4.6 Linear Programming duality

Size: px
Start display at page:

Download "4.6 Linear Programming duality"

Transcription

1 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal value! Example: the value of a maximum feasible flow is equal to the capacity of a cut (separating the source s and the sink t) of minimum capacity. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 Motivation: estimate of the optimal value Given max z = 4x 1 + x 2 + 5x 3 + 3x 4 x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x x 1 + 2x 2 + 3x 3 5x 4 3 x i 0 i = 1,, 4 find an estimate of the optimal value z * Lower bound: (0,0,1,0) z * 5 (2,1,1,1/3) z * 15 (3,0,2,0) z * 22 Even if we are lucky, we are not sure it is the optimal solution! E. Amaldi Fondamenti di R.O. Politecnico di Milano 2

3 Upper bound: By multiplying the 2 constraint by 5/3 we obtain an inequality that dominates the objective function: 4x 1 + x 2 + 5x 3 + 3x 4 25/3x 1 + 5/3x 2 + 5x /3x 4 275/3 z * 275/3 Adding 2 and 3 we obtain: 4x 1 + 3x 2 + 6x 3 + 3x 4 58 feasible solution z * 58 better upper bound E. Amaldi Fondamenti di R.O. Politecnico di Milano 3

4 General strategy: linearly combine the constraints with nonnegative multiplicative factors ( i-th constraint multiplied by y i 0 ) first case: y 1 =0, y 2 =5/3, y 3 =0 second case: y 1 =0, y 2 =1, y 3 =1 In general y 1 (x 1 x 2 x 3 +3x 4 ) + y 2 (5x 1 + x 2 + 3x 3 + 8x 4 ) + y 3 (-x 1 + 2x 2 + 3x 3 5x 4 ) y y 2 + 3y 3 E. Amaldi Fondamenti di R.O. Politecnico di Milano 4

5 which is equivalent to: (y 1 + 5y 2 y 3 ) x 1 + (-y 1 + y 2 + 2y 3 ) x 2 + (-y 1 + 3y 2 + 3y 3 ) x 3 + (3y 1 + 8y 2 5y 3 ) x 4 y y 2 + 3y 3 (*) NB: y i 0 so that the inequality direction is unchanged In order to use the left hand side of (*) as upper bound on z = 4x 1 + x 2 + 5x 3 + 3x 4 E. Amaldi Fondamenti di R.O. Politecnico di Milano 5

6 We must have z = 4x 1 + x 2 + 5x 3 + 3x 4 y 1 + 5y 2 y 3 4 -y 1 + y 2 + 2y 3 1 -y 1 + 3y 2 + 3y 3 5 3y 1 + 8y 2 5y 3 3 y i 0, i = 1, 2, 3 In such a case, any feasible solution x satisfies 4x 1 + x 2 + 5x 3 + 3x 4 y y 2 + 3y 3 in particular: z * y y 2 + 3y 3 E. Amaldi Fondamenti di R.O. Politecnico di Milano 6

7 Since we look for the best possible upper bound on z * : (D) min y y 2 + 3y 3 y 1 + 5y 2 y 3 4 -y 1 + y 2 + 2y 3 1 -y 1 +3y 2 + 3y 3 5 3y 1 +8y 2 5y 3 3 y i 0 i = 1, 2, 3 The problem (D) is the dual problem, while the original problem is the primal problem E. Amaldi Fondamenti di R.O. Politecnico di Milano 7

8 In matrix form: max z = c T x Primal (P) Ax b x 0 min w = b T y Dual (D) A T y c y 0 o y T A c T E. Amaldi Fondamenti di R.O. Politecnico di Milano 8

9 Dual problem max z = c T x min w = b T y (P) Ax b x 0 (D) A T y c y 0 Dual of an LP in standard form? min z = c T x Ax = b x 0 E. Amaldi Fondamenti di R.O. Politecnico di Milano 9

10 Standard form: min z = c T x max -c T x (P) Ax = b x 0 with A an m n matrix A x b -A -b x 0 dual A x b A T min (b T b T ) y 1 y 2 y 1 y 2 (A T A T ) -c y 1 0, y 2 0 y = y 1 y 2 E. Amaldi Fondamenti di R.O. Politecnico di Milano 10

11 min (b T b T ) y 1 y 2 y 1 y 2 (A T A T ) -c y 1 0, y 2 0 (D) max w = b T y A T y c y R m min -b T (y 2 y 1 ) y y 2 y 1 unrestricted in sign! -A T (y 2 y 1 ) -c y 1 0, y 2 0 E. Amaldi Fondamenti di R.O. Politecnico di Milano 11

12 Example: max x 1 + x 2 x 1 x 2 2 (P) 3x 1 + 2x 2 12 x 1, x 2 0 max x 1 + x 2 x 1 - x 2 2-3x 1-2x 2-12 x 1, x 2 0 dual min 2y 1-12y 2 y 1-3y 2 1 -y 1-2y 2 1 y 1, y 2 0 E. Amaldi Fondamenti di R.O. Politecnico di Milano 12

13 General transformation rules Primal (min) Dual (max) m constraints n variables coefficients obj. fct right hand side A equality constraints unrestriced variables inequality constraints ( ) variables 0 ( 0) m variables n constraints right hand side coefficients obj. fct E. Amaldi Fondamenti di R.O. Politecnico di Milano 13 A T unrestriced variables equality constraints variables 0 ( 0) inequality constraints ( )

14 Example: using the above rules max x 1 + x 2 x 1 x 2 2 (P) 3x 1 + 2x 2 12 x 1, x 2 0 dual min 2y y 2 y 1 + 3y 2 1 -y 1 + 2y 2 1 y 1 0, y 2 0 y~ 1 -y 1 min 2y 1-12y 2 y 1-3y ~ ~ y 1-2y ~ 2 1 y 1 0, ~ y 2 0 E. Amaldi Fondamenti di R.O. Politecnico di Milano 14

15 Exercize: (P) min 10x x x 3 2x 1 x 2 1 x 2 + x 3 2 x 1 x 3 = 3 x 1 0, x 2 0, x 3 unrestricted Dual? E. Amaldi Fondamenti di R.O. Politecnico di Milano 15

16 Property: the dual of the dual problem coincides with the primal problem. NB: it doesn't matter which one is a max or min problem (P) min z = c T x Ax b x 0 (D) max w = b T y A T y c y 0 E. Amaldi Fondamenti di R.O. Politecnico di Milano 16

17 Weak duality theorem Given X {x : Ax b, x 0} ø and Y {y : A T y c, y 0} ø, for each feasible solution x X of (P) and each feasible solution y Y of (D) we have b T y c T x E. Amaldi Fondamenti di R.O. Politecnico di Milano 17

18 Proof Given x X and y Y, we have Ax b, x 0 and A T y c, y 0which imply that b T y x T A T y x T c = c T x x T A T c E. Amaldi Fondamenti di R.O. Politecnico di Milano 18

19 Consequence: If x * is a feasible solution for the primal problem (P) ( x * X ), y * is a feasible solution (D) ( y * Y ), and the values of the respective objective functions coincide then c T x * = b T y *, x * is optimal for (P) and y * is optimal for (D). E. Amaldi Fondamenti di R.O. Politecnico di Milano 19

20 Strong duality theorem If X = {x : Ax b, x 0} ø and min{c T x : x X} is finite, there exist x * X and y * Y such that c T x * = b T y *. min{ c T x : x X } = max{ b T y : y Y } optimum z = c T x x X feasible for (P) z * = w * w = b T y y Y feasible for (D) E. Amaldi Fondamenti di R.O. Politecnico di Milano 20

21 Proof Derive an optimal solution of (D) from one of (P) Given min c T x max y T b (P) Ax = b x 0 (D) y T A c T y R m and x* is an optimal feasible solution of (P) x x* = * B x * con N x * B = B -1 b x * N = 0 provided (after a finite # of iterations) by the Simplex algorithm with Bland's rule. E. Amaldi Fondamenti di R.O. Politecnico di Milano 21

22 Let us consider y T c T B B -1 y is a feasible solution of (D): c T N = c T N (c T B B -1 )N = c T N y T N 0 T reduced costs of the nonbasic variables optimality of x * y T N c T N E. Amaldi Fondamenti di R.O. Politecnico di Milano 22

23 c T B = c T B (c T B B -1 )B = c T B y T B = 0 T y T B c T B I reduced costs of the basic variables y is an optimal solution of (D): y T b = (c T B B -1 )b = c T B (B -1 b) = c T B x * B = c T x * hence y = y * E. Amaldi Fondamenti di R.O. Politecnico di Milano 23

24 Corollary For any pair of primal-dual problems (P) and (D), only four cases can arise: P D optimal solution unbounded LP Infeasible LP optimal solution 1) unbounded LP infeasible LP 2) 3) 4) E. Amaldi Fondamenti di R.O. Politecnico di Milano 24

25 Strong duality theorem 1) Weak duality theorem 2) and 3) 4) can arise: min -4x 1 2x 2 -x 1 + x 2 2 (P) x 1 x 2 1 x 1, x 2 0 max 2y 1 + y 2 -y 1 + y 2-4 (D) y 1 y 2-2 y 1, y 2 0 empty feasible regions E. Amaldi Fondamenti di R.O. Politecnico di Milano 25

26 Economic interpretation The primal and dual problems correspond to two complementary point of views on the same market Diet problem: n aliments j=1,, n m nutrients i=1,, m (vitamines, ) a ij b i c j quantity of i-th nutrient in one unit of j-th aliment requirement of i-th nutrient cost of one unit of j-th aliment E. Amaldi Fondamenti di R.O. Politecnico di Milano 26

27 (P) min n j=1 n j=1 c j x j a ij x j b i i= 1,..., m x j 0 j= 1,...,n (D) max m i=1 m i=1 b i y i a ij y i c j j= 1,..., n y i 0 i= 1,...,m E. Amaldi Fondamenti di R.O. Politecnico di Milano 27

28 Interpretation of the dual problem: A company that produces pills of the m nutrients needs to decide the nutrient unit prices y i so as to maximize income. If the costumer buys nutrient pills he will buy b i units for each i, 1 i m The price of the nutrient pills must be competitive: m i=1 a ij y i c j j= 1,...,n cost of the pills that are equivalent to 1 unit of j-th aliment E. Amaldi Fondamenti di R.O. Politecnico di Milano 28

29 If both linear programs (P) and (D) admit a feasible solution, the strong duality theorem implies that z * = w * An equilibrium exists (two alternatives with the same cost) NB: Strong connection with Game theory (zero-sum games) E. Amaldi Fondamenti di R.O. Politecnico di Milano 29

30 Optimality conditions Given min z = c T x max w = b T y (P) X Ax b x 0 (D) Y y T A c T y 0 two feasible solutions x * X and y * Y are optimal y * T b = c T x * If x j and y i are unknown, it is a single equation in n+m unknowns! E. Amaldi Fondamenti di R.O. Politecnico di Milano 30

31 Since y *T b y *T Ax * c T x *, we have Ax * c T y *T b = y *T Ax * and y *T Ax * = c T x * therefore y *T (Ax * - b) = 0 and (c T - y *T A) x * = 0 0 T 0 0 T 0 m+n equations in n+m unknowns necessary and sufficient optimality conditions! E. Amaldi Fondamenti di R.O. Politecnico di Milano 31

32 Complementary slackness conditions x * X and y * Y are optimal solutions of, respectively, (P) and (D) if and only if i-th row of A slack s i of i-th constraint of (P) y * i (a T i x * - b i ) = 0 i = 1,, m (c T j y *T A j ) x * j = 0 j = 1,, n slack of j-th constraint of (D) j-th column of A At optimality, the product of each variable with the corresponding slack variable of the relative dual is = 0. E. Amaldi Fondamenti di R.O. Politecnico di Milano 32

33 Economic interpretation for the diet problem n a j= 1 ij x * j > b i y * i = 0 If the optimal diet includes an excess of i-th nutrient, the costumer is not willing to pay y * i > 0 * i n j=1 ij * j y > 0 a x = b i If the company selects a price y * i > 0, the costumer must not have an excess of i-th nutrient E. Amaldi Fondamenti di R.O. Politecnico di Milano 33

34 m y i= 1 * i a ij < c j x * j = 0 it is not convenient for the costumer to buy aliment j price of the pills equivalent to the nutrients contained in one unit of j-th aliment is lower than the price of the aliment * j m i=1 * i x > 0 y a = ij c j If costumer includes the j-th aliment in optimal diet, the company must have selected competitive prices y * i (the price of the nutrients in pills contained in a unit of j-th aliment is not lower than c j ) E. Amaldi Fondamenti di R.O. Politecnico di Milano 34

35 Example: min 13x x 2 + 6x 3 s.v. 5x 1 + x 2 + 3x 3 = 8 (P) 3x 1 + x 2 = 3 x 1, x 2, x 3 0 max 8y 1 + 3y 2 s.v. 5y 1 + 3y 2 13 (D) y 1 + y y 1 6 Verify that the feasible x * = (1, 0, 1) is an optimal, non degenerate, solution of (P). Suppose it is true and derives, via the complementary slackness conditions, the corresponding optimal solution of (D). E. Amaldi Fondamenti di R.O. Politecnico di Milano 35

36 Since (P) is in standard form, the conditions y i* (a T i x * - b i ) = 0 are automatically satisfied i, 1 i 2. The condition (c T j y *T A j ) x * j = 0 is satisfied for j = 2 because x * 2= 0. Since x * 1 > 0 and x * 3 > 0, we obtain the conditions: 5y 1 + 3y 2 = 13 3y 1 = 6 and hence the optimal solution y * 1 = 2 and y * 2 = 1 of (D) with b T y * =19 = c T x *. E. Amaldi Fondamenti di R.O. Politecnico di Milano 36

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

4.7 Sensitivity analysis in Linear Programming

4.7 Sensitivity analysis in Linear Programming 4.7 Sensitivity analysis in Linear Programming Evaluate the sensitivity of an optimal solution with respect to variations in the data (model parameters). Example: Production planning max n j n a j p j

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Duality Theory, Optimality Conditions

Duality Theory, Optimality Conditions 5.1 Duality Theory, Optimality Conditions Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor We only consider single objective LPs here. Concept of duality not defined for multiobjective LPs. Every

More information

Lecture 10: Linear programming duality and sensitivity 0-0

Lecture 10: Linear programming duality and sensitivity 0-0 Lecture 10: Linear programming duality and sensitivity 0-0 The canonical primal dual pair 1 A R m n, b R m, and c R n maximize z = c T x (1) subject to Ax b, x 0 n and minimize w = b T y (2) subject to

More information

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form 4.5 Simplex method min z = c T x s.v. Ax = b x 0 LP in standard form Examine a sequence of basic feasible solutions with non increasing objective function value until an optimal solution is reached or

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

Sensitivity Analysis and Duality

Sensitivity Analysis and Duality Sensitivity Analysis and Duality Part II Duality Based on Chapter 6 Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

Sensitivity Analysis and Duality in LP

Sensitivity Analysis and Duality in LP Sensitivity Analysis and Duality in LP Xiaoxi Li EMS & IAS, Wuhan University Oct. 13th, 2016 (week vi) Operations Research (Li, X.) Sensitivity Analysis and Duality in LP Oct. 13th, 2016 (week vi) 1 /

More information

II. Analysis of Linear Programming Solutions

II. Analysis of Linear Programming Solutions Optimization Methods Draft of August 26, 2005 II. Analysis of Linear Programming Solutions Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston, Illinois

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

March 13, Duality 3

March 13, Duality 3 15.53 March 13, 27 Duality 3 There are concepts much more difficult to grasp than duality in linear programming. -- Jim Orlin The concept [of nonduality], often described in English as "nondualism," is

More information

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems OPERATIONS RESEARCH Michał Kulej Business Information Systems The development of the potential and academic programmes of Wrocław University of Technology Project co-financed by European Union within European

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Duality in LPP Every LPP called the primal is associated with another LPP called dual. Either of the problems is primal with the other one as dual. The optimal solution of either problem reveals the information

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P)

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P) Lecture 10: Linear programming duality Michael Patriksson 19 February 2004 0-0 The dual of the LP in standard form minimize z = c T x (P) subject to Ax = b, x 0 n, and maximize w = b T y (D) subject to

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15 Fundamentals of Operations Research Prof. G. Srinivasan Indian Institute of Technology Madras Lecture No. # 15 Transportation Problem - Other Issues Assignment Problem - Introduction In the last lecture

More information

3. Duality: What is duality? Why does it matter? Sensitivity through duality.

3. Duality: What is duality? Why does it matter? Sensitivity through duality. 1 Overview of lecture (10/5/10) 1. Review Simplex Method 2. Sensitivity Analysis: How does solution change as parameters change? How much is the optimal solution effected by changing A, b, or c? How much

More information

Special cases of linear programming

Special cases of linear programming Special cases of linear programming Infeasible solution Multiple solution (infinitely many solution) Unbounded solution Degenerated solution Notes on the Simplex tableau 1. The intersection of any basic

More information

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur END3033 Operations Research I Sensitivity Analysis & Duality to accompany Operations Research: Applications and Algorithms Fatih Cavdur Introduction Consider the following problem where x 1 and x 2 corresponds

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lecture-8 Lecture 8 Slide# 1 Today s Lecture 1. Recap of dual variables and strong duality. 2. Complementary Slackness Theorem. 3. Interpretation of dual variables.

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

SAMPLE QUESTIONS. b = (30, 20, 40, 10, 50) T, c = (650, 1000, 1350, 1600, 1900) T.

SAMPLE QUESTIONS. b = (30, 20, 40, 10, 50) T, c = (650, 1000, 1350, 1600, 1900) T. SAMPLE QUESTIONS. (a) We first set up some constant vectors for our constraints. Let b = (30, 0, 40, 0, 0) T, c = (60, 000, 30, 600, 900) T. Then we set up variables x ij, where i, j and i + j 6. By using

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Introduction to linear programming using LEGO.

Introduction to linear programming using LEGO. Introduction to linear programming using LEGO. 1 The manufacturing problem. A manufacturer produces two pieces of furniture, tables and chairs. The production of the furniture requires the use of two different

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS. Operations Research I

THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS. Operations Research I LN/MATH2901/CKC/MS/2008-09 THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS Operations Research I Definition (Linear Programming) A linear programming (LP) problem is characterized by linear functions

More information

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality CSCI5654 (Linear Programming, Fall 013) Lecture-7 Duality Lecture 7 Slide# 1 Lecture 7 Slide# Linear Program (standard form) Example Problem maximize c 1 x 1 + + c n x n s.t. a j1 x 1 + + a jn x n b j

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis Ann-Brith Strömberg 2017 03 29 Lecture 4 Linear and integer optimization with

More information

Lecture 5. x 1,x 2,x 3 0 (1)

Lecture 5. x 1,x 2,x 3 0 (1) Computational Intractability Revised 2011/6/6 Lecture 5 Professor: David Avis Scribe:Ma Jiangbo, Atsuki Nagao 1 Duality The purpose of this lecture is to introduce duality, which is an important concept

More information

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Sensitivity Analysis

Sensitivity Analysis Dr. Maddah ENMG 500 /9/07 Sensitivity Analysis Changes in the RHS (b) Consider an optimal LP solution. Suppose that the original RHS (b) is changed from b 0 to b new. In the following, we study the affect

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

LINEAR PROGRAMMING II

LINEAR PROGRAMMING II LINEAR PROGRAMMING II LP duality strong duality theorem bonus proof of LP duality applications Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM LINEAR PROGRAMMING II LP duality Strong duality

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n 2 4. Duality of LPs and the duality theorem... 22 4.2 Complementary slackness... 23 4.3 The shortest path problem and its dual... 24 4.4 Farkas' Lemma... 25 4.5 Dual information in the tableau... 26 4.6

More information

Planning and Optimization

Planning and Optimization Planning and Optimization C23. Linear & Integer Programming Malte Helmert and Gabriele Röger Universität Basel December 1, 2016 Examples Linear Program: Example Maximization Problem Example maximize 2x

More information

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 Prof. Yiling Chen Fall 2018 Here are some practice questions to help to prepare for the midterm. The midterm will

More information

Farkas Lemma, Dual Simplex and Sensitivity Analysis

Farkas Lemma, Dual Simplex and Sensitivity Analysis Summer 2011 Optimization I Lecture 10 Farkas Lemma, Dual Simplex and Sensitivity Analysis 1 Farkas Lemma Theorem 1. Let A R m n, b R m. Then exactly one of the following two alternatives is true: (i) x

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Mathematics (2011 Admission Onwards) II SEMESTER Complementary Course

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Mathematics (2011 Admission Onwards) II SEMESTER Complementary Course UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Mathematics (2011 Admission Onwards) II SEMESTER Complementary Course MATHEMATICAL ECONOMICS QUESTION BANK 1. Which of the following is a measure

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2)

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2) Algorithms and Theory of Computation Lecture 13: Linear Programming (2) Xiaohui Bei MAS 714 September 25, 2018 Nanyang Technological University MAS 714 September 25, 2018 1 / 15 LP Duality Primal problem

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

Lecture Note 18: Duality

Lecture Note 18: Duality MATH 5330: Computational Methods of Linear Algebra 1 The Dual Problems Lecture Note 18: Duality Xianyi Zeng Department of Mathematical Sciences, UTEP The concept duality, just like accuracy and stability,

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 22 October 22, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 16 Table of Contents 1 The Simplex Method, Part II Ming Zhong (JHU) AMS Fall 2018 2 /

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

The Simplex Algorithm

The Simplex Algorithm 8.433 Combinatorial Optimization The Simplex Algorithm October 6, 8 Lecturer: Santosh Vempala We proved the following: Lemma (Farkas). Let A R m n, b R m. Exactly one of the following conditions is true:.

More information

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 13 Dr. Ted Ralphs IE406 Lecture 13 1 Reading for This Lecture Bertsimas Chapter 5 IE406 Lecture 13 2 Sensitivity Analysis In many real-world problems,

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Teaching Duality in Linear Programming - the Multiplier Approach

Teaching Duality in Linear Programming - the Multiplier Approach Teaching Duality in Linear Programming - the Multiplier Approach Jens Clausen DIKU, Department of Computer Science University of Copenhagen Universitetsparken 1 DK 2100 Copenhagen Ø June 3, 1998 Abstract

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Thursday, May 24, Linear Programming

Thursday, May 24, Linear Programming Linear Programming Linear optimization problems max f(x) g i (x) b i x j R i =1,...,m j =1,...,n Optimization problem g i (x) f(x) When and are linear functions Linear Programming Problem 1 n max c x n

More information

Algorithmic Game Theory and Applications. Lecture 7: The LP Duality Theorem

Algorithmic Game Theory and Applications. Lecture 7: The LP Duality Theorem Algorithmic Game Theory and Applications Lecture 7: The LP Duality Theorem Kousha Etessami recall LP s in Primal Form 1 Maximize c 1 x 1 + c 2 x 2 +... + c n x n a 1,1 x 1 + a 1,2 x 2 +... + a 1,n x n

More information

Convex Optimization and Support Vector Machine

Convex Optimization and Support Vector Machine Convex Optimization and Support Vector Machine Problem 0. Consider a two-class classification problem. The training data is L n = {(x 1, t 1 ),..., (x n, t n )}, where each t i { 1, 1} and x i R p. We

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Linear Programming Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The standard Linear Programming (LP) Problem Graphical method of solving LP problem

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

MATH 373 Section A1. Final Exam. Dr. J. Bowman 17 December :00 17:00

MATH 373 Section A1. Final Exam. Dr. J. Bowman 17 December :00 17:00 MATH 373 Section A1 Final Exam Dr. J. Bowman 17 December 2018 14:00 17:00 Name (Last, First): Student ID: Email: @ualberta.ca Scrap paper is supplied. No notes or books are permitted. All electronic equipment,

More information

56:171 Operations Research Fall 1998

56:171 Operations Research Fall 1998 56:171 Operations Research Fall 1998 Quiz Solutions D.L.Bricker Dept of Mechanical & Industrial Engineering University of Iowa 56:171 Operations Research Quiz

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight.

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional

More information

Chapter 1: Linear Programming

Chapter 1: Linear Programming Chapter 1: Linear Programming Math 368 c Copyright 2013 R Clark Robinson May 22, 2013 Chapter 1: Linear Programming 1 Max and Min For f : D R n R, f (D) = {f (x) : x D } is set of attainable values of

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics Dr. Said Bourazza Department of Mathematics Jazan University 1 P a g e Contents: Chapter 0: Modelization 3 Chapter1: Graphical Methods 7 Chapter2: Simplex method 13 Chapter3: Duality 36 Chapter4: Transportation

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

The Strong Duality Theorem 1

The Strong Duality Theorem 1 1/39 The Strong Duality Theorem 1 Adrian Vetta 1 This presentation is based upon the book Linear Programming by Vasek Chvatal 2/39 Part I Weak Duality 3/39 Primal and Dual Recall we have a primal linear

More information

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16:38 2001 Linear programming Optimization Problems General optimization problem max{z(x) f j (x) 0,x D} or min{z(x) f j (x) 0,x D}

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form problems Graphical representation

More information

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 Linear Function f: R n R is linear if it can be written as f x = a T x for some a R n Example: f x 1, x 2 =

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming January 26, 2018 1 / 38 Liability/asset cash-flow matching problem Recall the formulation of the problem: max w c 1 + p 1 e 1 = 150

More information

Minimum cost transportation problem

Minimum cost transportation problem Minimum cost transportation problem Complements of Operations Research Giovanni Righini Università degli Studi di Milano Definitions The minimum cost transportation problem is a special case of the minimum

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 2: Intro to LP, Linear algebra review. Yiling Chen SEAS Lecture 2: Lesson Plan What is an LP? Graphical and algebraic correspondence Problems

More information

Lecture Notes 3: Duality

Lecture Notes 3: Duality Algorithmic Methods 1/11/21 Professor: Yossi Azar Lecture Notes 3: Duality Scribe:Moran Bar-Gat 1 Introduction In this lecture we will present the dual concept, Farkas s Lema and their relation to the

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information