2 Feynman rules, decay widths and cross sections

Size: px
Start display at page:

Download "2 Feynman rules, decay widths and cross sections"

Transcription

1 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in a box of volume V, d 3 x ψ( x) 2 = 1. (2.1) Thus plane waves are normalized as V ψ p ( x) = 1 V e i p x. (2.2) They form a complete, orthonormal set, p p = δ p,p. (2.3) Although this normalization is not Lorentz invariant, it is convenient to start with this box normalization for the initial and final states also in a relativistic framework and to perform the transition to covariant continuum normalization in the final formula for decay widths and cross sections. Note that a) the propagators describing virtual particles are already covariant, b) S-matrix elements are not independent of the chosen normalization: Squared S-matrix elements depending on continuous variables are not probabilities, but probability densities. We use as relativistic normalization for all types of particles p p = 2E p V δ p, p. (2.4) In the continuum limit p V (2π) 3 d 3 p (2.5) corresponding to one state per phase space volume d 3 xd 3 p = h 3 and p p = 2E p (2π) 3 δ( p p ). (2.6) Thus the relation between matrix elements in non-relativistic and relativistic normalization for a transition from n n particles is given by M fi = (2E i V ) i=1 1/2 n (2E f V ) 1/2 M box fi. (2.7) 9

2 2 Feynman rules, decay widths and cross sections Feynman rules We associate to external particles wave functions without normalization and exp(±ikx) factors as follows u(p 1 ) v(p 4 ) ε (r) µ (k 1 ) ε (r) ν (k 2 ) v(p 2 ) ū(p 3 ) time Spin sums are given by u a (p,s)ū b (p,s) = (p/ + m) ab (2.8) s v a (p,s) v b (p,s) = (p/ m) ab. (2.9) s Polarizations sums of massless spin-1 bosons (as photons or gluons) are given (in Feynman gauge) by 2 r=1 of spin-1 bosons with mass M > 0 (as W ± and Z) are by ε (r) µ (k)ε(r) ν (k) = g µν, (2.10) 3 r=1 The propagator of virtual particles are ε (r) µ (k)ε(r) ν (k) = g µν + k µ k ν /M 2. (2.11) 10

3 2.2 Decay widths and cross sections µ ν p is F (p) = i p/+m p 2 m 2 +iε µ ν k id F,µν (k) = i(g µν+k µ k ν /M 2 ) k 2 M 2 +iε µ ν k id F,µν (k) = ig µν k 2 +iε 2.2 Decay widths and cross sections Decay widths We split the scattering operator S into a diagonal part and the transition operator T, S = 1 + it. Taking matrix elements using the box normalization, we obtain S fi = δ fi + (2π) 4 δ (4) (P i P f )M box fi (2.12) where we set also T fi = (2π) 4 δ (4) (P i P f )M fi. Squaring for i f using (2π) 4 δ (4) (0) = V T and multiplying with the density of final states, Eq. (2.5), in the continuum limit gives as differential transition probability dw fi = (2π) 4 δ (4) (P i P f )V T M box fi 2 The decay rate dγ is the transition probability per time, dγ fi = dw fi T = (2π) 4 δ (4) (P i P f )V M box fi 2 V d 3 p f (2π) 3. (2.13) V d 3 p f (2π) 3. (2.14) Going over to relativistic normalization eliminates the volume factors V, dγ fi = (2π) 4 δ (4) 1 (P i P f ) M fi 2 d 3 p f 2E i 2E f (2π) 3. (2.15) Introducing the n-particle phase space volume the decay rate becomes dφ (n) = (2π) 4 δ (4) (P i P f ) d 3 p f 2E f (2π) 3, (2.16) dγ fi = 1 2E i M fi 2 dφ (n). (2.17) Since both M fi 2 and the phase space dφ (n) are Lorentz invariant, the decay rate Γ 1/E i = 1/(γ i m i ) shows explicitly the time dilation effect. 11

4 2 Feynman rules, decay widths and cross sections Two-particle decays We evaluate the two particle phase space dφ (2) in the rest frame of the decaying particle, dφ (2) = (2π) 4 δ(m E 1 E 2 ) δ (3) ( p 1 + p 2 ) d 3 p 1 2E 1 (2π) 3 d 3 p 2 2E 2 (2π) 3 (2.18) We perform the integration over d 3 p 1 using the momentum delta function. In the resulting expression, dφ (2) = 1 1 (2π) 2 δ(m E 1 E 2 ) d 3 p 2, (2.19) 4 E 1 is now a function of p 2, E 2 1 = p2 2 +m2 1. Introducing spherical coordinates, d3 p 2 = dωp 2 2 dp 2, dφ (2) = 1 16π 2dΩ and evaluating the delta function with M E 1 E 2 = M x and gives 0 δ(m E 1 E 2 ) p2 2 dp 2, (2.20) dp 2 dx = p 2x (2.21) dφ (2) = p 2 16π 2 dω. M (2.22) where p 2 2 = p2 cms = 1 [ M 2 4M 2 (m 1 + m 2 ) 2][ M 2 (m 1 m 2 ) 2] (2.23) equals the cms momentum of the two final state particles. Three-particle decays The three particle phase space dφ (3) is dφ (3) = (2π) 4 δ (4) (P p 1 + p 2 + p 3 ) d 3 p 1 2E 1 (2π) 3 d 3 p 2 2E 2 (2π) 3 d 3 p 3 2E 3 (2π) 3 (2.24) We can use again the momentum delta function to perform the integration over d 3 p 3, dφ (3) = 1 (2π) 5 δ(m E 1 E 2 E 3 ) d3 p 1 d 3 p 2 8 E 3, (2.25) To proceed we have to know the dependence of the matrix element on the integration variables. If there is no preferred direction (either for scalar particles or spin averaged), we obtain dφ (3) = = 1 4πp 2 1 dp 1 2πd cos ϑp 2 2 dp 2 8(2π) 5 δ(m E 1 E 2 E 3 ) E 3 1 (p 1 dp 1 ) (p 1 p 2 d cos ϑ)(p 2 dp 2 ) 32π 3 δ(m E 1 E 2 E 3 ) (2.26) E 3 We rewrite next the momentum integrals as energy integrals. Energy-momentum relation E 2 i = m2 i + p2 i gives E ide i = p i dp i for i = 1,2. Furthermore, E 2 3 = ( p 1 + p 2 ) 2 + m 2 3 = p p p 1 p 2 cos ϑ + m 2 3 (2.27) 12

5 2.2 Decay widths and cross sections and thus E 3 de 3 = p 1 p 2 d cos ϑ for fixed p 1, p 2. Performing the angular integral, we obtain and finally dφ (3) = 1 32π 3 de 1dE 2 de 3 δ(m E 1 E 2 E 3 ) (2.28) dφ (3) = 1 32π 3 de 1dE 2. (2.29) The last step is only valid, if the argument of the delta function is non-zero. Thus the remaining task is to determine the boundary of the integration domain. We introduce the invariant mass of the pair (i,j) m 2 23 = (p p 1 ) 2 = (p 2 + p 3 ) 2 = M 2 m 2 1 2ME 1 (2.30) m 2 13 = (p p 2 ) 2 = (p 1 + p 3 ) 2 = M 2 m 2 2 2ME 2 (2.31) m 2 12 = (p p 3 ) 2 = (p 1 + p 2 ) 2 = M 2 m 2 3 2ME 3. (2.32) where the last column is valid in the rest frame of the decaying particle with mass M. With E 1 +E 2 +E 3 = M one finds m m2 13 +m2 12 = M2 +m 2 1 +m2 2 +m2 3. Therefore only two out of the three variables are independent. Let s choose m 2 23 and m2 13 as integrations variables, with m 2 23 as the outer one. Then maximal value of m2 23 follows from E 1 = m 1 in Eq. (2.30) as m 2 23 (M m 1) 2, the minimal one (choosing the cm frame of pair 23) from m 2 23 = m2 2 + m (E 2E 3 p 2 + p 3 ) 2 = M 2 m 2 1 2ME 1 (m 2 + m 3 ) 2 (2.33) Combined we have (m 2 + m 3 ) 2 m 2 23 (M m 1) 2. (2.34) For given value of m 2 23, we have now to determine the allowed range of m2 13. Inserting energy and momentum conservation into E3 2 = p2 3 + m2 3, we obtain (M E 1 E 2 ) 2 = m p2 1 + p p 1 p 2 (2.35) The extrema correspond to p 1 p 2 = ±p 1 p 2 = ± (E1 2 m2 1 )(E2 2 m2 2 ) (2.36) Inserting this into (2.35) and eliminating E 1/2 via and gives the desired border values. A plot of E 1 = M2 + m 2 1 m2 23 2M E 2 = M2 + m 2 2 m2 13 2M (2.37) (2.38) dγ de 1 de 2 M fi 2 (2.39) informs us directly about the absolut value of M fi 2. If the decay proceeds via a resonance with mass m R, the number of events along m 2 ij = m2 R is strongly enhanced. 13

6 2 Feynman rules, decay widths and cross sections Cross sections We consider now the interaction of 2 particles in the rest system of either particle 1 or 2. For simplicity, we consider 2 uniform particle beams. They may produce n final state particles. The total number of such scatterings is dn v rel n 1 n 2 dv dt, (2.40) where n i is the density of particles of type i = 1,2 and v rel is their relative velocity. The proportionality constant has the dimension of an area and is called cross section. We define in the rest system of either particle 1 or 2 while we set in an arbitrary frame dn = σv rel n 1 n 2 dv dt, (2.41) dn = An 1 n 2 dv dt. (2.42) Since both dn and dv dt = d 4 x are Lorentz invariant, the expression An 1 n 2 has to be Lorentz invariant too. Since the densities transform as the expression n i = n i,0 γ = n i,0 E i m i (2.43) A E 1E 2 p 1 p 2 (2.44) is also Lorentz invariant. In the rest system of particle 1, it becomes Thus we found that A in an arbitrary frame is given by A p 1 p 2 = A = σv rel (2.45) A = σv rel p 1 p 2. (2.46) A more handy expression for A is obtained as follows: In the rest frame 1, we have m 2 p 1 p 2 = m 1 E 2 = m 1. (2.47) 1 vrel 2 Thus Next we define the flux factor v rel = I = 1 m2 1 m2 2 (p 1 p 2 ) 2. (2.48) (p 1 p 2 ) 2 m 2 1 m2 2. (2.49) Inserting I using (3.36) into (3.34), we obtain dn = σ I V (n 1V )(n 2 dv )dt. (2.50) 14

7 2.2 Decay widths and cross sections Here, we regrouped the terms to make clear that after integration the total number N of scattering events is proportional to the number N 1 = n 1 V and N 2 = n 2 dv of particles of type 1 and 2, respectively. The number N of scattering events per time and per particle pair 12 is however simply the transition probability per time, dn N 1 N 2 T = dσ I V = dw T (2.51) Inserting the expression for dw, we find dσ = E 1E 2 V 2 I (2π) 4 δ (4) (P i P f ) M box fi 2 V d 3 p f (2π) 3 (2.52) Changing from the box to the continuum normalization introduces a factor (2E 1 V ) 1 (2E 2 V ) 1 for the initial state and f (2E fv ) 1 for the final state. Thus the arbitrary normalization volume V cancels and we obtain dσ = 1 4I (2π)4 δ (4) (P i P f ) M fi 2 with the final state phase space dφ (n). d 3 p f 2E f (2π) 3 = 1 4I M fi 2 dφ (n) (2.53) 2 2 scattering The flux factor becomes in the cms I 2 = (p 1 p 2 ) 2 m 2 1 m2 2 = p2 cms (E 1 + E 2 ) 2. (2.54) or I = p cms s. Adding also the know expression for the 2-particle phase space gives dσ dω = 1 64π 2 s p cms p cms M fi 2 (2.55) Introduce for the scattering process Mandelstam variables s,t, and u, s = (p 1 + p 2 ) 2 = (p 2 + p 4 ) 2 (2.56) t = (p 1 p 3 ) 2 = (p 2 p 4 ) 2 (2.57) u = (p 1 p 4 ) 2 = (p 2 p 3 ) 2. (2.58) Since s + t + u = m m2 2 + m2 3 + m2 4, the scattering amplitude A depends only on two variables, e.g M(s,t). In the center of mass (cm) frame, p 1 = p 2, and we see that the Mandelstam variable s = m m E 1E 2 + 2p 2 cm = (E a + E b ) 2 (2.59) has the meaning of cm energy squared. The other two variables correspond to the fourmomentum exchanged between initial and final state particles. 15

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

Lorentz invariant scattering cross section and phase space

Lorentz invariant scattering cross section and phase space Chapter 3 Lorentz invariant scattering cross section and phase space In particle physics, there are basically two observable quantities : Decay rates, Scattering cross-sections. Decay: p p 2 i a f p n

More information

Fermi s Golden Rule and Simple Feynman Rules

Fermi s Golden Rule and Simple Feynman Rules Fermi s Golden Rule and Simple Feynman Rules ; December 5, 2013 Outline Golden Rule 1 Golden Rule 2 Recipe For the Golden Rule For both decays rates and cross sections we need: The invariant amplitude

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

ELECTRON-PION SCATTERING II. Abstract

ELECTRON-PION SCATTERING II. Abstract ELECTRON-PION SCATTERING II Abstract The electron charge is considered to be distributed or extended in space. The differential of the electron charge is set equal to a function of electron charge coordinates

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

Physics 214 UCSD Lecture 7 Halzen & Martin Chapter 4

Physics 214 UCSD Lecture 7 Halzen & Martin Chapter 4 Physics 214 UCSD Lecture 7 Halzen & Martin Chapter 4 (Spinless) electron-muon scattering Cross section definition Decay rate definition treatment of identical particles symmetrizing crossing Electrodynamics

More information

Quantum ElectroDynamics III

Quantum ElectroDynamics III Quantum ElectroDynamics III Feynman diagram Dr.Farida Tahir Physics department CIIT, Islamabad Human Instinct What? Why? Feynman diagrams Feynman diagrams Feynman diagrams How? What? Graphic way to represent

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

Units. In this lecture, natural units will be used:

Units. In this lecture, natural units will be used: Kinematics Reminder: Lorentz-transformations Four-vectors, scalar-products and the metric Phase-space integration Two-body decays Scattering The role of the beam-axis in collider experiments Units In this

More information

Physics 218 Polarization sum for massless spin-one particles Winter 2016

Physics 218 Polarization sum for massless spin-one particles Winter 2016 Physics 18 Polarization sum for massless spin-one particles Winter 016 We first consider a massless spin-1 particle moving in the z-direction with four-momentum k µ = E(1; 0, 0, 1). The textbook expressions

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay 1 Introduction Relativistic Kinematics.1 Particle Decay Due to time dilation, the decay-time (i.e. lifetime) of the particle in its restframe is related to the decay-time in the lab frame via the following

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

1. Kinematics, cross-sections etc

1. Kinematics, cross-sections etc 1. Kinematics, cross-sections etc A study of kinematics is of great importance to any experiment on particle scattering. It is necessary to interpret your measurements, but at an earlier stage to determine

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Decays, resonances and scattering

Decays, resonances and scattering Structure of matter and energy scales Subatomic physics deals with objects of the size of the atomic nucleus and smaller. We cannot see subatomic particles directly, but we may obtain knowledge of their

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Physics 217 Solution Set #5 Fall 2016

Physics 217 Solution Set #5 Fall 2016 Physics 217 Solution Set #5 Fall 2016 1. Repeat the computation of problem 3 of Problem Set 4, but this time use the full relativistic expression for the matrix element. Show that the resulting spin-averaged

More information

Scattering amplitudes and the Feynman rules

Scattering amplitudes and the Feynman rules Scattering amplitudes and the Feynman rules based on S-10 We have found Z( J ) for the phi-cubed theory and now we can calculate vacuum expectation values of the time ordered products of any number of

More information

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction

Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Dr. A. Mitov Particle Physics 1 Particle Physics Dr. Alexander Mitov Handout 1 : Introduction Cambridge Particle Physics Courses PART II Particle and Nuclear Physics Dr. Potter Introductory course PART

More information

Evaluation of Triangle Diagrams

Evaluation of Triangle Diagrams Evaluation of Triangle Diagrams R. Abe, T. Fujita, N. Kanda, H. Kato, and H. Tsuda Department of Physics, Faculty of Science and Technology, Nihon University, Tokyo, Japan E-mail: csru11002@g.nihon-u.ac.jp

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Particle Notes. Ryan D. Reece

Particle Notes. Ryan D. Reece Particle Notes Ryan D. Reece July 9, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation that

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Pion Lifetime. A. George January 18, 2012

Pion Lifetime. A. George January 18, 2012 Pion Lifetime A. George January 18, 01 Abstract We derive the expected lifetime of the pion, assuming only the Feynman Rules, Fermi s Golden Rule, the Dirac Equation and its corollary, the completeness

More information

POSITRON SCATTERING BY A COULOMB POTENTIAL. Abstract. The purpose of this short paper is to show how positrons are treated

POSITRON SCATTERING BY A COULOMB POTENTIAL. Abstract. The purpose of this short paper is to show how positrons are treated POSITRON SCATTERING BY A COULOMB POTENTIAL Abstract The purpose of this short paper is to show how positrons are treated in quantum electrodynamics, and to study how positron size affects scattering. The

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

A NEW THEORY OF MUON-PROTON SCATTERING

A NEW THEORY OF MUON-PROTON SCATTERING A NEW THEORY OF MUON-PROTON SCATTERING ABSTRACT The muon charge is considered to be distributed or extended in space. The differential of the muon charge is set equal to a function of muon charge coordinates

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Semi-Classical Theory of Radiative Transitions

Semi-Classical Theory of Radiative Transitions Semi-Classical Theory of Radiative Transitions Massimo Ricotti ricotti@astro.umd.edu University of Maryland Semi-Classical Theory of Radiative Transitions p.1/13 Atomic Structure (recap) Time-dependent

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

PHY 396 K. Solutions for problem set #11. Problem 1: At the tree level, the σ ππ decay proceeds via the Feynman diagram

PHY 396 K. Solutions for problem set #11. Problem 1: At the tree level, the σ ππ decay proceeds via the Feynman diagram PHY 396 K. Solutions for problem set #. Problem : At the tree level, the σ ππ decay proceeds via the Feynman diagram π i σ / \ πj which gives im(σ π i + π j iλvδ ij. The two pions must have same flavor

More information

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate post-graduate course in High Energy Physics Paper 1: The Standard Model

More information

Particle Physics: Introduction to the Standard Model

Particle Physics: Introduction to the Standard Model Particle Physics: Introduction to the Standard Model Overview of the Standard Model Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Physics 342 Lecture 34 Relativistic Quantum Mechanics Lecture 34 Physics 342 Quantum Mechanics I Wednesday, April 30th, 2008 We know that the Schrödinger equation logically replaces Newton s second law

More information

Ultrarelativistic Heavy-Ions

Ultrarelativistic Heavy-Ions Kinematics November 11, 2010 / GSI Outline Introduction 1 Introduction 2 3 3 Notation Introduction A parallel to z-axis (beam): A A = A A transverse to z-axis: A = A A A = A Transverse mass: m = m 2 +

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing.

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing. Physics 27 FINAL EXAM SOLUTIONS Fall 206. The helicity spinor u(p, λ satisfies u(p,λu(p,λ = 2m. ( In parts (a and (b, you may assume that m 0. (a Evaluate u(p,λ by any method of your choosing. Using the

More information

Number-Flux Vector and Stress-Energy Tensor

Number-Flux Vector and Stress-Energy Tensor Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Number-Flux Vector and Stress-Energy Tensor c 2000, 2002 Edmund Bertschinger. All rights reserved. 1 Introduction These

More information

Properties of the S-matrix

Properties of the S-matrix Properties of the S-matrix In this chapter we specify the kinematics, define the normalisation of amplitudes and cross sections and establish the basic formalism used throughout. All mathematical functions

More information

Interactions and Fields

Interactions and Fields Interactions and Fields Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Strong Interactions Weak and Electroweak

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (6.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 2 2 3 3 4 4 5 Where are we? W fi = 2π 4 LI matrix element M i (2Ei) fi 2 ρ f (E i ) LI phase

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

MOTT-RUTHERFORD SCATTERING AND BEYOND. Abstract. The electron charge is considered to be distributed or extended in

MOTT-RUTHERFORD SCATTERING AND BEYOND. Abstract. The electron charge is considered to be distributed or extended in MOTT-RUTHERFORD SCATTERING AND BEYOND Abstract The electron charge is considered to be distributed or extended in space. The differential of the electron charge is set equal to a function of the electron

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Moller Scattering. I would like to thank Paul Leonard Große-Bley for pointing out errors in the original version of this document.

Moller Scattering. I would like to thank Paul Leonard Große-Bley for pointing out errors in the original version of this document. : Moller Scattering Particle Physics Elementary Particle Physics in a Nutshell - M. Tully February 16, 017 I would like to thank Paul Leonard Große-Bley for pointing out errors in the original version

More information

Quantum Physics 2006/07

Quantum Physics 2006/07 Quantum Physics 6/7 Lecture 7: More on the Dirac Equation In the last lecture we showed that the Dirac equation for a free particle i h t ψr, t = i hc α + β mc ψr, t has plane wave solutions ψr, t = exp

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (9.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 QED Feyman Rules Starting from elm potential exploiting Fermi s gold rule derived QED Feyman

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics Decay rates and Cross section Ashfaq Ahmad National Centre for Physics 11/17/2014 Ashfaq Ahmad 2 Outlines Introduction Basics variables used in Exp. HEP Analysis Decay rates and Cross section calculations

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

QFT. Unit 11: Cross Sections and Decay Rates

QFT. Unit 11: Cross Sections and Decay Rates QFT Unit 11: Cross Sections and Decay Rates Decays and Collisions n When it comes to elementary particles, there are only two things that ever really happen: One particle decays into stuff Two particles

More information

Calculating cross-sections in Compton scattering processes

Calculating cross-sections in Compton scattering processes Calculating cross-sections in Compton scattering processes Fredrik Björkeroth School of Physics & Astronomy, University of Southampton January 6, 4. Abstract We consider the phenomenon of Compton scattering

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 8 Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Photon propagator Electron-proton scattering by an exchange of virtual photons ( Dirac-photons ) (1) e - virtual

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Analysis of inter-quark interactions in classical chromodynamics

Analysis of inter-quark interactions in classical chromodynamics Cent. Eur. J. Phys. 3 3 336-344 DOI:.478/s534-3-7-y Central European Journal of Physics Analysis of inter-quark interactions in classical chromodynamics Research Article Jurij W. Darewych, Askold Duviryak

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field.

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 2: Vector and integral identities. Here ψ is a scalar

More information

Gravitational radiation

Gravitational radiation Lecture 28: Gravitational radiation Gravitational radiation Reading: Ohanian and Ruffini, Gravitation and Spacetime, 2nd ed., Ch. 5. Gravitational equations in empty space The linearized field equations

More information

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 7 From Dirac equation to Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Dirac equation* The Dirac equation - the wave-equation for free relativistic fermions

More information

Introduction to Neutrino Physics. TRAN Minh Tâm

Introduction to Neutrino Physics. TRAN Minh Tâm Introduction to Neutrino Physics TRAN Minh Tâm LPHE/IPEP/SB/EPFL This first lecture is a phenomenological introduction to the following lessons which will go into details of the most recent experimental

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force.

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force. Set 10: Synchrotron Lorentz Force Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force 0 E x E y E z dp µ dτ = e c F µ νu ν, F µ E x 0 B z B y ν = E y B

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Vectors in Special Relativity

Vectors in Special Relativity Chapter 2 Vectors in Special Relativity 2.1 Four - vectors A four - vector is a quantity with four components which changes like spacetime coordinates under a coordinate transformation. We will write the

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where PHY 396 K. Solutions for problem set #11. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where Ĥ 0 = Ĥfree Φ + Ĥfree

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

1 The muon decay in the Fermi theory

1 The muon decay in the Fermi theory Quantum Field Theory-I Problem Set n. 9 UZH and ETH, HS-015 Prof. G. Isidori Assistants: K. Ferreira, A. Greljo, D. Marzocca, A. Pattori, M. Soni Due: 03-1-015 http://www.physik.uzh.ch/lectures/qft/index1.html

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Physics 4183 Electricity and Magnetism II. Covariant Formulation of Electrodynamics-1

Physics 4183 Electricity and Magnetism II. Covariant Formulation of Electrodynamics-1 Physics 4183 Electricity and Magnetism II Covariant Formulation of Electrodynamics 1 Introduction Having briefly discussed the origins of relativity, the Lorentz transformations, 4-vectors and tensors,

More information

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino Cosmology & CMB Set2: Linear Perturbation Theory Davide Maino Covariant Perturbation Theory Covariant = takes same form in all coordinate systems Invariant = takes the same value in all coordinate systems

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013 Fundamental Forces David Morrissey Key Concepts, March 15, 2013 Not a fundamental force... Also not a fundamental force... What Do We Mean By Fundamental? Example: Electromagnetism (EM) electric forces

More information

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University Chiral Anomaly Kathryn Polejaeva Seminar on Theoretical Particle Physics Springterm 2006 Bonn University Outline of the Talk Introduction: What do they mean by anomaly? Main Part: QM formulation of current

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction

Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction Introduction to the physics of highly charged ions Lecture 12: Self-energy and vertex correction Zoltán Harman harman@mpi-hd.mpg.de Universität Heidelberg, 03.02.2014 Recapitulation from the previous lecture

More information