4 + s = 9 x + 3x 3 3x 3 e + a = 6 5x + 3x + x 4 + a = 9 x, x, x 3, x 3, x 4, s, a, a 0 Change the minimization constraint to a maximization by considering the objective function maximize z 6 = x 3x x 3 + x 3 3x 4 Ma Ma Thus the first tableau for the problem is given by: Row z x x x 3 x 3 x 4 s e a a RHS Basic M M 6 z s a a Here the next step becomes to make the top row reflect that a and a are basic variables. 6

7 5. (0 pts) A canning company is contracted to receive 60,000 pounds of ripe grade A tomatoes at 9 cents per pound from which it produces both canned tomato juice and tomato paste. They also will get 50,000 pounds of grade B tomatoes at 6 cents per pound. The canned products are packaged in 4 can cases. A can of juice requires pound of fresh tomatoes, and a can of paste requires /3 pound only. Juice must use at least 60% grade A tomatoes and the paste must use at least 50% grade A tomatoes. The company s share of the market is limited to 0,000 cans of juice and 60,000 cans of paste. The wholesale price per can of juice is $ and for paste it is $0.50. The cost of processing a can of juice is $0.0 and the cost of processing a can of tomato paste is $0.0. Determine the optimum daily production mix. (Maximize the profit.) Again Set up Don t Solve! Solution: Start by defining some decision variables: Let A J be the pounds of grade A tomatoes used in Juice. Let A P be the pounds of grade A tomatoes used in Paste. Let B J be the pounds of grade B tomatoes used in Juice. Let B P be the pounds of grade B tomatoes used in Paste. where each of the decision variables is non-negative. Note we can determine the number of cans of Juice and cans of paste produced using: Cans of Juice := A J + B J 0, 000 Market Share Juice Cans of Paste := 3(A P + B P ) 60, 000 Market Share Paste The company s profit z is defined by: z = ( )(A J +B J )+( )(3(A P +B P )) 0.09(A J +A P ) 0.06(B J +B P ) In addition to the previously defined constraints we have: A J + A P 60, 000 B J + B P 50, 000 pounds of grade A tomatoes available pounds of grade B tomatoes available The juice and the paste must satisfy the desired ratios of grade A tomatoes. A J A J + B J 0.60 and 7 A P A P + B P 0.5

8 Putting it all together gives: maximize z = 0.9(A J + B J ) + 0.3(3(A P + B P )) 0.09(A J + A P ) 0.06(B J + B P ) subject to A J + B J 0, 000 3(A P + B P ) 60, 000 A J + A P 60, 000 B J + B P 50, A J 0.6B J 0 0.5A P 0.5B P 0 A J, A P, B J, B P 0 8

9 545 Additional Problems. (0 pts) Show that for any two matrices A and B, (AB) T = B T A T. Assume that A is an m n matrix and B is an n q matrix so that there product is defined. Thus, AB is an m q matrix, and its transpose is a q m matrix. We can also note that B T A T is the product q n matrix and a n m matrix resulting in again a q m. So each side of the equality is of the same size. We now only need to show that the arbitrary element in row i and column j of (AB) T is the same as the row i column j element in B T A T. Denoting the entry in row i column j in a matrix M as M i,j we can consider the following algebra: (AB) T i,j = (AB) j,i n = A j,k B k,i = = k= n k= n k= A T k,jb T i,k B T i,ka T k,j which concludes the proof. = (B T A T ) i,j. (0 pts) For a linear program written in standard form with constraints Ax = b and x 0 show that d is a direction of unboundedness if and only if Ad = 0 and d 0. Solution: First lets recall what a direction of unboundedness is. An n by vector d is a direction of unboundedness if for all x in S (an LP s feasible region), and c 0 then x + cd S. (= ) Assume here that d is a direction of unboundedness, and that c is a positive constant (c = 0 is trivial). Then we know that for any x S that x + cd is in S. This gives A(x + cd) = b Ax + cad = b b + cad = b cad = 0 Ad = 0. We also know that x + cd 0 for all x 0 S. Thus, cd 0, and d 0. 9

10 ( =) Assume that Ad = 0, and d 0, and consider any point x in the feasible region of our linear program. As x is in the feasible region we know that Ax = b. Thus, for c > 0 consider the point x + cd A(x + cd) = Ax + cad = Ax + 0 = Ax = b. Note we also need our new point x + cd to be non-negative which is true as x S, and d 0. Thus, x + cd S, and d is a direction of unboundedness. 0

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

AM 121: Intro to Optimization

AM 121: Intro to Optimization AM 121: Intro to Optimization Models and Methods Lecture 6: Phase I, degeneracy, smallest subscript rule. Yiling Chen SEAS Lesson Plan Phase 1 (initialization) Degeneracy and cycling Smallest subscript

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 Prof. Yiling Chen Fall 2018 Here are some practice questions to help to prepare for the midterm. The midterm will

More information

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination 27th June 2005 Chapter 8: Finite Termination 1 The perturbation method Recap max c T x (P ) s.t. Ax = b x 0 Assumption: B is a feasible

More information

Lecture 2: The Simplex method

Lecture 2: The Simplex method Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

3 The Simplex Method. 3.1 Basic Solutions

3 The Simplex Method. 3.1 Basic Solutions 3 The Simplex Method 3.1 Basic Solutions In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of the feasible set. This was not a coincidence. Consider an LP in general form,

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b.

The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. Build initial tableau. z c T 0 0 A b The Simplex Method Standard

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 2: Intro to LP, Linear algebra review. Yiling Chen SEAS Lecture 2: Lesson Plan What is an LP? Graphical and algebraic correspondence Problems

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

Special cases of linear programming

Special cases of linear programming Special cases of linear programming Infeasible solution Multiple solution (infinitely many solution) Unbounded solution Degenerated solution Notes on the Simplex tableau 1. The intersection of any basic

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Linear Programming Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The standard Linear Programming (LP) Problem Graphical method of solving LP problem

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

MATH 445/545 Homework 1: Due February 11th, 2016

MATH 445/545 Homework 1: Due February 11th, 2016 MATH 445/545 Homework 1: Due February 11th, 2016 Answer the following questions Please type your solutions and include the questions and all graphics if needed with the solution 1 A business executive

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 03 Simplex Algorithm Lecture 15 Infeasibility In this class, we

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Dr. Maddah ENMG 500 Engineering Management I 10/21/07

Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Computational Procedure of the Simplex Method The optimal solution of a general LP problem is obtained in the following steps: Step 1. Express the

More information

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12 Today s class Constrained optimization Linear programming 1 Midterm Exam 1 Count: 26 Average: 73.2 Median: 72.5 Maximum: 100.0 Minimum: 45.0 Standard Deviation: 17.13 Numerical Methods Fall 2011 2 Optimization

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form The Simplex Method 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard Form Convert to Canonical Form Set Up the Tableau and the Initial Basic Feasible Solution

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

Chapter 4 The Simplex Algorithm Part II

Chapter 4 The Simplex Algorithm Part II Chapter 4 The Simple Algorithm Part II Based on Introduction to Mathematical Programming: Operations Research, Volume 4th edition, by Wayne L Winston and Munirpallam Venkataramanan Lewis Ntaimo L Ntaimo

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Farkas Lemma, Dual Simplex and Sensitivity Analysis

Farkas Lemma, Dual Simplex and Sensitivity Analysis Summer 2011 Optimization I Lecture 10 Farkas Lemma, Dual Simplex and Sensitivity Analysis 1 Farkas Lemma Theorem 1. Let A R m n, b R m. Then exactly one of the following two alternatives is true: (i) x

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

6.2: The Simplex Method: Maximization (with problem constraints of the form )

6.2: The Simplex Method: Maximization (with problem constraints of the form ) 6.2: The Simplex Method: Maximization (with problem constraints of the form ) 6.2.1 The graphical method works well for solving optimization problems with only two decision variables and relatively few

More information

Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Linear Programming: Chapter 5 Duality Robert J. Vanderbei September 30, 2010 Slides last edited on October 5, 2010 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO350 Linear Programming Chapter 6: The Simplex Method 8th June 2005 Chapter 6: The Simplex Method 1 Minimization Problem ( 6.5) We can solve minimization problems by transforming it into a maximization

More information

Chapter 1: Linear Programming

Chapter 1: Linear Programming Chapter 1: Linear Programming Math 368 c Copyright 2013 R Clark Robinson May 22, 2013 Chapter 1: Linear Programming 1 Max and Min For f : D R n R, f (D) = {f (x) : x D } is set of attainable values of

More information

1 Answer Key for exam2162sp07 vl

1 Answer Key for exam2162sp07 vl Ma 162 College Algebra Second Exam vl 9 1 Answer Key for exam2162sp07 vl 1. [ x =, 2, y =, 3, z =, 1, w =, 3, Mary, [63.5, 2, 1]] 2. ABC: 1 L1 L2 1CDE:L1 11 L2 3. P =1.8 x +1.8 y +1.5 z 0 x,0 y 9 x +10y

More information

February 17, Simplex Method Continued

February 17, Simplex Method Continued 15.053 February 17, 2005 Simplex Method Continued 1 Today s Lecture Review of the simplex algorithm. Formalizing the approach Alternative Optimal Solutions Obtaining an initial bfs Is the simplex algorithm

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 5 Linear Programming and Convex Analysis Initial solution and particular cases Marco Cuturi Princeton ORF-5 Reminder: Tableaux At each iteration, a tableau for an LP in standard form keeps track of....................

More information

Linear programs Optimization Geoff Gordon Ryan Tibshirani

Linear programs Optimization Geoff Gordon Ryan Tibshirani Linear programs 10-725 Optimization Geoff Gordon Ryan Tibshirani Review: LPs LPs: m constraints, n vars A: R m n b: R m c: R n x: R n ineq form [min or max] c T x s.t. Ax b m n std form [min or max] c

More information

Solutions to Review Questions, Exam 1

Solutions to Review Questions, Exam 1 Solutions to Review Questions, Exam. What are the four possible outcomes when solving a linear program? Hint: The first is that there is a unique solution to the LP. SOLUTION: No solution - The feasible

More information

Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices.

Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices. 2 JORDAN EXCHANGE REVIEW 1 Lecture Outline The following lecture covers Section 3.5 of the textbook [?] Review a labeled Jordan exchange with pivoting. Introduce the idea of a nondegenerate tableau and

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive 3.4 Anticycling Lexicographic order In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are the lexicographic rule and Bland s rule. Definition A vector u R n is lexicographically

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

Simplex Method for LP (II)

Simplex Method for LP (II) Simplex Method for LP (II) Xiaoxi Li Wuhan University Sept. 27, 2017 (week 4) Operations Research (Li, X.) Simplex Method for LP (II) Sept. 27, 2017 (week 4) 1 / 31 Organization of this lecture Contents:

More information

The Simplex Algorithm

The Simplex Algorithm 8.433 Combinatorial Optimization The Simplex Algorithm October 6, 8 Lecturer: Santosh Vempala We proved the following: Lemma (Farkas). Let A R m n, b R m. Exactly one of the following conditions is true:.

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.2. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Basic Feasible Solutions Key to the Algebra of the The Simplex Algorithm

More information

Ann-Brith Strömberg. Lecture 4 Linear and Integer Optimization with Applications 1/10

Ann-Brith Strömberg. Lecture 4 Linear and Integer Optimization with Applications 1/10 MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 4 Linear programming: degeneracy; unbounded solution; infeasibility; starting solutions Ann-Brith Strömberg 2017 03 28 Lecture 4

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

OPRE 6201 : 3. Special Cases

OPRE 6201 : 3. Special Cases OPRE 6201 : 3. Special Cases 1 Initialization: The Big-M Formulation Consider the linear program: Minimize 4x 1 +x 2 3x 1 +x 2 = 3 (1) 4x 1 +3x 2 6 (2) x 1 +2x 2 3 (3) x 1, x 2 0. Notice that there are

More information

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 7 February 7th Overview In the previous lectures we saw applications of duality to game theory and later to learning theory. In this lecture

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

MATH 4211/6211 Optimization Linear Programming

MATH 4211/6211 Optimization Linear Programming MATH 4211/6211 Optimization Linear Programming Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 The standard form of a Linear

More information

Sensitivity Analysis

Sensitivity Analysis Dr. Maddah ENMG 500 /9/07 Sensitivity Analysis Changes in the RHS (b) Consider an optimal LP solution. Suppose that the original RHS (b) is changed from b 0 to b new. In the following, we study the affect

More information

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 Math 7502 Homework 3: solutions 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 x 1, x 2 0. (i) Maximize 4x 1 + x 2 subject to the constraints above. (ii) Minimize

More information

Math Models of OR: Handling Upper Bounds in Simplex

Math Models of OR: Handling Upper Bounds in Simplex Math Models of OR: Handling Upper Bounds in Simplex John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 280 USA September 208 Mitchell Handling Upper Bounds in Simplex / 8 Introduction Outline

More information

Lecture 4: Algebra, Geometry, and Complexity of the Simplex Method. Reading: Sections 2.6.4, 3.5,

Lecture 4: Algebra, Geometry, and Complexity of the Simplex Method. Reading: Sections 2.6.4, 3.5, Lecture 4: Algebra, Geometry, and Complexity of the Simplex Method Reading: Sections 2.6.4, 3.5, 10.2 10.5 1 Summary of the Phase I/Phase II Simplex Method We write a typical simplex tableau as z x 1 x

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

M340(921) Solutions Problem Set 6 (c) 2013, Philip D Loewen. g = 35y y y 3.

M340(921) Solutions Problem Set 6 (c) 2013, Philip D Loewen. g = 35y y y 3. M340(92) Solutions Problem Set 6 (c) 203, Philip D Loewen. (a) If each pig is fed y kilograms of corn, y 2 kilos of tankage, and y 3 kilos of alfalfa, the cost per pig is g = 35y + 30y 2 + 25y 3. The nutritional

More information

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM Abstract These notes give a summary of the essential ideas and results It is not a complete account; see Winston Chapters 4, 5 and 6 The conventions and notation

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 2 First Group of Students) Students with first letter of surnames A H Due: February 21, 2013 Problem Set Rules: 1. Each student

More information

Sensitivity Analysis and Duality in LP

Sensitivity Analysis and Duality in LP Sensitivity Analysis and Duality in LP Xiaoxi Li EMS & IAS, Wuhan University Oct. 13th, 2016 (week vi) Operations Research (Li, X.) Sensitivity Analysis and Duality in LP Oct. 13th, 2016 (week vi) 1 /

More information

Math 354 Summer 2004 Solutions to review problems for Midterm #1

Math 354 Summer 2004 Solutions to review problems for Midterm #1 Solutions to review problems for Midterm #1 First: Midterm #1 covers Chapter 1 and 2. In particular, this means that it does not explicitly cover linear algebra. Also, I promise there will not be any proofs.

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES General: OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES This points out some important directions for your revision. The exam is fully based on what was taught in class: lecture notes, handouts and homework.

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm How to Convert an LP to Standard Form Before the simplex algorithm can be used to solve an LP, the LP must be converted into a problem where all the constraints are equations and

More information

ECE 307 Techniques for Engineering Decisions

ECE 307 Techniques for Engineering Decisions ECE 7 Techniques for Engineering Decisions Introduction to the Simple Algorithm George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign ECE 7 5 9 George

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered:

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered: LINEAR PROGRAMMING 2 In many business and policy making situations the following type of problem is encountered: Maximise an objective subject to (in)equality constraints. Mathematical programming provides

More information

Answer the following questions: Q1: Choose the correct answer ( 20 Points ):

Answer the following questions: Q1: Choose the correct answer ( 20 Points ): Benha University Final Exam. (ختلفات) Class: 2 rd Year Students Subject: Operations Research Faculty of Computers & Informatics Date: - / 5 / 2017 Time: 3 hours Examiner: Dr. El-Sayed Badr Answer the following

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

In Chapters 3 and 4 we introduced linear programming

In Chapters 3 and 4 we introduced linear programming SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Introduction. Very efficient solution procedure: simplex method.

Introduction. Very efficient solution procedure: simplex method. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid 20th cent. Most common type of applications: allocate limited resources to competing

More information

December 2014 MATH 340 Name Page 2 of 10 pages

December 2014 MATH 340 Name Page 2 of 10 pages December 2014 MATH 340 Name Page 2 of 10 pages Marks [8] 1. Find the value of Alice announces a pure strategy and Betty announces a pure strategy for the matrix game [ ] 1 4 A =. 5 2 Find the value of

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis Ann-Brith Strömberg 2017 03 29 Lecture 4 Linear and integer optimization with

More information

1. Introduce slack variables for each inequaility to make them equations and rewrite the objective function in the form ax by cz... + P = 0.

1. Introduce slack variables for each inequaility to make them equations and rewrite the objective function in the form ax by cz... + P = 0. 3.4 Simplex Method If a linear programming problem has more than 2 variables, solving graphically is not the way to go. Instead, we ll use a more methodical, numeric process called the Simplex Method.

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information