Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel

Size: px
Start display at page:

Download "Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel"

Transcription

1 Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel Zhou Nan-Run( ) a), Hu Li-Yun( ) b), and Fan Hong-Yi( ) c) a) Department of Electronic Information Engineering, Nanchang University, Nanchang , China b) School of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 3300, China c) Department of Physics, Shanghai Jiao Tong University, Shanghai 00030, China (Received 5 April 011; revised manuscript received 17 June 011) We explore how a two-mode squeezed vacuum state sech e a b tanh 00 evolves when it undergoes a singlemode amplitude dissipative channel with rate of decay κ. We find that in this process not only the squeezing parameter decreases, tanh e κt tanh, but also the second-mode vacuum state evolves into a chaotic state exp{b b ln`1 e κt tanh }. The outcome state is no more a pure state, but an entangled mixed state. Keywords: amplitude dissipative channel, two-mode squeezed vacuum state, two-mode entangled state, quantum communication PACS: w, p DOI: / /0/1/ Introduction In recent years, quantum operation formalism has been a hot topic in quantum information theory, 1 to be specific, quantum operations describe quantum noise and the behaviour of open quantum systems (both the environment and system under our review). This topic is important and realistic since no quantum systems are ever perfectly closed. The role of quantum operations is transforming an input pure state to output mixed state, denoted by ρ 0 i M iρ 0 M i ρ (t), such a transformation also defines a quantum channel, M i is a kind of Kraus operator. From the viewpoint of mathematical formalism, the density operators ρ (t) at time t are solutions of master equations. For example, for an amplitude-damping channel the master equation is 4 dρ dt κ ( aρa a aρ ρa a ), (1) κ is the decaying rate, a, a 1. As we have experienced that the evolution of many quantum signals is related to quantum entanglement, for example, a two-mode squeezed state is composed of a signal mode and an idler mode, which is simultaneously an entangled state. In this work we explore how a twomode squeezed vacuum state, sech e a b tanh 00, evolves when it undergoes a single-mode (say, a-mode) amplitude dissipative channel, so that we may see how the b-mode affects a-mode s damping, or vice versa. In the following, first, we shall solve the master equations in the entangled state representation which is denoted by η, 3,4 (see Eq. () below), whose one mode is a fictitious one. The fictitious mode is a counterpart mode of the system-mode under review, then we can arrange density operator master equations as state-vector evolution equations. In this way the master equation for different physical systems can be concisely solved, 7 and the corresponding Kraus operator can be obtained. Second, we examine when the initial ρ 0 is a two-mode squeezed vacuum state, then how it evolves. As one can see later, we find that in this process not only the squeezing parameter decreases with a factor e κt, but also the second-mode vacuum state evolves into a chaotic state exp{b b ln ( 1 e κt) tanh }. The outcome state is no more a pure state, but an entangled mixed state. Project supported by the National Natural Science Foundation of China (Grant Nos and ), the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 009GQS0080 and 010GQW007), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ11339 and GJJ10097). Corresponding author. znr1@163.com 011 Chinese Physical Society and IOP Publishing Ltd

2 . ρ (t) obtained by the entangled state representation To solve the above master equation, similar to Ref. 5 we introduce the two-mode entangled state 6 ( η exp 1 ) η + ηa η ã + a ã 0 0, () ã is a fictitious mode independent of the real mode a, ã 0 0. Historically, Takahashi and Umezawa 8 first introduced the fictitious Fock space to treat the ensemble average of a mixed state as a pure state average. Using the technique of integration within ordered product (IWOP) of operators, we can prove the completeness η η 1. The state η 0 possesses the following properties: a η 0 ã η 0, a η 0 ã η 0, (3) (a a) n η 0 (ã ã) n η 0. (4) Acting both sides of Eq. (1) on the state η 0 I, and denoting ρ ρ I, we have d dt ρ κ ( aρa a aρ ρa a ) I κ ( aã a a ã ã ) ρ, (5) so its formal solution is given by ρ exp κt ( aã a a ã ã ) ρ 0, (6) ρ 0 ρ 0 I, ρ 0 is the initial density operator. Noticing that the operators in Eq. (5) obey the following commutative relation aã, a a aã, ã ã ãa, a a + ã ã, aã ãa, (7) and using the operator identity e λ(a+σb) e λa exp σ ( 1 e λτ ) B/τ (8) (which is valid for A, B τb), we have ( a a + ã ) ã exp κt aã exp κt ( a a + ã ã ) exp T aã, (9) Then using the operator identity T 1 e κt. (10) exp ( λa a ) : exp ( e λ 1 ) a a : (11) and the IWOP technique, we can express exp κt ( a a + ã ã ) exp T aã ρ 0 : exp ( e κt 1 ) ( a a + ã ã ) + ( 1 e κt) aã: ρ 0 : exp η + η ( a e κt ã ) + η ( e κt a ã ) + a ã + aã a a ã ã: ρ 0 e 1 T η η η e κt ρ 0. (1) Comparing Eq. (1) with ρ (t) η η ρ (t), (13) we can see η ρ (t) e 1 T η η e κt ρ 0, (14) which manifestly shows that the wave function of the mixed state ρ (t) in η representation is proportional to that of the initial state ρ 0 in the decayed entangled state η e κt, accompanied by a Gaussian damping factor e T η. Thus we see clearly how the dissipative channel plays its role in time evolution. This is the advantage of employing η representation. Further, substituting Eq. (9) into Eq. (6) yields ρ exp κt ( a a + ã ã ) e κta a an ã n ρ 0 an ρ 0 a n e κtã ã I e κta a a n ρ 0 a n e κta a I, (15) which leads to the infinitive operator-sum representation of ρ (t), ρ (t) M n ρ 0 M n, (16) T n M n e κta a a n. (17) Using Eq. (11) we can prove M nm n n n a n e κta a a n

3 n e nκt : a n a n : e κta a : e T e κt a a : e κta a 1. (18) Thus M n is a kind of Kraus operator, and ρ (t) in Eq. (16) is qualified to be a density operator, i.e., Tr ρ (t) Tr M n ρ 0 M n Tr ρ 0. (19) Therefore, for any given initial state ρ 0, the density operator ρ (t) can be directly calculated from Eq. (16). The entangled state representation provides us with an elegant way of deriving the infinitive sum representation of the density operator as a solution of the master equation. 3. Evolution of a two-mode squeezed vacuum state in the single-mode amplitude damping channel The realistic two-mode squeezed vacuum state is expressed by S () 00 sech exp a b tanh 00, (0) the vacuum state 00 is annihilated by either a or b, a, a 1 b, b, and S () is the squeezing operator with the squeezing parameter, S () exp ( a b ab ). When the initial state is the two-mode squeezed vacuum then ρ (0) S () S (), (1) ρ (t) e κta a a n S () S () a n e κta a. () Substituting Eq. (0) into Eq. (16), and using we obtain ρ (t) a n S () 00 ( b tanh ) a n 1 S () 00 ( b tanh ) n S () 00, (3) tanh n e κta a b n S () S () b n e κta a sech tanh n e κta a b n e a b tanh e ab tanh b n e κta a. (4) Then using the relation we obtain ρ (t) sech e κta a a e κta a e κt a, (5) tanh n b n e e κt a b tanh e e κt ab tanh b n. (6) By introducing another damping squeezing parameter, tanh e κt tanh, (7) we can introduce a new time-dependent squeezed vacuum state sech e e κt a b tanh 0 0 S ( ) 00, (8) S ( ) exp ( a b ab ). The state S ( ) 00 includes less real photons, since 00 S ( ) a as ( ) 00 sinh With Eq. (8), ρ (t) becomes ρ (t) sech sech tanh e κt tanh < sinh. (9) tanh n b n S ( ) S ( ) b n, (30) which indicates that in the dissipation process, the a-mode photon decreases, while the b-mode photon increases, since b n S ( ) 00 is an excitation of S ( ) 00. Further, using the normal product form : e a a b b :, 0 aa 0 : e a a :, 0 bb 0 : e b b :, (31) we can rewrite ρ (t) in Eq. (6) as

4 ρ (t) sech : Chin. Phys. B Vol. 0, No. 1 (011) tanh n b n b n e e κt a b tanh e e κt ab tanh a a b b : sech : e b b(1 e κt ) tanh + e κt tanh (a b +ab) a a b b : sech e e κt a b tanh 0 aa 0 e b b ln(1 e κt ) tanh e e κt ab tanh, (3) in the last step we have used the operator identity : e b b( e λ 1) : e λb b. To confirm the validity of the above conclusion, using the completeness relation of the two-mode coherent state 9,10 d z 1 d z z 1, z z 1, z 1, (33) z 1, z exp 1 ( z1 + z ) + z 1 a + z b 00, (34) we check the trace-preserving by evaluating d Tr ρ (t) sech z 1 d z z 1, z 0 aa 0 : e b b(1 e κt ) tanh 1 : z 1, z e e κt (z 1z +z 1 z ) tanh d sech z exp ( tanh 1 ) z 1, (35) we have used the following integration formula d z eζ z +ξz+ηz 1 ( ζ exp ξη ), ζ Re (ζ) < 0. (36) 4. Evolution of the Wigner function We now see how the Wigner function evolves in this process. Using the Wigner operator coherent state representation 11 (α, β) e α + β d z 1 d z 4 z 1, z z 1, z e (αz 1 α z 1) e (βz β z ), (37) and noticing that z e b b ln(1 e κt ) tanh z exp( ( 1 e κt) tanh 1)z z, as well as using Eq. (3), we can calculate the Wigner function at time t as: W (α, β) Tr ρ (t) (α, β) 1 sech + 4 e κt tanh 1 + R (α β + αβ) { 1 + R exp (1 R) β + α (1 + tanh ) 1 + R }, (38) R ( 1 e κt) tanh. In particular, when κt 0, i.e., the case of twomode squeezed state, R tanh, equation (41) reduces to the initial state Wigner function 1,13 W (α, β) 1 exp (α β + αβ) sinh ( α + β ) cosh. (39) On the other hand, when κt, then R tanh, equation (38) becomes W (α, β) 1 e α sech exp β sech. (40) It is interesting to note that the Wigner function of the thermal vacuum state is W th 1 e ω/kt ( 1 + e ) ω/kt ( ) 1 e ω/kt exp ( ) 1 + e ω/kt β, (41) thus equation (40) is just the product of the Wigner function W 0 0 of the vacuum state and the W th of the thermal vacuum state, i.e., W (α, β) W 0 0 (α) W th (β), (4) W 0 0 (α) 1 e α,

5 sech W th (β) e β sech, (43) with e ω/kt tanh, a a th sinh. From Eq. (4) we can see that the output state is a product of a vacuum state and a thermal state after a long interaction time. In fact, this point can also be understood from Eq. (9). 5. Conclusion and discussion As shown in Eq. (9), e b b ln(1 e κt ) tanh represents a time-dependent chaotic field of b-mode which is in sharp contrast to the initial pure state 0 bb 0 in ρ (0). The formula ρ (0) ρ (t) exhibits how a pure two-mode squeezed vacuum state evolves into the mixed state, i.e., not only its squeezing parameter tanh e κt tanh, but also evolves into 0 aa 0 e b b ln(1 e κt ) tanh. The outcome state is no more a pure state, but an entangled mixed state. This is because a two-mode squeezed state is simultaneously an entangled state, while the a-mode undergoes a damping, the entangled b-mode also varies correspondingly. For this channel, the associated loss mechanism for the two-mode squeezed state is in an entangled way. References 1 Bouwmeester D, Ekert A and Zeilinger 000 The Physics of Quantum Information (Berlin: Springer) Gardiner C W and Zoller P 000 Quantum Noise nd edn. (New York: Springer-Verlag) 3 Fan H Y and Hu L Y 009 Chin. Phys. B Fan H Y and Hu L Y 009 Commun. Theor. Phys Fan H Y and Klauder J R 1994 Phys. Rev. A Fan H Y and Fan Y 1998 Phys. Lett. A Fan H Y and Hu L Y 008 Mod. Phys. Lett. B Takahashi Y and Umezawa H 1975 Collecive Phenomena 55 9 Loudon R and Knight P L 1987 J. Mod. Opt Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (New York: Cambridge University Press) 11 Hu L Y, Xu X X, Wang Z S and Xu X F 010 Phys. Rev. A Hu L Y, Xu X X, Guo Q and Fan H Y 010 Opt. Commun Hu L Y and Fan H Y 009 Chin. Phys. B

Time evolution of negative binomial optical field in diffusion channel , China

Time evolution of negative binomial optical field in diffusion channel , China Chinese Physics B arxiv:1504.04437v1 [quant-ph] 17 Apr 2015 Time evolution of negative binomial optical field in diffusion channel Liu Tang-Kun a, Wu Pan-Pan a, Shan Chuan-Jia a, Liu Ji-Bing a, and Fan

More information

Decoherence of photon-subtracted squeezed vacuum state in dissipative channel

Decoherence of photon-subtracted squeezed vacuum state in dissipative channel Chin. Phys. B Vol. 0, No. 011) 0403 Decoherence of photon-subtracted squeezed vacuum state in dissipative channel Xu Xue-Xiang ) a)b), Yuan Hong-Chun ) b), and Fan Hong-Yi ) b) a) College of Physics and

More information

General formula for finding Mexican hat wavelets by virtue of Dirac s representation theory and coherent state

General formula for finding Mexican hat wavelets by virtue of Dirac s representation theory and coherent state arxiv:quant-ph/0508066v 8 Aug 005 General formula for finding Meican hat wavelets by virtue of Dirac s representation theory and coherent state, Hong-Yi Fan and Hai-Liang Lu Department of Physics, Shanghai

More information

arxiv: v1 [quant-ph] 29 May 2007

arxiv: v1 [quant-ph] 29 May 2007 arxiv:0705.4184v1 [quant-ph] 9 May 007 Fresnel-transform s quantum correspondence and quantum optical ABCD Law Fan Hong-Yi and Hu Li-Yun Department of Physics, Shanghai Jiao Tong University, Shanghai,

More information

Two-mode excited entangled coherent states and their entanglement properties

Two-mode excited entangled coherent states and their entanglement properties Vol 18 No 4, April 2009 c 2009 Chin. Phys. Soc. 1674-1056/2009/18(04)/1328-05 Chinese Physics B and IOP Publishing Ltd Two-mode excited entangled coherent states and their entanglement properties Zhou

More information

Decoherence of quantum excitation of even/odd coherent states in thermal environment

Decoherence of quantum excitation of even/odd coherent states in thermal environment PRAMANA c Indian Academy of Sciences Vol. 86, No. 4 journal of April 2016 physics pp. 763 776 Decoherence of quantum excitation of even/odd coherent states in thermal environment A MOHAMMADBEIGI 1 and

More information

arxiv:quant-ph/ v2 20 Nov 1999

arxiv:quant-ph/ v2 20 Nov 1999 A General Type of a Coherent State with Thermal Effects Wen-Fa Lu Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030, China (August 3, 208) arxiv:quant-ph/9903084v2 20 Nov 999

More information

Bose Description of Pauli Spin Operators and Related Coherent States

Bose Description of Pauli Spin Operators and Related Coherent States Commun. Theor. Phys. (Beijing, China) 43 (5) pp. 7 c International Academic Publishers Vol. 43, No., January 5, 5 Bose Description of Pauli Spin Operators and Related Coherent States JIANG Nian-Quan,,

More information

Protection of an Unknown Quantum State against Decoherence via Weak Measurement and Quantum Measurement Reversal

Protection of an Unknown Quantum State against Decoherence via Weak Measurement and Quantum Measurement Reversal Comput. Sci. Appl. Volume 1, Number 1, 2014, pp. 60-66 Received: May 19, 2014; Published: July 25, 2014 Computer Science and Applications www.ethanpublishing.com Protection of an Unknown Quantum State

More information

A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics

A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics Commun. Theor. Phys. 67 (2017) 391 395 Vol. 67, No. 4, April 1, 2017 A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics Ting-Ting Zhang ( 张婷婷 ), 1,2 Jie Wei ( 魏杰 ), 1,2

More information

Time Evolution, Dynamical Quantum Fluctuation and High-Order Squeezing Feature in Polariton System I

Time Evolution, Dynamical Quantum Fluctuation and High-Order Squeezing Feature in Polariton System I Commun. Theor. Phys. (Beijing China) 54 (200) pp. 93 924 c Chinese Physical Society and IOP Publishing Ltd Vol. 54 No. 5 November 5 200 Time Evolution Dynamical Quantum Fluctuation and High-Order Squeezing

More information

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields Commun. Theor. Phys. (Beijing China) 50 (2008) pp. 741 748 c Chinese Physical Society Vol. 50 No. 3 September 15 2008 VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting

More information

Generalized projective synchronization between two chaotic gyros with nonlinear damping

Generalized projective synchronization between two chaotic gyros with nonlinear damping Generalized projective synchronization between two chaotic gyros with nonlinear damping Min Fu-Hong( ) Department of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China

More information

Thermal quantum discord in Heisenberg models with Dzyaloshinski Moriya interaction

Thermal quantum discord in Heisenberg models with Dzyaloshinski Moriya interaction Thermal quantum discord in Heisenberg models with Dzyaloshinski Moriya interaction Wang Lin-Cheng(), Yan Jun-Yan(), and Yi Xue-Xi() School of Physics and Optoelectronic Technology, Dalian University of

More information

Lorentz-squeezed Hadrons and Hadronic Temperature

Lorentz-squeezed Hadrons and Hadronic Temperature Lorentz-squeezed Hadrons and Hadronic Temperature D. Han, National Aeronautics and Space Administration, Code 636 Greenbelt, Maryland 20771 Y. S. Kim, Department of Physics and Astronomy, University of

More information

Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields Commun. Theor. Phys. (Beijing, China) 4 (004) pp. 103 109 c International Academic Publishers Vol. 4, No. 1, July 15, 004 Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent

More information

Quantum Bertrand duopoly of incomplete information

Quantum Bertrand duopoly of incomplete information INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (2005) 4247 4253 doi:10.1088/0305-4470/38/19/013 Quantum Bertrand duopoly of incomplete information

More information

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties Commun. Theor. Phys. 67 (2017) 377 382 Vol. 67, No. 4, April 1, 2017 Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties Lei Shi ( 石磊

More information

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state Perfect quantum teleportation and dense coding protocols via the -qubit W state Wang Mei-Yu( ) a)b) and Yan Feng-Li( ) a)b) a) College of Physics Science and Information Engineering, Hebei ormal University,

More information

Teleportation of an n-bit one-photon and vacuum entangled GHZ cavity-field state

Teleportation of an n-bit one-photon and vacuum entangled GHZ cavity-field state Vol 6 No, January 007 c 007 Chin. Phys. Soc. 009-963/007/6(0)/08-05 Chinese Physics and IOP Publishing Ltd Teleportation of an n-bit one-photon and vacuum entangled GHZ cavity-field state Lai Zhen-Jiang(

More information

Decoherence of highly mixed macroscopic quantum superpositions

Decoherence of highly mixed macroscopic quantum superpositions Jeong et al. Vol. 25, No. 6/June 28/ J. Opt. Soc. Am. B 125 Decoherence of highly mixed macroscopic quantum superpositions Hyunseok Jeong, 1,2 Jinhyoung Lee, 3 and Hyunchul Nha 4, * 1 Centre for Quantum

More information

Interference and the lossless lossy beam splitter

Interference and the lossless lossy beam splitter Interference and the lossless lossy beam splitter JOHN JEFFERS arxiv:quant-ph/000705v1 10 Jul 000 Department of Physics and Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK.

More information

A Condition for Entropy Exchange Between Atom and Field

A Condition for Entropy Exchange Between Atom and Field Commun. Theor. Phys. 57 (2012) 209 213 Vol. 57, No. 2, February 15, 2012 A Condition for Entropy Exchange Between Atom and Field YAN Xue-Qun ( ) and LÜ Yu-Guang (ù ½) Institute of Physics and Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature1366 I. SUPPLEMENTARY DISCUSSION A. Success criterion We shall derive a success criterion for quantum teleportation applicable to the imperfect, heralded dual-rail

More information

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES acta physica slovaca vol. 50 No. 3, 351 358 June 2000 ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES S. Scheel 1, L. Knöll, T. Opatrný, D.-G.Welsch Theoretisch-Physikalisches

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

Deterministic secure communications using two-mode squeezed states

Deterministic secure communications using two-mode squeezed states Deterministic secure communications using twomode squeezed states Alberto M. Marino* and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 467, USA Received 5 May

More information

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence Chin. Phys. B Vol. 0, No. 1 011) 01407 Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence Chu Xiu-Xiang ) College of Sciences, Zhejiang Agriculture and Forestry

More information

Radiation energy flux of Dirac field of static spherically symmetric black holes

Radiation energy flux of Dirac field of static spherically symmetric black holes Radiation energy flux of Dirac field of static spherically symmetric black holes Meng Qing-Miao( 孟庆苗 ), Jiang Ji-Jian( 蒋继建 ), Li Zhong-Rang( 李中让 ), and Wang Shuai( 王帅 ) Department of Physics, Heze University,

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Chin. Phys. B Vol. 19, No. 1 010) 010305 Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Li Zhi-Jian 李志坚 ), Cheng Lu 程璐 ), and Wen Jiao-Jin

More information

arxiv: v1 [quant-ph] 6 Aug 2009

arxiv: v1 [quant-ph] 6 Aug 2009 Output entanglement and squeezing of two-mode fields generated by a single atom Ling Zhou, Qing-Xia Mu, Zhong-Ju Liu School of physics and optoelectronic technology, Dalian University of Technology, Dalian

More information

Teleportation of a two-atom entangled state via cavity decay

Teleportation of a two-atom entangled state via cavity decay Vol 16 No 6, June 007 c 007 Chin. Phys. Soc. 1009-1963/007/16(06)/1678-05 Chinese Physics and IOP Publishing Ltd Teleportation of a two-atom entangled state via cavity decay Ye Sai-Yun( ) Department of

More information

Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states

Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states J. At. Mol. Sci. doi: 0.4208/jams.02090.0360a Vol., No. 3, pp. 262-267 August 200 Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states Jia-Qiang Zhao

More information

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Commun. Theor. Phys. 70 (2018) 803 807 Vol. 70, No. 6, December 1, 2018 New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Guang-Han

More information

Partial factorization of wave functions for a quantum dissipative system

Partial factorization of wave functions for a quantum dissipative system PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998 Partial factorization of wave functions for a quantum dissipative system C. P. Sun Institute of Theoretical Physics, Academia Sinica, Beiing 100080, China

More information

Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach

Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach Commun. Theor. Phys. 58 1 617 6 Vol. 58, No. 5, November 15, 1 Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach GAO Xiao-Nan Ô é, 1 YANG Xu-Dong Êü, and LOU Sen-Yue 1,, 1 Department

More information

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics Tang Jing-Wu( ), Zhao Guan-Xiang( ), and He Xiong-Hui( ) School of Physics, Hunan

More information

Hanbury Brown Twiss effect and thermal light ghost imaging: A unified approach

Hanbury Brown Twiss effect and thermal light ghost imaging: A unified approach PHYSICAL REVIEW A 79, 033835 009 Hanbury Brown Twiss effect and thermal light ghost imaging: A unified approach Li-Gang Wang, 1, Sajid Qamar, 3 Shi-Yao Zhu, 1, and M. Suhail Zubairy 3,4 1 Department of

More information

Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method Chin. Phys. B Vol. 0, No. (0) 00304 Solving ground eigenvalue eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method Tang Wen-Lin( ) Tian Gui-Hua( ) School

More information

An Approximate Solution of the Jaynes Cummings Model with Dissipation

An Approximate Solution of the Jaynes Cummings Model with Dissipation An Approximate Solution of the Jaynes Cummings Model with Dissipation arxiv:03.039v [quant-ph] Mar 0 Kazuyuki FUJII and Tatsuo SUZUKI Department of Mathematical Sciences Yokohama City University Yokohama,

More information

Effects of Different Spin-Spin Couplings and Magnetic Fields on Thermal Entanglement in Heisenberg XY Z Chain

Effects of Different Spin-Spin Couplings and Magnetic Fields on Thermal Entanglement in Heisenberg XY Z Chain Commun. heor. Phys. (Beijing China 53 (00 pp. 659 664 c Chinese Physical Society and IOP Publishing Ltd Vol. 53 No. 4 April 5 00 Effects of Different Spin-Spin Couplings and Magnetic Fields on hermal Entanglement

More information

Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere

Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere Zhao Yan-Zhong( ), Sun Hua-Yan( ), and Song Feng-Hua( ) Department of Photoelectric

More information

No. 11 Analysis of the stability and density waves for trafc flow 119 where the function f sti represents the response to the stimulus received by the

No. 11 Analysis of the stability and density waves for trafc flow 119 where the function f sti represents the response to the stimulus received by the Vol 11 No 11, November 00 cfl 00 Chin. Phys. Soc. 1009-196/00/11(11)/118-07 Chinese Physics and IOP Publishing Ltd Analysis of the stability and density waves for trafc flow * Xue Yu( ) Shanghai Institute

More information

Optical Waveguide Tap with Ideal Photodetectors

Optical Waveguide Tap with Ideal Photodetectors Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Tuesday, October 18, 2016 Lecture Number 11 Fall 2016 Jeffrey H.

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm

Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm Commun. Theor. Phys. 68 (017 641 646 Vol. 68, No. 5, November 1, 017 Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm Le Yang ( 杨乐, 1, Xi Chen ( 陈希, 1 Ming Zhang ( 张明, 1,

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

Entropy and Lorentz Transformations

Entropy and Lorentz Transformations published in Phys. Lett. A, 47 343 (990). Entropy and Lorentz Transformations Y. S. Kim Department of Physics, University of Maryland, College Par, Maryland 074 E. P. Wigner Department of Physics, Princeton

More information

NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES

NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES Modern Physics Letters B, Vol. 13, No. 18 1999) 617 623 c World Scientific Publishing Company NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES XIAO-GUANG

More information

o. 5 Proposal of many-party controlled teleportation for by (C 1 ;C ; ;C ) can be expressed as [16] j' w i (c 0 j000 :::0i + c 1 j100 :::0i + c

o. 5 Proposal of many-party controlled teleportation for by (C 1 ;C ; ;C ) can be expressed as [16] j' w i (c 0 j000 :::0i + c 1 j100 :::0i + c Vol 14 o 5, May 005 cfl 005 Chin. Phys. Soc. 1009-1963/005/14(05)/0974-06 Chinese Physics and IOP Publishing Ltd Proposal of many-party controlled teleportation for multi-qubit entangled W state * Huang

More information

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Bijita Sarma and Amarendra K Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039,

More information

Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser

Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser Cent. Eur. J. Phys. 12(10) 2014 737-743 DOI: 10.2478/s11534-014-0510-7 Central European Journal of Physics Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom

More information

Mode Invisibility and Single Photon Detection

Mode Invisibility and Single Photon Detection Mode Invisibility and Single Photon Detection Mode Invisibility and Single Photon Detection Marvellous Onuma-Kalu 1 Robert B. Mann 1 Eduardo Martin-Martinez 1 2 1 Department of Physics and Astronomy University

More information

Statistical Properties of a Ring Laser with Injected Signal and Backscattering

Statistical Properties of a Ring Laser with Injected Signal and Backscattering Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 87 92 c International Academic Publishers Vol. 35, No. 1, January 15, 2001 Statistical Properties of a Ring Laser with Injected Signal and Backscattering

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, October 13, 016 Lecture Number 10 Fall 016 Jeffrey H.

More information

Negative refractive index in a four-level atomic system

Negative refractive index in a four-level atomic system Negative refractive index in a four-level atomic system Zhang Zhen-Qing( ) a)c)d), Liu Zheng-Dong( ) a)b)c), Zhao Shun-Cai( ) b)c), Zheng Jun( ) c)d), Ji Yan-Fang( ) e), and Liu Nian( ) a)c)d) a) Institute

More information

arxiv:quant-ph/ v1 9 Mar 2007

arxiv:quant-ph/ v1 9 Mar 2007 Sudden death and long-lived entanglement of two three-level trapped ions M. Abdel-Aty and H. Moya-Cessa Department of Mathematics, College of Science, University of Bahrain, 338, Kingdom of Bahrain INAOE,

More information

Entanglement swapping using nondegenerate optical parametric amplifier

Entanglement swapping using nondegenerate optical parametric amplifier 15 July 00 Physics Letters A 99 (00 47 43 www.elsevier.com/locate/pla Entanglement swapping using nondegenerate optical parametric amplifier Jing Zhang Changde Xie Kunchi Peng The State Key Laboratory

More information

ON THE POSSIBILITY OF USING OPTICAL Y-SPLITTER IN QUANTUM RANDOM NUMBER GENERATION SYSTEMS BASED ON FLUCTUATIONS OF VACUUM

ON THE POSSIBILITY OF USING OPTICAL Y-SPLITTER IN QUANTUM RANDOM NUMBER GENERATION SYSTEMS BASED ON FLUCTUATIONS OF VACUUM NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 05, 6 (), P. 95 99 ON THE POSSIBILITY OF USING OPTICAL Y-SPLITTER IN QUANTUM RANDOM NUMBER GENERATION SYSTEMS BASED ON FLUCTUATIONS OF VACUUM A. E. Ivanova,

More information

Nonclassicality of a photon-subtracted Gaussian field

Nonclassicality of a photon-subtracted Gaussian field PHYSICAL REVIEW A 7, 043805 005 Nonclassicality of a photon-subtracted Gaussian field M. S. Kim, E. Park, P. L. Knight, and H. Jeong 3 School of Mathematics and Physics, The Queen s University, Belfast,

More information

Bifurcation control and chaos in a linear impulsive system

Bifurcation control and chaos in a linear impulsive system Vol 8 No 2, December 2009 c 2009 Chin. Phys. Soc. 674-056/2009/82)/5235-07 Chinese Physics B and IOP Publishing Ltd Bifurcation control and chaos in a linear impulsive system Jiang Gui-Rong 蒋贵荣 ) a)b),

More information

Wigner function description of a qubit-oscillator system

Wigner function description of a qubit-oscillator system Low Temperature Physics/Fizika Nizkikh Temperatur, 013, v. 39, No. 3, pp. 37 377 James Allen and A.M. Zagoskin Loughborough University, Loughborough, Leics LE11 3TU, UK E-mail: A.Zagoskin@eboro.ac.uk Received

More information

Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method

Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method Some exact solutions to the inhomogeneous higher-order nonlinear Schrödinger equation by a direct method Zhang Huan-Ping( 张焕萍 ) a) Li Biao( 李彪 ) a) and Chen Yong( 陈勇 ) b) a) Nonlinear Science Center Ningbo

More information

Synchronization and Bifurcation Analysis in Coupled Networks of Discrete-Time Systems

Synchronization and Bifurcation Analysis in Coupled Networks of Discrete-Time Systems Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 871 876 c International Academic Publishers Vol. 48, No. 5, November 15, 2007 Synchronization and Bifurcation Analysis in Coupled Networks of Discrete-Time

More information

The feasible generation of entangled spin-1 state using linear optical element

The feasible generation of entangled spin-1 state using linear optical element The feasible generation of entangled spin-1 state using linear optical element XuBo Zou, K. Pahlke and W. Mathis Institute TET, University of Hannover, Appelstr. 9A, 30167 Hannover, Germany Abstract We

More information

Comparative analysis of non-equilibrium quantum Landauer bounds

Comparative analysis of non-equilibrium quantum Landauer bounds Comparative analysis of non-equilibrium quantum Landauer bounds Steve Campbell in collaboration with: Giacomo Guarnieri, Mauro Paternostro, and Bassano Vacchini To Appear July(ish) 2017 Landauer s Principle

More information

arxiv: v3 [quant-ph] 12 Dec 2015

arxiv: v3 [quant-ph] 12 Dec 2015 SU(1,) interferometer Yadong Wu UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 0040, PR China Chun-Hua Yuan Quantum Institute for Light and Atoms, Department of Physics, East China Normal

More information

New Homoclinic and Heteroclinic Solutions for Zakharov System

New Homoclinic and Heteroclinic Solutions for Zakharov System Commun. Theor. Phys. 58 (2012) 749 753 Vol. 58, No. 5, November 15, 2012 New Homoclinic and Heteroclinic Solutions for Zakharov System WANG Chuan-Jian ( ), 1 DAI Zheng-De (à ), 2, and MU Gui (½ ) 3 1 Department

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

2.1 Definition and general properties

2.1 Definition and general properties Chapter 2 Gaussian states Gaussian states are at the heart of quantum information processing with continuous variables. The basic reason is that the vacuum state of quantum electrodynamics is itself a

More information

Quantum entanglement and symmetry

Quantum entanglement and symmetry Journal of Physics: Conference Series Quantum entanglement and symmetry To cite this article: D Chrucisi and A Kossaowsi 2007 J. Phys.: Conf. Ser. 87 012008 View the article online for updates and enhancements.

More information

QUANTUM DECOHERENCE IN THE THEORY OF OPEN SYSTEMS

QUANTUM DECOHERENCE IN THE THEORY OF OPEN SYSTEMS Ó³ Ÿ. 007.. 4, º 38.. 3Ä36 Š Œ œ ƒˆˆ ˆ ˆŠˆ QUANTUM DECOHERENCE IN THE THEORY OF OPEN SYSTEMS A. Isar Department of Theoretical Physics, Institute of Physics and Nuclear Engineering, Bucharest-Magurele,

More information

Fidelity of Quantum Teleportation through Noisy Channels

Fidelity of Quantum Teleportation through Noisy Channels Fidelity of Quantum Teleportation through Noisy Channels Sangchul Oh, Soonchil Lee, and Hai-woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejon, 305-701, Korea (Dated:

More information

1 Photon antibunching

1 Photon antibunching VARIOUS APPROACHES TO PHOTON ANTIBUNCHING IN SECOND-HARMONIC GENERATION 1 A. Miranowicz Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, U.K. J. Bajer Laboratory of Quantum

More information

Quântica Oscilador Paramétrico

Quântica Oscilador Paramétrico Luz e Átomos como ferramentas para Informação Quântica Oscilador Paramétrico Ótico Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Parametric Down Conversion Energy and

More information

Superposed Two-mode Squeezed Laser Light Coupled to Squeezed Vacuum Reservoir

Superposed Two-mode Squeezed Laser Light Coupled to Squeezed Vacuum Reservoir Superposed Two-mode Squeezed Laser Light Coupled to Squeezed Vacuum Reservoir Sitotaw Eshete 1* Misrak Getahun (PhD) 2 1.Department of Physics, Oda Bultum University, Pobox.226, Chiro Ethiopia 2.Department

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Quantum interference and evolution of entanglement in a system of three-level atoms

Quantum interference and evolution of entanglement in a system of three-level atoms Quantum interference and evolution of entanglement in a system of three-level atoms Łukasz Derkacz and Lech Jakóbczyk Institute of Theoretical Physics University of Wrocław Pl. M. Borna, 5-24 Wrocław,

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

arxiv: v1 [physics.optics] 30 Mar 2010

arxiv: v1 [physics.optics] 30 Mar 2010 Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field Xuewen Long a,b, Keqing Lu a, Yuhong Zhang a,b, Jianbang Guo a,b, and Kehao Li a,b a State Key Laboratory of Transient

More information

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method Chin. Phys. B Vol. 21, No. 1 212 133 The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method He Ying 何英, Tao Qiu-Gong 陶求功, and Yang Yan-Fang 杨艳芳 Department

More information

Average Fidelity of Teleportation in Quantum Noise Channel

Average Fidelity of Teleportation in Quantum Noise Channel Commun. Theor. Phys. (Beijing, China) 45 (006) pp. 80 806 c International Academic Publishers Vol. 45, No. 5, May 15, 006 Average Fidelity of Teleportation in Quantum Noise Channel HAO Xiang, ZHANG Rong,

More information

Universal Associated Legendre Polynomials and Some Useful Definite Integrals

Universal Associated Legendre Polynomials and Some Useful Definite Integrals Commun. Theor. Phys. 66 0) 158 Vol. 66, No., August 1, 0 Universal Associated Legendre Polynomials and Some Useful Definite Integrals Chang-Yuan Chen í ), 1, Yuan You ), 1 Fa-Lin Lu öß ), 1 Dong-Sheng

More information

Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings Model with Intensity-Dependent Coupling in a Kerr-like Medium

Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings Model with Intensity-Dependent Coupling in a Kerr-like Medium Commun. Theor. Phys. (Beijing China) 45 (006) pp. 77 731 c International Academic Publishers Vol. 45 No. 4 April 15 006 Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings

More information

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution entropy Article Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution Luis Amilca Andrade-Morales, Braulio M. Villegas-Martínez and Hector M. Moya-Cessa * Instituto

More information

arxiv: v1 [quant-ph] 14 Jun 2018

arxiv: v1 [quant-ph] 14 Jun 2018 SCHRÖDINGER PICTURE ANALYSIS OF THE BEAM SPLITTER: AN APPLICATION OF THE JANSZKY REPRESENTATION arxiv:86.5748v [quant-ph] 4 Jun 8 Stephen M. Barnett School of Physics and Astronomy, University of Glasgow,

More information

Arbitrary precision in multipath interferometry

Arbitrary precision in multipath interferometry PHYSICAL REVIEW A VOLUE 55, NUBER 3 ARCH 1997 Arbitrary precision in multipath interferometry Giacomo. D Ariano and atteo G. A. Paris Istituto Nazionale di Fisica della ateria, Sezione di Pavia, via Bassi

More information

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( )

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) IL NUOVO CIMENTO Vol. 119 B, N. 2 Febbraio 2004 DOI 10.1393/ncb/i2004-10051-8 Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) V. Putz( 1 )( )andk. Svozil( 2 )( ) ( 1 ) Max-Planck-Institute

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

Mixed-state sensitivity of several quantum-information benchmarks

Mixed-state sensitivity of several quantum-information benchmarks PHYSICAL REVIEW A 70, 05309 (004) Mixed-state sensitivity of several quantum-information benchmarks Nicholas A. Peters, Tzu-Chieh Wei, and Paul G. Kwiat Physics Department, University of Illinois, 1110

More information

arxiv:quant-ph/ v1 25 Jun 2001

arxiv:quant-ph/ v1 25 Jun 2001 Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement M. S. Kim, W. Son,2, V. Bužek, 3, P. L. Knight, 4 School of Mathematics and Physics, The Queen s University, Belfast

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Illustrative Example of Feynman s Rest of the Universe

Illustrative Example of Feynman s Rest of the Universe published in Am. J. Phys. 67, 61-66 (1999). Illustrative Example of Feynman s Rest of the Universe D. Han 1 National Aeronautics and Space Administration, Goddard Space Flight Center, Code 935, Greenbelt,

More information

Nonclassical properties and generation of superposition state of excited coherent states of motion of trapped ion

Nonclassical properties and generation of superposition state of excited coherent states of motion of trapped ion J. At. Mol. Sci. doi: 10.408/jams.010811.0311a Vol., o. 4, pp. 35-359 ovember 011 onclassical properties and generation of superposition state of excited coherent states of motion of trapped ion Zhong-Jie

More information

Diffraction effects in entanglement of two distant atoms

Diffraction effects in entanglement of two distant atoms Journal of Physics: Conference Series Diffraction effects in entanglement of two distant atoms To cite this article: Z Ficek and S Natali 007 J. Phys.: Conf. Ser. 84 0007 View the article online for updates

More information

Projective synchronization of a complex network with different fractional order chaos nodes

Projective synchronization of a complex network with different fractional order chaos nodes Projective synchronization of a complex network with different fractional order chaos nodes Wang Ming-Jun( ) a)b), Wang Xing-Yuan( ) a), and Niu Yu-Jun( ) a) a) School of Electronic and Information Engineering,

More information