Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( )

Size: px
Start display at page:

Download "Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( )"

Transcription

1 IL NUOVO CIMENTO Vol. 119 B, N. 2 Febbraio 2004 DOI /ncb/i Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) V. Putz( 1 )( )andk. Svozil( 2 )( ) ( 1 ) Max-Planck-Institute for Mathematics in the Sciences Inselstraße 22-26, D Leipzig, Germany ( 2 ) Institut für Theoretische Physik, Technische Universität Wien Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria (ricevuto il 19 Febbraio 2004; revisionato il 26 Aprile 2004; approvato il 28 Aprile 2004) Summary. Due to the non-vanishing average photon population of the squeezed vacuum state, finite corrections to the scattering matrix are obtained. The lowestorder contribution to the electron mass shift for a one-mode squeezed vacuum state is given by δm(ω,s)/m = α(2/π)(ω/m) 2 sinh 2 (s), where Ω and s stand for the mode frequency and the squeeze parameter and α for the fine-structure constant, respectively. PACS Wx Finite-temperature field theory. PACS m Quantum electrodynamics. The squeezed vacuum is a fascinating non-classical state of the quantized electromagnetic field [1]. Just as for the finite-temperature case, the squeezed vacuum is populated by photons. Therefore, the scattering matrix, and in particular renormalization, has to be re-evaluated with these finite ground-state photons in mind. The dependence of the scattering matrix on the vacuum state of the theory and on exterior parameters has been studied previously for the thermal equilibrium [2], in cavityquantum electrodynamics [3], on fractal space-time support [4] and, to some extent, in the presence of strong electromagnetic fields [5, 6]. Here, quantum electrodynamics is investigated in the presence of squeezed vacuum fluctuations [7]; i.e. fluctuations with reduced noise in amplitude or phase. At first we shall calculate the scattering matrix by Taylor expansion up to second order of e 2. Let i = a (r) e ( q ) sv be the initial state, r the incoming electron s spin, q its momentum and sv the squeezed vacuum state. sv is a pure photonic state and ( ) The authors of this paper have agreed to not receive the proofs for correction. ( ) putz@hep.itp.tuwien.ac.at ( ) svozil@tuwien.ac.at c Società Italiana di Fisica 175

2 176 V. PUTZ and K. SVOZIL behaves like an ordinary Fock vacuum regarding the electron creation and annihilation operators. The final state is f = sv a (r ) e ( q ). It is important to remark that the initial squeezed vacuum state will be assumed to be the same as the final one. Hence, in this approximation, sv is time independent. The scattering matrix is given by f S i = f Te i d 4 xl W i, where L W stands for the interaction-term of the Lagrange-density, which, in QED is is given by L W e :ψ/aψ :. The expansion of S with respect to e is S 1 ie + ( ie)2 (2!) d 4 x :ψ(x)/a(x)ψ(x):+ d 4 xd 4 yt[:ψ(x)/a(x)ψ(x)::ψ(y)(/a(y)ψ(y):]. We shall discuss the first three terms in the series expansion in e next. We find O(e 0 ): f 1 i = δ 3 ( q q )δ rr, ( O(e 1 ): f ie ) d 4 i x :ψ(x)/a(x)ψ(x): =0. A µ (x) contains a term with exactly one annihilation operator and a term with exactly one creation operator, so that f a ( ) i = 0. The well-known relations sv a sv =0and sv a sv = 0 hold. O(e 2 ) : The electron- and photon-operators do not act on each other. Hence they commute and sv is a normal Fock vacuum for the electron operators. Therefore it is possible to completely separate the electron and photon terms f ( ie)2 d 4 xd 4 yt[:ψ(x)/a(x)ψ(x)::ψ(y)/a(y)ψ(y):] i = (2!) e2 d 4 xd 4 yt sv A µ (x)a ν (y) sv 2 T 0 a (r ) e ( q ):ψ(x)γ µ ψ(x)::ψ(y)γ ν ψ(y): a e (r) ( q) 0. The electron term is given by δ( q q )δ rr 0 :ψ(x)γ µ ψ(x)::ψ(y)γ ν ψ(y): 0 + disconnected e iq x + ) (2π) 3/2 u(r γ µ is c (x y)γ ν e iqy 0 2q (2π) 3/2 2q 0 u(r) +(x y, µ ν). connected As usual, the disconnected term is regarded as non-physical.

3 QUANTUM ELECTRODYNAMICS IN THE SQUEEZED VACUUM STATE: ETC. 177 The calculation demonstrated that effectively it would have been possible to build up the whole 2nd-order term by just replacing the usual photon propagator in the Feynman rules by id µν (x y) = sv T [A µ (x)a ν (y)] sv. This expression can be evaluated as follows: sv T [A µ (x)a ν (y)] sv = 1 (2π) 3 where Then, Hence we obtain d 3 kd 3 k 2(E k E k ) 1/2 sv θ(x 0 y 0 )[ɛ (ρ) µ ( k)a ρ ( k)ɛ ν (λ) ( k )a λ ( k )e i(kx k y) + + ɛ (ρ) µ ( k)a ρ( k)ɛ (λ) ν ( k )a λ ( k )e i(kx k y) ]+(x y) sv, sv a ρ( k)a λ ( k ) sv g ρλ δ 3 ( k k )n(k), [a ρ ( k),a λ ( k )] g ρλ δ 3 ( k k ), g ρλ ɛ (ρ) µ ( k)ɛ (λ) ν ( k)=g µν. sv T [A µ (x)a ν (y)] sv = d 3 k g µν (2π) 3 [θ(x 0 y 0 )e ik(x y) + θ(y 0 x 0 )e ik(x y) ] d 3 k g µν (2π) 3 n(k)[θ(x 0 y 0 )e ik(x y) + θ(x 0 y 0 )e ik(x y) + + θ(y 0 x 0 )e ik(y x) + θ(y 0 x 0 )e ik(y x) ]. (1) id µν (x y) = sv T [A µ (x)a ν (y)] sv = ( d 3 k 1 g µν (2π) 3 [θ(x 0 y 0 )e ik(x y) + θ(y 0 x 0 )e ik(x y) ]+ d 3 ) k 1 + (2π) 3 n(k)[e ik(x y) + e ik(x y) ]. Notice, as remarked above, that by defining the photon propagator, the squeezed vacuum state had to be assumed quasi-stationary, otherwise the final state of the vacuum cannot be identified with the initial state. (This assumption can be justified only within the appropriate spatial and temporal ranges.) The propagator can be rewritten using contour-integral techniques (2) id µν (x y) =i d 4 k (2π) 4 e ik(x y) D µν (k), [ ] 1 id µν (k) = ig µν k 2 + iɛ 2πiδ(k2 )n(k).

4 178 V. PUTZ and K. SVOZIL For the one-mode squeezed state, n(k;ω,s) = Ωsinh 2 (s)δ(e k Ω), where E k is the photon energy parameter and Ω and s stand for the frequency of the squeezed mode and the squeezing parameter, respectively. The electron propagator S(p) = 1/(/p m + iɛ), as well as the bare vertex γ µ remain unchanged. Notice however that a preferred frame of reference has been introduced due to the non-covariant choice of the density n(k;ω,s), i.e. the one at rest with respect to the squeezed vacuum. In what follows, the lowest-order correction to the radiative mass of the electron will be calculated. This can be done by evaluating the second-order contribution to the self-energy of the electron (3) iσ(p;ω,s)= d 4 k (2π) 4 [id µν(k;ω,s)]( ie)γ µ i /p /k m ( ie)γν. The physical mass is interpreted as the pole of the renormalized electron propagator. For δm(ω,s) m, (4) m(ω,s) m δm +Σ(p;Ω,s) /p=m = m δm +Σ(p; s =0) /p=m + δσ(p;ω,s) /p=m = m + δm(ω,s), where m stands for the renormalized non-squeezed mass of the electron. The correction term δm(ω,s)=δσ(p;ω,s) /p=m due to squeezing adds up coherently to the renormalization contributions of m. Its explicit form is given by δm(ω,s)= e2 (2π) 3 d 4 kδ(k 2 /p /k + m )n(k;ω,s)γ µ (p k) 2 m 2 + iɛ γµ /p=m = d 4 kδ(k 2 /p /k + m )n(k)γ µ (p k) 2 m 2 + iɛ γµ /p=m 2 d 4 kδ(k 2 )n(k) /k + m 2pk iɛ /p=m d 3 kdk 0 [ δ(k0 k ) 2k 0 As the epsilon is not needed, it will be dropped, + δ(k0 + k ) 2k 0 ]n(k) k0 γ 0 k γ + m k 0 p 0 k p iɛ. /p=m (5) d 3 kn( k )[ k γ 0 k γ +2m 2 k ( k k p) d 3 kn( k )[ k γ 0 k γ k ( k p 0 k p) /p=m d 3 kn( k ) k µγ µ k (pk) /p=m, e.o.m.: k 2 =0 = α 2π 2 I µ (p)p µ m p 2 =m 2, + k γ 0 k γ +2m 2 k ( k p 0 ] k p) /p=m k k

5 QUANTUM ELECTRODYNAMICS IN THE SQUEEZED VACUUM STATE: ETC. 179 where δ(k 2 )=δ(k 0 k )/2k 0 + δ(k 0 + k )/2k 0 and Gordon s identity, which reduces to γ µ = p µ /m (remind p µ γ µ = m, p 2 = m 2 ), have been used, α = e 2 /4π stands for the fine-structure constant and (6) I µ (p) = d 3 k k µ k (pk) n( k ;Ω,s) e.o.m.: k 2 =0. In the rest frame of the squeezed vacuum this expression can be evaluated, yielding (7) δm(ω,s)/m = α(2/π)(ω/m) 2 sinh 2 (s). For optical frequencies, δm(s)/m sinh 2 (s). One has to bear in mind that the above calculation did not take into explicit account the spatial and temporal characteristics of the squeezed vacuum states. So our calculation is only a first estimation of magnitude of the expected results. After all, a more careful calculation should take into account the nonstationary property of the squeezed vacuum. However, even the above rather simple model calculations suggest that physical parameters (electron mass, charge and magnetic moment) depend on external conditions. The squeezed vacuum is arguably the simplest theoretically treatable yet experimentally realizable state. Indeed, the generation of squeezed states as proposed by [8] has recently been performed by [9] and belongs to the advanced experimental methods of modern physics. Indeed, in view of the difficulties associated with the detection of squeezed light, the obtained results may be used as an indication of the presence of the squeezed state, making it a valuable contribution to the advancements of quantum optical techniques. In this paper, we have evaluated the electron-mass shift. Measuring the renormalization effects on the electron mass due to the squeezed vacuum is certainly a challenging yet difficult task beyond the scope of this presentation. Calculations of charge shift and of corrections to the magnetic moment are still to be done. REFERENCES [1] Loudon R. and Knight P. L., J. Mod. Opt., 34 (1987) 709. [2] Barton G., Ann. Phys. (N.Y.), 200 (1990) 271; Romero A., J. Math. Phys., 34 (1993) [3] Svozil K., Phys. Rev. Lett., 54 (1985) 742; Kreuzer M. and Svozil K., Phys. Rev. D, 34 (1986) 1429; Fischbach E. and Nakagawa N., Phys. Rev. D, 30 (1984) 3320; Barton G. and Fawcett N. S. J., Phys. Rep., 170 (1988) 1. [4] Zeilinger A.and Svozil K., Phys. Rev. Lett., 54 (1985) 2553; Svozil K. and Zeilinger A., J. Mod. Phys. A, 1 (1986) 971; Svozil K., J. Phys. A, 19 (1986) 1125; 20 (1987) [5] Greiner W., Müller B. and Rafelski J., Quantum Electrodynamics of Strong Fields (Springer, Berlin) [6] Ginzburg V. L. (Editor), Issues in Intense-Field Quantum Electrodynamics (Nova Science Publishers, Commack, New York) [7] Milburn G. J., Phys. Rev. A, 34 (1986) [8] Bialynicka-Birula Birula I. and Bialynicka-Birula Z., J. Opt. Soc. Am. B, 4 (1987) [9] Breitenbach G., Illuminati F., Schiller S. and Mlynek J., Europhys. Lett, 44 (1998) 192.

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction

Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction Introduction to the physics of highly charged ions Lecture 12: Self-energy and vertex correction Zoltán Harman harman@mpi-hd.mpg.de Universität Heidelberg, 03.02.2014 Recapitulation from the previous lecture

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Quantization of the Photon Field QED

Quantization of the Photon Field QED Quantization of the Photon Field QED 21.05.2012 0.1 Reminder: Classical Electrodynamics Before we start quantizing the hoton field, let us reflect on classical electrodynamics. The Hamiltonian is given

More information

Mandl and Shaw reading assignments

Mandl and Shaw reading assignments Mandl and Shaw reading assignments Chapter 2 Lagrangian Field Theory 2.1 Relativistic notation 2.2 Classical Lagrangian field theory 2.3 Quantized Lagrangian field theory 2.4 Symmetries and conservation

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Helium fine structure Ingvar Lindgren (mod )

Helium fine structure Ingvar Lindgren (mod ) Helium fine structure Ingvar Lindgren 2004.09.20 (mod. 2005.01.23) The leading contributions to the helium fine structure beyond the first-order relativistic contribution were first derived by Araki [1]

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen On a non-cp-violating electric dipole moment of elementary particles J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D-3773 Gottingen (e-mail: giesentheo-phys.gwdg.de) bstract description of

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel

Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel Zhou Nan-Run( ) a), Hu Li-Yun( ) b), and Fan Hong-Yi( ) c) a) Department of Electronic Information Engineering,

More information

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν = Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

10.6 Propagating quantum microwaves

10.6 Propagating quantum microwaves AS-Chap. 10-1 10.6 Propagating quantum microwaves Propagating quantum microwaves emit Quantum - - Superconducting quantum circuits Artificial quantum matter Confined quantum states of light Does the emitted

More information

Evaluation of Triangle Diagrams

Evaluation of Triangle Diagrams Evaluation of Triangle Diagrams R. Abe, T. Fujita, N. Kanda, H. Kato, and H. Tsuda Department of Physics, Faculty of Science and Technology, Nihon University, Tokyo, Japan E-mail: csru11002@g.nihon-u.ac.jp

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

On particle production by classical backgrounds

On particle production by classical backgrounds On particle production by classical backgrounds arxiv:hep-th/0103251v2 30 Mar 2001 Hrvoje Nikolić Theoretical Physics Division, Rudjer Bošković Institute, P.O.B. 180, HR-10002 Zagreb, Croatia hrvoje@faust.irb.hr

More information

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS LOGAN T. MEREDITH 1. Introduction When one thinks of quantum field theory, one s mind is undoubtedly drawn to Feynman diagrams. The naïve view these

More information

Vacuum Birefringence in Strong Magnetic Fields

Vacuum Birefringence in Strong Magnetic Fields Vacuum Birefringence in Strong Magnetic Fields Walter Dittrich and Holger Gies Institut für theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany Abstract Table of

More information

arxiv:hep-th/ v1 11 Mar 2005

arxiv:hep-th/ v1 11 Mar 2005 Scattering of a Klein-Gordon particle by a Woods-Saxon potential Clara Rojas and Víctor M. Villalba Centro de Física IVIC Apdo 21827, Caracas 12A, Venezuela (Dated: February 1, 28) Abstract arxiv:hep-th/5318v1

More information

Improved Coulomb Potential. Abstract

Improved Coulomb Potential. Abstract THEF-NIJM 8.18 Improved Coulomb Potential G. J. M. Austen and J. J. de Swart Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands Abstract An improved Coulomb potential

More information

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression Coherent-state path integrals A coherent state of argument α α = e α / e αa 0 = e α / (αa ) n 0 n! n=0 = e α / α n n n! n=0 (1) is an eigenstate of the annihilation operator a with eigenvalue α a α = α

More information

LIST OF PUBLICATIONS

LIST OF PUBLICATIONS LIST OF PUBLICATIONS 1. F. Ehlotzky,Klein-Winkel Delbrück-Streuung, Acta Physica Austriaca 16, 374 (1963). 2. F. Ehlotzky,Small-Angle Delbrück Scattering, Nuovo Cimento 31, 1037 (1964). 3. F. Ehlotzky,

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface Journal of Physics: Conference Series PAPER OPEN ACCESS Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface To cite this article: Dao Thi Thuy Nga et al 2015 J. Phys.: Conf.

More information

Self-energy Effects on Nuclear Magnetic Resonance Parameters within Quantum Electrodynamics Perturbation Theory

Self-energy Effects on Nuclear Magnetic Resonance Parameters within Quantum Electrodynamics Perturbation Theory Int. J. Mol. Sci. 2002, 3, 914-930 Self-energy Effects on Nuclear Magnetic Resonance Parameters within Quantum Electrodynamics Perturbation Theory Rodolfo H. Romero and Gustavo A. Aucar International Journal

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

Quantum Field Theory Example Sheet 4 Michelmas Term 2011

Quantum Field Theory Example Sheet 4 Michelmas Term 2011 Quantum Field Theory Example Sheet 4 Michelmas Term 0 Solutions by: Johannes Hofmann Laurence Perreault Levasseur Dave M. Morris Marcel Schmittfull jbh38@cam.ac.uk L.Perreault-Levasseur@damtp.cam.ac.uk

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

QED plasma in the early universe

QED plasma in the early universe https://doi.org/0.007/s40065-08-0232-6 Arabian Journal of Mathematics Samina S. Masood QED plasma in the early universe Received: 7 September 208 / Accepted: 2 December 208 The Author(s) 209 Abstract Renormalization

More information

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics Wei Wang and Zhi-Peng Xing SJTU Wei Wang and Zhi-Peng Xing (SJTU) QED 1 / 35 Contents 1 QED 2 e + e µ + µ 3 Helicity Amplitudes 4 ep ep 5 Compton Scattering 6 e + e 2γ Wei Wang

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

Spacetime foam and modified dispersion relations

Spacetime foam and modified dispersion relations Institute for Theoretical Physics Karlsruhe Institute of Technology Workshop Bad Liebenzell, 2012 Objective Study how a Lorentz-invariant model of spacetime foam modify the propagation of particles Spacetime

More information

Non-relativistic scattering

Non-relativistic scattering Non-relativistic scattering Contents Scattering theory 2. Scattering amplitudes......................... 3.2 The Born approximation........................ 5 2 Virtual Particles 5 3 The Yukawa Potential

More information

Lecture 4. Beyound the Dirac equation: QED and nuclear effects

Lecture 4. Beyound the Dirac equation: QED and nuclear effects Lecture 4 Beyound the Dirac equation: QED and nuclear effects Plan of the lecture Reminder from the last lecture: Bound-state solutions of Dirac equation Higher-order corrections to Dirac energies: Radiative

More information

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001 Quantum Electrodynamics D. E. Soper University of Oregon Physics 666, Quantum Field Theory April The action We begin with an argument that quantum electrodynamics is a natural extension of the theory of

More information

The concept of free electromagnetic field in quantum domain

The concept of free electromagnetic field in quantum domain Tr. J. of Physics 23 (1999), 839 845. c TÜBİTAK The concept of free electromagnetic field in quantum domain Alexander SHUMOVSKY and Özgür MÜSTECAPLIOĞLU Physics Department, Bilkent University 06533 Ankara-TURKEY

More information

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution entropy Article Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution Luis Amilca Andrade-Morales, Braulio M. Villegas-Martínez and Hector M. Moya-Cessa * Instituto

More information

arxiv:physics/ v1 [physics.atom-ph] 4 Jun 1998

arxiv:physics/ v1 [physics.atom-ph] 4 Jun 1998 IASSNS-HEP-98/50 arxiv:physics/9806008v1 [physics.atom-ph] 4 Jun 1998 The Schrödinger-Like Equation for a Nonrelativistic Electron in a Photon Field of Arbitrary Intensity Dong-Sheng Guo and R. R. Freeman

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW FINN RAVNDAL a Institute of Physics, University of Oslo, N-0316 Oslo, Norway Abstract Photons in blackbody radiation have non-zero interactions due to

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM Student, Aws Abdo The hydrogen atom is the only system with exact solutions of the nonrelativistic Schrödinger equation

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

ON POSITIVE-OPERATOR-VALUED MEASURE FOR PHASE MEASUREMENTS. Abstract. The unnormalizable Susskind-Glogower (SG) phase eigenstates, which

ON POSITIVE-OPERATOR-VALUED MEASURE FOR PHASE MEASUREMENTS. Abstract. The unnormalizable Susskind-Glogower (SG) phase eigenstates, which ON POSITIVE-OPERATOR-VALUED MEASURE FOR PHASE MEASUREMENTS Qianbing Zheng and Takayoshi Kobayashi Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo

More information

A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics

A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics Declan Millar D.Millar@soton.ac.uk School of Physics and Astronomy, University of Southampton,

More information

Chapter 1 Recollections from Elementary Quantum Physics

Chapter 1 Recollections from Elementary Quantum Physics Chapter 1 Recollections from Elementary Quantum Physics Abstract We recall the prerequisites that we assume the reader to be familiar with, namely the Schrödinger equation in its time dependent and time

More information

0 T (L int (x 1 )...L int (x n )) = i

0 T (L int (x 1 )...L int (x n )) = i LORENTZ INVARIANT RENORMALIZATION IN CAUSAL PERTURBATION THEORY K. BRESSER, G. PINTER AND D. PRANGE II. Institut für Theoretische Physik Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany e-mail:

More information

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories What s up with those Feynman diagrams? an Introduction to Quantum Field Theories Martin Nagel University of Colorado February 3, 2010 Martin Nagel (CU Boulder) Quantum Field Theories February 3, 2010 1

More information

SFI = F T exp i d4x int.(x) I

SFI = F T exp i d4x int.(x) I MANDL AND SHAW Chapter 5. Photons: Covariant Theory 5.1. The classical field theory 5.2. Covariant quantization 5.3. The photon propagator Problems; 5.1 5.2 5.3 5.4 Chapter 6. The S-Matrix Expansion 6.1.

More information

Introduction to Quantum Field Theory Quantum Electrodynamics

Introduction to Quantum Field Theory Quantum Electrodynamics Introduction to Quantum Field Theory Quantum Electrodynamics Rafael Juan Alvarez Reyes Supervisor: Vicente Delgado Universidad de La Laguna September, 2017 CONTENTS CONTENTS Contents 1 Summary 4 2 Introduction,

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014 YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD Algirdas Antano Maknickas Institute of Mechanical Sciences, Vilnius Gediminas Technical University September 3, 04 Abstract. It

More information

Lorentz-squeezed Hadrons and Hadronic Temperature

Lorentz-squeezed Hadrons and Hadronic Temperature Lorentz-squeezed Hadrons and Hadronic Temperature D. Han, National Aeronautics and Space Administration, Code 636 Greenbelt, Maryland 20771 Y. S. Kim, Department of Physics and Astronomy, University of

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Physical Principles in Quantum Field Theory and in Covariant Harmonic Oscillator Formalism

Physical Principles in Quantum Field Theory and in Covariant Harmonic Oscillator Formalism Physical Principles in Quantum Field Theory and in Covariant Harmonic Oscillator Formalism D. Han 1, Y. S. Klm 2, and Marilyn E. Noz 3 Abstract It is shown that both covariant harmonic oscillator formalism

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

arxiv:hep-th/ v1 7 Feb 1992

arxiv:hep-th/ v1 7 Feb 1992 CP N 1 MODEL WITH A CHERN-SIMONS TERM arxiv:hep-th/9202026v1 7 Feb 1992 G. Ferretti and S.G. Rajeev Research Institute for Theoretical Physics Siltavuorenpenger 20 C SF-00170 Helsinki, Finland Abstract

More information

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13 The Dirac Equation Dirac s discovery of a relativistic wave equation for the electron was published in 1928 soon after the concept of intrisic spin angular momentum was proposed by Goudsmit and Uhlenbeck

More information

arxiv:hep-th/ v1 17 Jun 2003

arxiv:hep-th/ v1 17 Jun 2003 HD-THEP-03-28 Dirac s Constrained Hamiltonian Dynamics from an Unconstrained Dynamics arxiv:hep-th/030655v 7 Jun 2003 Heinz J. Rothe Institut für Theoretische Physik Universität Heidelberg, Philosophenweg

More information

Recursive graphical construction of Feynman diagrams and their weights in Ginzburg Landau theory

Recursive graphical construction of Feynman diagrams and their weights in Ginzburg Landau theory Physica A 3 2002 141 152 www.elsevier.com/locate/physa Recursive graphical construction of Feynman diagrams and their weights in Ginzburg Landau theory H. Kleinert a;, A. Pelster a, B. VandenBossche a;b

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Lecture notes for FYS610 Many particle Quantum Mechanics

Lecture notes for FYS610 Many particle Quantum Mechanics UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Lecture notes for FYS610 Many particle Quantum Mechanics Note 20, 19.4 2017 Additions and comments to Quantum Field Theory and the Standard

More information

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Mayeul Arminjon 1,2 and Frank Reifler 3 1 CNRS (Section of Theoretical Physics) 2 Lab. Soils, Solids,

More information

Quantum Electrodynamics and the Higgs Mechanism

Quantum Electrodynamics and the Higgs Mechanism Quantum Electrodynamics and the Higgs Mechanism Jakob Jark Jørgensen 4. januar 009 QED and the Higgs Mechanism INDHOLD Indhold 1 Introduction Quantum Electrodynamics 3.1 Obtaining a Gauge Theory..........................

More information

Light-Cone Quantization of Electrodynamics

Light-Cone Quantization of Electrodynamics Light-Cone Quantization of Electrodynamics David G. Robertson Department of Physics, The Ohio State University Columbus, OH 43210 Abstract Light-cone quantization of (3+1)-dimensional electrodynamics is

More information

Semiclassical spin coherent state method in the weak spin-orbit coupling limit

Semiclassical spin coherent state method in the weak spin-orbit coupling limit arxiv:nlin/847v1 [nlin.cd] 9 Aug Semiclassical spin coherent state method in the weak spin-orbit coupling limit Oleg Zaitsev Institut für Theoretische Physik, Universität Regensburg, D-934 Regensburg,

More information

Feynman Rules of Non-Abelian Gauge Theory

Feynman Rules of Non-Abelian Gauge Theory Feynman Rules o Non-belian Gauge Theory.06.0 0. The Lorenz gauge In the Lorenz gauge, the constraint on the connection ields is a ( µ ) = 0 = µ a µ For every group index a, there is one such equation,

More information

The DKP equation in the Woods-Saxon potential well: Bound states

The DKP equation in the Woods-Saxon potential well: Bound states arxiv:1601.0167v1 [quant-ph] 6 Jan 016 The DKP equation in the Woods-Saxon potential well: Bound states Boutheina Boutabia-Chéraitia Laboratoire de Probabilités et Statistiques (LaPS) Université Badji-Mokhtar.

More information

arxiv:atom-ph/ v1 15 Mar 1996

arxiv:atom-ph/ v1 15 Mar 1996 Quantum Reservoir Engineering J.F. Poyatos, J.I. Cirac, and P. Zoller Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A 6020 Innsbruck, Austria. arxiv:atom-ph/9603002v1 15

More information

Optical activity of intergalactic space

Optical activity of intergalactic space Optical activity of intergalactic space Victor Novikov ITEP, Moscow, Russia 18th October 2004 Abstract The birefringence of a neutrino sea is discussed in the Standard Model. We demonstrate that the optical

More information

arxiv:hep-th/ Feb 2001

arxiv:hep-th/ Feb 2001 hep-th/0102103 REF. TUW 01-03 REF. UWThPh-2001-9 Deformed QED via Seiberg-Witten Map arxiv:hep-th/0102103 16 Feb 2001 A. A. Bichl 1, J. M. Grimstrup 2,L.Popp 3,M.Schweda 4, R. Wulkenhaar 5 1;2;3;4 Institut

More information

High energy hadronic interactions in QCD and applications to heavy ion collisions

High energy hadronic interactions in QCD and applications to heavy ion collisions High energy hadronic interactions in QCD and applications to heavy ion collisions III QCD on the light-cone François Gelis CEA / DSM / SPhT François Gelis 2006 Lecture III/V SPhT, Saclay, January 2006

More information

arxiv:hep-ph/ v1 30 Oct 2005

arxiv:hep-ph/ v1 30 Oct 2005 Glueball decay in the Fock-Tani formalism Mario L. L. da Silva, Daniel T. da Silva, Dimiter Hadjimichef, and Cesar A. Z. Vasconcellos arxiv:hep-ph/0510400v1 30 Oct 2005 Instituto de Física, Universidade

More information