Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction

Size: px
Start display at page:

Download "Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction"

Transcription

1 Introduction to the physics of highly charged ions Lecture 12: Self-energy and vertex correction Zoltán Harman Universität Heidelberg,

2 Recapitulation from the previous lecture Feynman rules for QED processes S-matrix element for a process N: ) N 2 S fi = i(2π) 4 δ (p (4) 1 + p 2 p N j N N k k M fi 2E k=1 j=1 j V 2E k=1 k V. The transition amplitude M fi = n M(n) fi can be constructed according to the following rules: 1 In order n, draw all Feynman diagrams with n vertices, containing the right number of initial and final particles 2 For external lines, write down the following expressions as factors:

3 3 For internal lines: 4 For all vertices, the following factor has to be included: The index µ is contracted with the index of the internal or external photon line: µ γµɛµ or µ γµdµν F 5 At all vertices, 4-momentum conservation holds: a factor δ (4) ( j p j k p k); and integration has to be performed over the undetermined momentum variable p: d 4 p (2π) 4 6 The amplitudes of all contributing diagrams have to be added coherently, with the phase factors -1 for incoming positrons; -1 for fermion exchange graphs; -1 for all closed e /e + loops.

4 The S matrix at higher orders So far: calculations at the lowest orders in e or α. Since α 1 137, this is often a useful approximation. However, with a good theory, one should be able to corrections of higher order (at least in principle). Also, many experiments are more accurate than the leading-order theory only. At first, the small higher-order corrections turned out to be infinitely large. Renormalization is necessary to arrive to finite results.

5 Vacuum polarization The possibility of creating a virtual electron-positron pair influences the photon propagator id Fµν (q) = id Fµν(q) + id Fµλ (q) iπλσ (q) id Fσν (q), 4π with the vacuum polarization tensor [ ] iπ λσ (q) = e 2 d 4 k 4π (2π) 4 Tr 1 1 γ λ /k m + iɛ γσ /k /q m + iɛ Regularized VP tensor: Π µν(q) = (q 2 g µν q µq ν) ( e2 3π withπ R (q 2 ) = 2e2 π e2 π 1 0 q 2 m 2 ) Λ2 ln m 2 + ΠR (q 2 ), dββ(1 β) ln [1 β(1 β) q2 m 2 ( q 2 ) m ]

6 For small q ("weak" scattering), Π R (q 2 ) 0: M (2) fi = Z 3 M (1) fi, with Z 3 = 1 e2 Λ2 ln 3π m 2. The effective, physical charge of the electron is renormalized to e R = Z 3 e, with e being the bare charge. Only e R is observable, and it only weakly depends on Λ. Effect of VP on an atomic electron Modification of the Coulomb potential A 0 ( x) = Ze/ x in momentum space: A 0 ( q) = A 0( q) + Π R ( q 2 )A 0 ( q), or in real space A 0 ( x) = d 3 q ( ) (2π) 3 ei q x 1 + Π R ( q 2 ) A 0 ( q) Ze x e(zα) 4 15m 2 δ(3) ( x). Non-relativistic energy shift of a bound hydrogenic state ψ nl in first-order perturbation theory: E VP nl Value for 2s electrons: E VP 2s 4 = ψ nl e A 0 ψ nl = α(zα) 15m 2 ψ nl(0) 2 = 4m 15πn 3 α(zα)4 δ l0. = ev = 27.1 MHz contradicts the experiment!

7 The self-energy of the electron Modification of the unperturbed e i propagator ig F (p) = through the Feynman /p m+iɛ diagram describing emission and re-absorption of a virtual photon: with the self-energy function (4 4 matrix) ig F (p) = ig F(p) + ig F (p) ( iσ(p)) ig F (p), iσ(p) = ( ie) 2 d 4 k (2π) 4 4πi i k 2 + iɛ γµ γµ (1) /p /k m + iɛ We make the following ansatz: Σ(p) = A + B(/p m) + Σ R (p)(/p m) 2, Taylor expansion around the mass shell /p = m. Here, A, B and Σ R do not contain γ matrices; A and B are constants.

8 To understand the physical meaning of A and B, we sum up higher-order SE diagrams (loop-after-loop diagrams). They can be summed up as a geometrical series ( k=0 xk = 1/(1 x)): ig F(p) = ig F (p) + ig F (p) ( iσ(p)) ig F (p) + ig F (p) ( iσ(p)) ig F (p) ( iσ(p)) ig F (p) +... = 1 ig F (p) 1 Σ(p)G F (p) = i G 1 F (p) Σ(p) = i /p m Σ(p) + iɛ = i /p m A B(/p m) (/p m) 2 Σ(p) + iɛ i (/p m A)(1 B)(1 (/p m)σ R (p)) + iɛ (negl. small terms with A 2, B 2, AB) (1 + B)i (/p m A)(1 (/p m)σ R (p)) + iɛ

9 For free electrons, for which p 2 = m 2 holds (i.e. "on the mass shell"): ig F (p) (1 + B)i /p m A + iɛ = Z 2iG F (p, m m + δm) with Z B ; δm A. The renormalized (physical) mass of the electron is m R = m + δm = 511 kev; sum of the bare mass and the self-energy (self mass), acquired through interaction with the self-generated electromagnetic field ( friction ). Only m R is measurable, this self-field cannot be switched off in an experiment. Z 2 is another e charge renormalization constant, multiplying every electron/positron propagator (just like Z 3 coming from VP, multiplying every photon propagator): e R = Z 2 e It is not Z like for e R = Z 3 e, because there are always 2 electron lines at 1 vertex. Wave function renormalization: u (p) = Z 2 u(p).

10 Now let us calculate and regularize the SE function of Eq. (1). divergence for low values of k, too (IR divergence; we ll see later why) introduce a finite photon mass µ; at the end, we take the limit lim µ 0 The integral diverges linearly in k as k (UV divergence) Pauli-Villars regularization, just like for VP With the photon mass µ added: Regularized function: Σ(p, µ) = 4πie 2 d 4 k 1 /p /k + m (2π) 4 k 2 µ 2 + iɛ γµ (p k) 2 m 2 + iɛ γµ Σ(p, µ) = Σ(p, µ) + i C i Σ(p, µ, m M i ) =... = Σ(p, µ, Λ) = e2 2π 1 dβ(2m β/p) ln 0 βλ 2 (1 β)m 2 + βµ 2 β(1 β)p 2. Here, one regularizing term was used, C 1 = 1, in which the photon mass µ was substituted by the cut-off momentum Λ.

11 The above integral could be solved. We want to identify the constants A = δm and B = Z 2 1 only. A δm = Σ(p, µ, Λ) p 2 =m 2, /p=m = e2 m 2π This integral converges for µ = 0, so we can calculate: δm = e2 m 2π 1 dβ(2 β) ln 0 1 dβ(2 β) [ln β 2 ln(1 β) + ln Λ2 0 m 2 This expression is weakly (logarithmically) divergent for Λ 2 /m 2. βλ 2 (1 β) 2 m 2 + βµ 2 ] = m 3α ( Λ 2 4π ln m ) 2 B Z 2 m = Σ p = e2 1 dββ 2π 0 e2 2π (I 1 + I 2 ). p 2 =m 2, /p=m [ ln βλ 2 ] (1 β) 2 m 2 + βµ 2 2m2 (2 β)(1 β) m 2 (1 β) 2 + µ 2 β

12 The first integral I 2 is convergent even for µ = 0: 1 ] I 1 (µ = 0) = dββ [ln β 2 ln(1 β) + ln Λ2 0 m 2 = The 2nd integral is: ln Λ2 m 2 ; 1 (2 β)(1 β) 1 µ/m I 2 = 2 dββ 0 (1 β) 2 + βµ 2 /m 2 2 (2 β)(1 β) dββ 0 (1 β) 2 ln µ2 m Thus, the SE charge renormalization constant is ( Z 2 = 1 + B = 1 e2 1 2π 2 Λ2 µ2 ln + ln m2 m ). 4 This is also a weak, logarithmic UV divergence in Λ; IR divergence in µ unpleasant...

13 The vertex correction The last radiative correction: modification of an interaction vertex by a virtual photon The vertex factor changes to: ieγ µ ieλ µ(p, p) = ieγ µ ieγ µ(p, p), with the vertex function Γ µ(p, p) = 4πie 2 ( ) d 4 k 1 (2π) 4 k 2 µ 2 γ ν iɛ /p /k m + iɛ γµ /p /k m + iɛ γν (2) logarithmically divergent UV integral also IR divergence introduction of a finite photon mass, µ, again

14 Instead of the (lengthy) calculation of the vertex function, let us discuss some certain properties. It can be rewritten as the sum of an elastic and inelastic part (or rest term): Γ µ(p, p) = Γ µ(p, p) + ( Γ µ(p, p) Γ µ(p, p) ) Γ µ(p, p) + Γ R µ (p, p) It can be shown that the elastic part can be written in the form Γ µ(p, p) = Lγ µ Only Γ µ(p, p) is logarithmically divergent; the rest term is a well-defined finite expression: 1 /p k m + iɛ = = 1 /p k m + (/p /p) + iɛ 1 /p k m + iɛ 1 /p k m + iɛ ( /p 1 /p) /p k m + iɛ... 1st term: 1/k: log. divergence; higher-order terms: regular As discussed already for VP, the electric charge is measured with scattering experiments at low momentum transfer. So, the vertex in this case is modified es ieγ µ ieγ µ ielγ µ + O(q) further charge renormalization has to be done: e R = Z 1 1 e = (1 + L)e, with Z 1 = (1 + L) 1 1 L.

15 The divergent part Γ µ (p, p) does not have to be calculated, it can be traced back to the result for the self-energy by using the Ward identity: Γ µ (p, p) = p µ Σ(p) So, Γ µ (p, p) = Bγ µ + O(/p m). For electrons on the mass shell (free electrons); thus L = B. Therefore, the renormalization constant of the vertex correction is Z 1 = 1 L = 1 + B = Z 2, i.e. the SE and VC renormalization constants are the same. Thus, the total charge renormalization is: e R = Z 1 1 (VC)Z 2(SE) Z 3 (VP)e = Z 3 e So, the renormalization does not depend on the fictitious photon mass µ; charge renormalization originates from VP only.

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Ultraviolet Divergences

Ultraviolet Divergences Ultraviolet Divergences In higher-order perturbation theory we encounter Feynman graphs with closed loops, associated with unconstrained momenta. For every such momentum k µ, we have to integrate over

More information

Quantum ElectroDynamics III

Quantum ElectroDynamics III Quantum ElectroDynamics III Feynman diagram Dr.Farida Tahir Physics department CIIT, Islamabad Human Instinct What? Why? Feynman diagrams Feynman diagrams Feynman diagrams How? What? Graphic way to represent

More information

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS LOGAN T. MEREDITH 1. Introduction When one thinks of quantum field theory, one s mind is undoubtedly drawn to Feynman diagrams. The naïve view these

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM Student, Aws Abdo The hydrogen atom is the only system with exact solutions of the nonrelativistic Schrödinger equation

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant Lecture II QCD and its basic symmetries Renormalisation and the running coupling constant Experimental evidence for QCD based on comparison with perturbative calculations The road to QCD: SU(3) quark model

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

Lecture 4. Beyound the Dirac equation: QED and nuclear effects

Lecture 4. Beyound the Dirac equation: QED and nuclear effects Lecture 4 Beyound the Dirac equation: QED and nuclear effects Plan of the lecture Reminder from the last lecture: Bound-state solutions of Dirac equation Higher-order corrections to Dirac energies: Radiative

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 8 Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Photon propagator Electron-proton scattering by an exchange of virtual photons ( Dirac-photons ) (1) e - virtual

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

QED on background Coulomb field

QED on background Coulomb field Department of Chemical Physics and Optics Charles University in Prague May 2017 Plan of the talk Motivation for study bound-state QED Solution of Dirac equation for external Coulomb field Evaluation of

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

Evaluation of Triangle Diagrams

Evaluation of Triangle Diagrams Evaluation of Triangle Diagrams R. Abe, T. Fujita, N. Kanda, H. Kato, and H. Tsuda Department of Physics, Faculty of Science and Technology, Nihon University, Tokyo, Japan E-mail: csru11002@g.nihon-u.ac.jp

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( )

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) IL NUOVO CIMENTO Vol. 119 B, N. 2 Febbraio 2004 DOI 10.1393/ncb/i2004-10051-8 Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) V. Putz( 1 )( )andk. Svozil( 2 )( ) ( 1 ) Max-Planck-Institute

More information

QED Vertex Correction

QED Vertex Correction QED Vertex Correction In these notes I shall calculate the one-loop correction to the PI electron-electron-photon vertex in QED, ieγ µ p,p) = ) We are interested in this vertex in the context of elastic

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x)

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x) QED; and the Standard Model We have calculated cross sections in lowest order perturbation theory. Terminology: Born approximation; tree diagrams. At this order of approximation QED (and the standard model)

More information

arxiv:hep-th/ v1 20 Jul 2004

arxiv:hep-th/ v1 20 Jul 2004 IUHET-473 arxiv:hep-th/040717v1 0 Jul 004 Gauge Invariance and the Pauli-Villars Regulator in Lorentz- and CPT-Violating Electrodynamics B. Altschul 1 Department of Physics Indiana University Bloomington,

More information

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7:

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7: Chapter 7 -- Radiative Corrections: some formal developments A quotation from Peskin & Schroeder, Chapter 7: 7.1. Field-strength renormalization 7.2. The LSZ reduction formula 7.3. The optical theorem

More information

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 7 From Dirac equation to Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Dirac equation* The Dirac equation - the wave-equation for free relativistic fermions

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

Removing Infrared Divergences

Removing Infrared Divergences Removing Infrared Divergences Summing Soft Photons Amita Kuttner University of California, Santa Cruz Physics 218 Winter 2016 Overview Infrared Divergences Divergences: Infrared and Ultraviolet IR regulators

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate post-graduate course in High Energy Physics Paper 1: The Standard Model

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (6.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 2 2 3 3 4 4 5 Where are we? W fi = 2π 4 LI matrix element M i (2Ei) fi 2 ρ f (E i ) LI phase

More information

Srednicki Chapter 62

Srednicki Chapter 62 Srednicki Chapter 62 QFT Problems & Solutions A. George September 28, 213 Srednicki 62.1. Show that adding a gauge fixing term 1 2 ξ 1 ( µ A µ ) 2 to L results in equation 62.9 as the photon propagator.

More information

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University Chiral Anomaly Kathryn Polejaeva Seminar on Theoretical Particle Physics Springterm 2006 Bonn University Outline of the Talk Introduction: What do they mean by anomaly? Main Part: QM formulation of current

More information

Lecture 4: Antiparticles

Lecture 4: Antiparticles Lecture 4: Antiparticles Relativistic wave equations have negative-energy solutions Antiparticles (Chap 3) Perturbation Theory Quantum Field Theories describe fundamental interactions. e.g., QED for electromagnetic

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

Physics 217 Solution Set #5 Fall 2016

Physics 217 Solution Set #5 Fall 2016 Physics 217 Solution Set #5 Fall 2016 1. Repeat the computation of problem 3 of Problem Set 4, but this time use the full relativistic expression for the matrix element. Show that the resulting spin-averaged

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

Feynman Diagrams. e + e µ + µ scattering

Feynman Diagrams. e + e µ + µ scattering Feynman Diagrams Pictorial representations of amplitudes of particle reactions, i.e scatterings or decays. Greatly reduce the computation involved in calculating rate or cross section of a physical process,

More information

Propagation of monochromatic light in a hot and dense medium

Propagation of monochromatic light in a hot and dense medium Eur. Phys. J. C (27) 77:826 https://doi.org/.4/epjc/s52-7-5398- Regular Article - Theoretical Physics Propagation of monochromatic light in a hot and dense medium Samina S. Masood a Department of Physical

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (13.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 Content of Today Up to now: first order non-resonant e+e- cross-section dσ e.g. (e + e μ + μ

More information

PHY 396 K. Solutions for problem set #11. Problem 1: At the tree level, the σ ππ decay proceeds via the Feynman diagram

PHY 396 K. Solutions for problem set #11. Problem 1: At the tree level, the σ ππ decay proceeds via the Feynman diagram PHY 396 K. Solutions for problem set #. Problem : At the tree level, the σ ππ decay proceeds via the Feynman diagram π i σ / \ πj which gives im(σ π i + π j iλvδ ij. The two pions must have same flavor

More information

Physics 443 Homework 5 Solutions

Physics 443 Homework 5 Solutions Physics 3 Homework 5 Solutions Problem P&S Problem. a p S p lim T iɛ p exp i T T dt d 3 xe ψγ µ ψa µ p. Ignoring the trivial identity contribution and working to the lowest order in e we find p it p ie

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing.

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing. Physics 27 FINAL EXAM SOLUTIONS Fall 206. The helicity spinor u(p, λ satisfies u(p,λu(p,λ = 2m. ( In parts (a and (b, you may assume that m 0. (a Evaluate u(p,λ by any method of your choosing. Using the

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Lecture-05 Perturbation Theory and Feynman Diagrams

Lecture-05 Perturbation Theory and Feynman Diagrams Lecture-5 Perturbation Theory and Feynman Diagrams U. Robkob, Physics-MUSC SCPY639/428 September 3, 218 From the previous lecture We end up at an expression of the 2-to-2 particle scattering S-matrix S

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories What s up with those Feynman diagrams? an Introduction to Quantum Field Theories Martin Nagel University of Colorado February 3, 2010 Martin Nagel (CU Boulder) Quantum Field Theories February 3, 2010 1

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

Experiments with hydrogen - discovery of the Lamb shift

Experiments with hydrogen - discovery of the Lamb shift Experiments with hydrogen - discovery of the Lamb shift Haris Ðapo Relativistic heavy ion seminar, October 26, 2006 Outline 1 Pre-Lamb experiment The beginning (Bohr s formula) Fine structure (Dirac s

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Electron Stability Approach to Finite Quantum Electrodynamics

Electron Stability Approach to Finite Quantum Electrodynamics Electron Stability Approach to Finite Quantum Electrodynamics Dean Chlouber (Dated: September 4, 017) This paper analyses electron stability and applies the resulting stability principle to resolve divergence

More information

QCD β Function. ǫ C. multiplet

QCD β Function. ǫ C. multiplet QCD β Function In these notes, I shall calculate to 1-loop order the δ counterterm for the gluons and hence the β functions of a non-abelian gauge theory such as QCD. For simplicity, I am going to refer

More information

Modern Techniques for One-Loop Calculations

Modern Techniques for One-Loop Calculations Modern Techniques for One-Loop Calculations Version 1..63 September, 6 Jorge C. Romão 1 1 Departamento de Física, Instituto Superior Técnico A. Rovisco Pais, 149-1 Lisboa, Portugal Abstract We review the

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Quantum Gravity. Chapter Problems of General Relativity

Quantum Gravity. Chapter Problems of General Relativity Chapter 9 Quantum Gravity The quantum field theory of gravitation is constructed in terms of Lagrangian density of Dirac fields which couple to the electromagnetic field A µ as well as the gravitational

More information

Electron Stability Approach to Finite Quantum Electrodynamics

Electron Stability Approach to Finite Quantum Electrodynamics Electron Stability Approach to Finite Quantum Electrodynamics Dean Chlouber Dated: June 26, 2017) This paper analyses electron stability and applies the resulting stability principle to resolve divergence

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

QED Vertex Correction: Working through the Algebra

QED Vertex Correction: Working through the Algebra QED Vertex Correction: Working through the Algebra At the one-loop level of QED, the PI vertex correction comes from a single Feynman diagram thus ieγ µ loop p,p = where reg = e 3 d 4 k π 4 reg ig νλ k

More information

Kern- und Teilchenphysik II Lecture 1: QCD

Kern- und Teilchenphysik II Lecture 1: QCD Kern- und Teilchenphysik II Lecture 1: QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Marcin Chrzaszcz Dr. Annapaola De Cosa (guest lecturer) www.physik.uzh.ch/de/lehre/phy213/fs2017.html

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Physics 214 UCSD/225a UCSB Lecture 11 Finish Halzen & Martin Chapter 4

Physics 214 UCSD/225a UCSB Lecture 11 Finish Halzen & Martin Chapter 4 Physics 24 UCSD/225a UCSB Lecture Finish Halzen Martin Chapter 4 origin of the propagator Halzen Martin Chapter 5 Continue Review of Dirac Equation Halzen Martin Chapter 6 start with it if time permits

More information

Summary Sec. 1.3: The interacting Green s function Feynman diagrams

Summary Sec. 1.3: The interacting Green s function Feynman diagrams Summary Sec. 1.3: The interacting Green s function Feynman diagrams From Sec. 1.2.1: Remember the most important properties of the one-particle Green s function for non-interacting electrons: G 0 αβ(r,

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

Quantization of the E-M field. 2.1 Lamb Shift revisited 2.1. LAMB SHIFT REVISITED. April 10, 2015 Lecture XXVIII

Quantization of the E-M field. 2.1 Lamb Shift revisited 2.1. LAMB SHIFT REVISITED. April 10, 2015 Lecture XXVIII .. LAMB SHFT REVSTED April, 5 Lecture XXV Quantization of the E-M field. Lamb Shift revisited We discussed the shift in the energy levels of bound states due to the vacuum fluctuations of the E-M fields.

More information

arxiv: v1 [hep-ph] 19 Jan 2019

arxiv: v1 [hep-ph] 19 Jan 2019 MITP/19-002 January 19, 2019 arxiv:1901.06573v1 [hep-ph] 19 Jan 2019 Les Houches Lectures on Renormalization Theory and Effective Field Theories Matthias Neubert PRISMA Cluster of Excellence & Mainz Institute

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom. Michiel Botje Nikhef, Science Park, Amsterdam

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom. Michiel Botje Nikhef, Science Park, Amsterdam Lecture notes Particle Physics II Quantum Chromo Dynamics 6. Asymptotic Freedom Michiel Botje Nikhef, Science Park, Amsterdam December, 03 Charge screening in QED In QED, a charged particle like the electron

More information

β function QED to two loops - traditionally and with Corolla polynomial

β function QED to two loops - traditionally and with Corolla polynomial β function QED to two loops - traditionally and with Corolla polynomial MASTERARBEIT zur Erlangung des akademischen Grades Master of Science M. Sc. im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen

More information

Two particle elastic scattering at 1-loop

Two particle elastic scattering at 1-loop Two particle elastic scattering at 1-loop based on S-20 Let s use our rules to calculate two-particle elastic scattering amplitude in, theory in 6 dimensions including all one-loop corrections: For the

More information

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001 Quantum Electrodynamics D. E. Soper University of Oregon Physics 666, Quantum Field Theory April The action We begin with an argument that quantum electrodynamics is a natural extension of the theory of

More information