Mandl and Shaw reading assignments

Size: px
Start display at page:

Download "Mandl and Shaw reading assignments"

Transcription

1 Mandl and Shaw reading assignments Chapter 2 Lagrangian Field Theory 2.1 Relativistic notation 2.2 Classical Lagrangian field theory 2.3 Quantized Lagrangian field theory 2.4 Symmetries and conservation laws Problems; Chapter 3 The Klein-Gordon Field 3.1 The real Klein-Gordon field 3.2 The complex Klein-Gordon field 3.3 Covariant commutation relations 3.4 The meson propagator Problems;

2 Chapter 3 The Klein-Gordon Field 3.1 The Real Klein-Gordon Field 3.2 The Complex Klein-Gordon Field 3.3 Covariant Commutation Relations 3.4 The Meson Propagator 3.2 THE COMPLEX KLEIN-GORDON FIELD Notations ħ = 1 and c = 1 (usually) See Section 6.1. x = ( t, x) or x α = (x 0, x 1, x 2, x 3 ) Relativistic notations x μ = {x 0, x 1, x 2, x 3 } = {ct, x, y, z} x μ = {x 0, x 1, x 2, x 3 } = {ct, x, y, z} = g μν x ν g μν = g μν = DIAG(1, 1, 1, 1) A B = g μν A μ B ν = g μν A μ B ν = A 0 B 0 A B (4D vec. product) (3D vec. product) φ,α = φ / x α and φ,α = φ / x α = g αβ φ, β Lagrangian field theory = 1/2 ( φ,α φ,α μ 2 φ φ ) μ = mc/ħ = m ( + μ 2 ) φ = 0 and ( + μ 2 ) φ = 0 π(x) = φ / t and π (x) = φ / t Equal-time commutation relations [ φ(t,x), φ(t,x ) ] = 0 [ φ(t,x), π(t,x )] = iħc 2 δ 3 ( x x ) etc. 2

3 Fourier expansion φ(x) = N ( a k e ik.x + b k e+ik.x ) k where N = ( 1 /2Ωω) 1 /2 and k.x = k μ x μ = ω t k.x = k 0 x 0 k i x i (very flexible but involved notations! ) Creation and annihilation operators [ a k, a k ] = 0 and [ a k, a k ] = δ k,k [ b k, b k ] = 0 and [ b k, b k ] = δ k,k [ a k, b k ] = 0 and [ a k, b k ] = 0 Important operators P α = (H/c,P) = the 4-momentum operator P α = See 3.12 and 3.13; H = H (π,φ) d 3 x P α = k ħ k α ( N a (k) + N b (k) ) Q = the charge operator Q = See 3.31 ; NEEDS ELECTROMAGNETISM TO INTERPRET Q = q k ( N a (k) N b (k) ) opposite charges Real (or, hermitian) field operators We could define φ 1 (x) and φ 2 (x) by φ 1 = 1/ 2 ( φ + φ ) and φ 2 = i / 2 ( φ φ ) ; these imply φ = 1/ 2 ( φ 1 + i φ 2 ) and φ = 1/ 2 ( φ 1 i φ 2 ). i.e., there are two different mesons The complex scalar field is equivalent to a particle ( a ) and antiparticle ( k b ) k theory of two real fields 3

4 3.3 COVARIANT COMMUTATION RELATIONS CALCULATION (Set ħ = 1 and c = 1.) Mandl and Shaw: define then That is, For a real scalar field, [ φ(x), φ(y) ] = i ħc Δ( x y ); ( x means x μ ) Δ(ξ) = c d 3 k/(2π) 3 sin(k.ξ). Δ(ξ μ ) = c d 3 k/(2π) 3 sin(ωξ 0 k.ξ). where ω=c ( k 2 +μ 2 ). ω k Here let s consider the complex scalar field. Define [ φ(x), φ (y) ] = i ħc Δ( x y ). ω k [ φ(x), φ (y) ] = N N [ (a k e ik.x + b k e+ik.x ), (a k e+ ik.y + b k e ik.y ) ] = N N { δ(k,k ) e ik.(x y) δ(k,k ) e +ik.(x y) } = N 2 ( 2i) sin( k.(x y) ) = d 3 k/(2π) 3 1/(2ω) ( 2i) sin( k.(x y) ) = i Δ( x y ) where again sin(k.ξ) Δ(ξ) = d 3 k/(2π) 3. k.ξ = ωξ 0 k.ξ φαμħ π δ Ωω 4 ω k

5 COVARIANCE OF THE COMMUTATION RELATION (ħ=1 and c=1) THEOREM. Δ(ξ) = i/(2π) 3 d4k δ(k.k μ 2 ) ε(k 0 ) e ik.ξ where ε(k 0 ) = ± 1 for k 0 0. PROOF. δ(k 2 μ 2 ) = δ[ (k 0 ) 2 ω 2 ] So, = δ[ (k 0 ω )(k 0 + ω ) ] = δ[ k 0 ω ] /2ω + δ[ k 0 + ω ] /2ω [sign fun.] = 1 /(2ω) { δ[ k 0 ω ] + δ[ k 0 + ω ] } Δ(ξ) = i/(2π) 3 d 3 k 1/(2ω) e i ( ωt k.ξ) = i/(2π) 3 d 3 k /(2ω) e i ( ωt k.ξ) + i/(2π) 3 d 3 k /(2ω) e i ( ωt+k.ξ) = i/(2π) 3 d 3 k /(2ω) e i ( ωt k.ξ) + i/(2π) 3 d 3 + i ( ωt k.ξ) k /(2ω) e = + i d 3 k/(2π) 3 /(2ω) 2i sin( ωt k.ξ ) = d 3 k/(2π) 3 sin(k.ξ). Q.E.D. The theorem shows that [ φ(x), φ(y) ] is covariant : because the integral on the right-hand side is manifestly covariant. Microcausality [ φ(x μ ), φ(y μ ) ] = 0 if ( x y ) 2 < 0, i.e., if x and y have spacelike separation. i/(2π) 3 d 3 k ( 1)/(2ω) e i ( ωt k.ξ) Proof: covariance implies we can set x 0 = y 0 ; and the ETCR is 0. 5 ω k

6 Calculate the commutator function 6

7 τ 2 = m 2 (x 1 x 2 ) 2 7

8 3.4 THE MESON PROPAGATOR Mandl and Shaw: for a real scalar field, define <0 T { φ(x) φ(y) } 0> = i ħc Δ F (x y); then Δ F (ξ) = CF d 4 k/(2π) 4, e ik.x (k 2 μ 2 ) where the contour CF is appropriately chosen. Let s consider instead the complex field. Define the propagator by <0 T { φ(x) φ (y) } 0> = i ħc Δ F (x y). Now derive the function Δ F (x y). There are several ways to derive the result. Define Note that i ħc Δ + (x y) = <0 φ(x) φ (y) 0> i ħc Δ (x y) = <0 φ (y) φ(x) 0> i ħc ( Δ + (x y) + Δ (x y) ) = <0 [ φ(x), φ (y) ] 0> = <0 i ħc Δ(x y) 0> = i ħc Δ(x y) Δ + (x y) + Δ (x y) = Δ(x y) 8

9 Now the propagator... <0 T { φ(x) φ (y) } 0> = i ħc Δ F (x y) = <0 θ(x 0 y 0 ) φ(x) φ (y) + θ(y 0 x 0 ) φ (y) φ(x) 0> FOUR FUNCTIONS (check these eqs. in Section 3.4) Δ(ξ) = d 3 k/(2π) 3 sin(k.ξ) ω k = θ(x 0 y 0 ) i ħc Δ + (x y) + θ(y 0 x 0 ) ( i ħc) Δ (x y) Δ + (ξ) = d 3 k/(2π) 3 Δ (ξ) = d 3 k/(2π) 3 i exp( i k.ξ) 2 ω k ( i) exp( ik.ξ) 2 ω k Δ F ( x y ) = θ(x 0 y 0 ) Δ + ( x y ) θ(y 0 x 0 ) Δ ( x y ) Δ F (ξ) = d 3 k/(2π) 3 i 2 ω k { θ(ξ 0 ) exp( i k.ξ) + θ( ξ 0 ) exp( i k.ξ) } 9

10 THEOREM Δ F (ξ) = d 4 k (2π) 4 i k.ξ e k 2 μ 2 + i ε This is the crucial equation for understanding Feynman diagrams. Prove the theorem next time. Homework Problems due Friday Feb 10 Problem 16. Equal time commutation relations. We have, in the Schroedinger picture, [ ψ(x), ψ (x ) ] = δ 3 (x x ), [ ψ(x), ψ(x ) ] = 0, etc. (a ) Show that in the Heisenberg picture, this commutation relation holds at all equal times. (b ) What is the commutation relation for different times? Problem 17. (a ) Do problem 2.1 in Mandl and Shaw. (b ) Do problem 2.2 in Mandl and Shaw. (c ) Do problem 2.3 in Mandl and Shaw. Problem 18. For the free real scalar field, (A ) Write H in terms of π(x) and φ(x). (B ) Write H in terms of a k and a k. Problem 19. (A ) Mandl and Shaw problem 3.3. (B ) Mandl and Shaw problem 3.4. Problem 20. The Yukawa theory problem. 10

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

The Theory of the Photon Planck, Einstein the origins of quantum theory Dirac the first quantum field theory The equations of electromagnetism in

The Theory of the Photon Planck, Einstein the origins of quantum theory Dirac the first quantum field theory The equations of electromagnetism in The Theory of the Photon Planck, Einstein the origins of quantum theory Dirac the first quantum field theory The equations of electromagnetism in empty space (i.e., no charged particles are present) using

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

H =Π Φ L= Φ Φ L. [Φ( x, t ), Φ( y, t )] = 0 = Φ( x, t ), Φ( y, t )

H =Π Φ L= Φ Φ L. [Φ( x, t ), Φ( y, t )] = 0 = Φ( x, t ), Φ( y, t ) 2.2 THE SPIN ZERO SCALAR FIELD We now turn to applying our quantization procedure to various free fields. As we will see all goes smoothly for spin zero fields but we will require some change in the CCR

More information

Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization"

Quantum Field Theories for Quantum Many-Particle Systems; or Second Quantization Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization" Outline 1) Bosons and Fermions 2) N-particle wave functions ("first quantization") 3) The method of quantized fields ("second

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

PHY 396 K. Solutions for problems 1 and 2 of set #5.

PHY 396 K. Solutions for problems 1 and 2 of set #5. PHY 396 K. Solutions for problems 1 and of set #5. Problem 1a: The conjugacy relations  k,  k,, Ê k, Ê k, follow from hermiticity of the Âx and Êx quantum fields and from the third eq. 6 for the polarization

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression Coherent-state path integrals A coherent state of argument α α = e α / e αa 0 = e α / (αa ) n 0 n! n=0 = e α / α n n n! n=0 (1) is an eigenstate of the annihilation operator a with eigenvalue α a α = α

More information

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday). PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday. 1. Quantum mechanics of a fixed number of relativistic particles does not work (except as an approximation because of problems with relativistic

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

d 3 k In the same non-relativistic normalization x k = exp(ikk),

d 3 k In the same non-relativistic normalization x k = exp(ikk), PHY 396 K. Solutions for homework set #3. Problem 1a: The Hamiltonian 7.1 of a free relativistic particle and hence the evolution operator exp itĥ are functions of the momentum operator ˆp, so they diagonalize

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

Wave Packets. Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal)

Wave Packets. Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal) Wave Packets Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal) http://cft.fis.uc.pt/eef de Setembro de 009 Contents

More information

Introduction to Quantum Field Theory Quantum Electrodynamics

Introduction to Quantum Field Theory Quantum Electrodynamics Introduction to Quantum Field Theory Quantum Electrodynamics Rafael Juan Alvarez Reyes Supervisor: Vicente Delgado Universidad de La Laguna September, 2017 CONTENTS CONTENTS Contents 1 Summary 4 2 Introduction,

More information

ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδεζηθικλμνξοπρςστυφχψω +<=>± ħ

ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδεζηθικλμνξοπρςστυφχψω +<=>± ħ CHAPTER 1. SECOND QUANTIZATION In Chapter 1, F&W explain the basic theory: Review of Section 1: H = ij c i < i T j > c j + ij kl c i c j < ij V kl > c l c k for fermions / for bosons [ c i, c j ] = [ c

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

KLEIN-GORDON EQUATION AND PROPAGATOR (A REVIEW) The relativistic equation relating a particles energy E, three momentum. E 2 = (p) 2 + m 2.

KLEIN-GORDON EQUATION AND PROPAGATOR (A REVIEW) The relativistic equation relating a particles energy E, three momentum. E 2 = (p) 2 + m 2. KLEIN-GORDON EQUATION AND PROPAGATOR A REVIEW The relativistic equation relating a particles energy E, three momentum p, and mass m is E 2 = p 2 + m 2. Note that and c have been set equal to. The relativistic

More information

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 7 From Dirac equation to Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Dirac equation* The Dirac equation - the wave-equation for free relativistic fermions

More information

Srednicki Chapter 3. QFT Problems & Solutions. A. George. March 19, 2013

Srednicki Chapter 3. QFT Problems & Solutions. A. George. March 19, 2013 Srednicki Chapter 3 QFT Problems & Solutions A. George March 9, 203 Srednicki 3.. Derive the creation/annihilation commutation relations from the canonical commutation relations, the expansion of the operators,

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

SFI = F T exp i d4x int.(x) I

SFI = F T exp i d4x int.(x) I MANDL AND SHAW Chapter 5. Photons: Covariant Theory 5.1. The classical field theory 5.2. Covariant quantization 5.3. The photon propagator Problems; 5.1 5.2 5.3 5.4 Chapter 6. The S-Matrix Expansion 6.1.

More information

Seminar Quantum Field Theory

Seminar Quantum Field Theory Seminar Quantum Field Theory Institut für Theoretische Physik III Universität Stuttgart 2013 Contents 1 Introduction 1 1.1 Motivation............................... 1 1.2 Lorentz-transformation........................

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Class Notes for Quantum Field Theory: Section I

Class Notes for Quantum Field Theory: Section I Class Notes for Quantum Field Theory: Section I Introduction to 2nd Quantization, Lagrangian and Equations of Motion, Conservation Laws, the Klein Gordon field, the Dirac field, Spin-Statistics connection,

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

Quantum Electrodynamics and the Higgs Mechanism

Quantum Electrodynamics and the Higgs Mechanism Quantum Electrodynamics and the Higgs Mechanism Jakob Jark Jørgensen 4. januar 009 QED and the Higgs Mechanism INDHOLD Indhold 1 Introduction Quantum Electrodynamics 3.1 Obtaining a Gauge Theory..........................

More information

Covariant Electromagnetic Fields

Covariant Electromagnetic Fields Chapter 8 Covariant Electromagnetic Fields 8. Introduction The electromagnetic field was the original system that obeyed the principles of relativity. In fact, Einstein s original articulation of relativity

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

PHY 396 K. Problem set #3. Due September 29, 2011.

PHY 396 K. Problem set #3. Due September 29, 2011. PHY 396 K. Problem set #3. Due September 29, 2011. 1. Quantum mechanics of a fixed number of relativistic particles may be a useful approximation for some systems, but it s inconsistent as a complete theory.

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

Problem set 6 for Quantum Field Theory course

Problem set 6 for Quantum Field Theory course Problem set 6 or Quantum Field Theory course 2018.03.13. Toics covered Scattering cross-section and decay rate Yukawa theory and Yukawa otential Scattering in external electromagnetic ield, Rutherord ormula

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as Vector Fields The most general Poincaré-invariant local quadratic action for a vector field with no more than first derivatives on the fields (ensuring that classical evolution is determined based on the

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Canonical Quantization C6, HT 2016

Canonical Quantization C6, HT 2016 Canonical Quantization C6, HT 016 Uli Haisch a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to u.haisch1@physics.ox.ac.uk.

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Section 4: The Quantum Scalar Field

Section 4: The Quantum Scalar Field Physics 8.323 Section 4: The Quantum Scalar Field February 2012 c 2012 W. Taylor 8.323 Section 4: Quantum scalar field 1 / 19 4.1 Canonical Quantization Free scalar field equation (Klein-Gordon) ( µ µ

More information

Quantization of the Photon Field QED

Quantization of the Photon Field QED Quantization of the Photon Field QED 21.05.2012 0.1 Reminder: Classical Electrodynamics Before we start quantizing the hoton field, let us reflect on classical electrodynamics. The Hamiltonian is given

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Semi-Classical Theory of Radiative Transitions

Semi-Classical Theory of Radiative Transitions Semi-Classical Theory of Radiative Transitions Massimo Ricotti ricotti@astro.umd.edu University of Maryland Semi-Classical Theory of Radiative Transitions p.1/13 Atomic Structure (recap) Time-dependent

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,

More information

d 3 xe ipm x φ(x) (2) d 3 x( φ(x)) 2 = 1 2 p n p 2 n φ(p n ) φ( p n ). (4) leads to a p n . (6) Finally, fill in the steps to show that = 1δpn,p m

d 3 xe ipm x φ(x) (2) d 3 x( φ(x)) 2 = 1 2 p n p 2 n φ(p n ) φ( p n ). (4) leads to a p n . (6) Finally, fill in the steps to show that = 1δpn,p m Physics 61 Homework Due Thurs 7 September 1 1 Commutation relations In class we found that φx, πy iδ 3 x y 1 and then defined φp m L 3/ d 3 xe ipm x φx and likewise for πp m. Show that it really follows

More information

Quantum Field Theory 1

Quantum Field Theory 1 Quantum Field Theory 1 Roberto Casalbuoni Dipartimento di Fisica Università di Firenze 1 Lectures given at the Geneva University during the academic year 1997/98. Contents Index......................................

More information

Electroweak Theory & Neutrino Scattering

Electroweak Theory & Neutrino Scattering Electroweak Theory & 01.12.2005 Electroweak Theory & Contents Glashow-Weinberg-Salam-Model Electroweak Theory & Contents Glashow-Weinberg-Salam-Model Electroweak Theory & Contents Glashow-Weinberg-Salam-Model

More information

Notes on Quantum Field Theory. Mark Srednicki UCSB

Notes on Quantum Field Theory. Mark Srednicki UCSB March 2003 Notes on Quantum Field Theory Mark Srednicki UCSB Notes for the first quarter of a QFT course, based mostly on ϕ 3 theory in six dimensions. Please send any comments or corrections to mark@physics.ucsb.edu

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information

Photonic zitterbewegung and its interpretation*

Photonic zitterbewegung and its interpretation* Photonic zitterbewegung and its interpretation* Zhi-Yong Wang, Cai-Dong Xiong, Qi Qiu School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 654, CHINA

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Physics 443, Solutions to PS 1 1

Physics 443, Solutions to PS 1 1 Physics 443, Solutions to PS. Griffiths.9 For Φ(x, t A exp[ a( mx + it], we need that + h Φ(x, t dx. Using the known result of a Gaussian intergral + exp[ ax ]dx /a, we find that: am A h. ( The Schrödinger

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

PAPER 44 ADVANCED QUANTUM FIELD THEORY

PAPER 44 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Friday, 3 May, 203 9:00 am to 2:00 pm PAPER 44 ADVANCED QUANTUM FIELD THEORY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2 REFERENCES: Peskin and Schroeder, Chapter 2 Problem 1: Complex scalar fields Peskin and

More information

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories What s up with those Feynman diagrams? an Introduction to Quantum Field Theories Martin Nagel University of Colorado February 3, 2010 Martin Nagel (CU Boulder) Quantum Field Theories February 3, 2010 1

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Basic Quantum Mechanics

Basic Quantum Mechanics Frederick Lanni 10feb'12 Basic Quantum Mechanics Part I. Where Schrodinger's equation comes from. A. Planck's quantum hypothesis, formulated in 1900, was that exchange of energy between an electromagnetic

More information

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014 YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD Algirdas Antano Maknickas Institute of Mechanical Sciences, Vilnius Gediminas Technical University September 3, 04 Abstract. It

More information

(b) : First, (S.1) = +iγ 0 γ 1 γ 2 γ 3 +γ 5. Second,

(b) : First, (S.1) = +iγ 0 γ 1 γ 2 γ 3 +γ 5. Second, (a) : γ µ γ ν = ±γ ν γ µ where the sign is + for µ = ν and otherwise. Hence for any product Γ of the γ matrices, γ µ Γ = ( 1) nµ Γγ µ where n µ is the number of γ ν µ factors of Γ. For Γ = γ 5 iγ γ 1 γ

More information

arxiv:hep-th/ v2 15 Oct 2002

arxiv:hep-th/ v2 15 Oct 2002 The general-covariant and gauge-invariant theory of quantum particles in classical backgrounds arxiv:hep-th/0202204v2 15 Oct 2002 Hrvoje Nikolić Theoretical Physics Division, Rudjer Bošković Institute,

More information

Physics 221B Spring 2018 Notes 43 Introduction to Relativistic Quantum Mechanics and the Klein-Gordon Equation

Physics 221B Spring 2018 Notes 43 Introduction to Relativistic Quantum Mechanics and the Klein-Gordon Equation Copyright c 2018 by Robert G. Littlejohn Physics 221B Spring 2018 Notes 43 Introduction to Relativistic Quantum Mechanics and the Klein-Gordon Equation 1. Introduction We turn now to relativistic quantum

More information

An Introduction to Quantum Field Theory

An Introduction to Quantum Field Theory An Introduction to Quantum Field Theory Hartmut Wittig Theory Group Deutsches Elektronen-Synchrotron, DESY Notkestrasse 85 22603 Hamburg Germany Lectures presented at the School for Young High Energy Physicists,

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14. As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, two-component

More information

LINEAR DISPERSIVE WAVES

LINEAR DISPERSIVE WAVES LINEAR DISPERSIVE WAVES Nathaniel Egwu December 16, 2009 Outline 1 INTRODUCTION Dispersion Relations Definition of Dispersive Waves 2 SOLUTION AND ASYMPTOTIC ANALYSIS The Beam Equation General Solution

More information

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1.

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1. Homework 6 Solutions 6. - Restriction on interaction Lagrangian 6.. - Hermiticity 6.. - Lorentz invariance We borrow the following results from homework 4. Under a Lorentz transformation, the bilinears

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

High energy hadronic interactions in QCD and applications to heavy ion collisions

High energy hadronic interactions in QCD and applications to heavy ion collisions High energy hadronic interactions in QCD and applications to heavy ion collisions III QCD on the light-cone François Gelis CEA / DSM / SPhT François Gelis 2006 Lecture III/V SPhT, Saclay, January 2006

More information

Ψ L 1 2 (1 γ 5)Ψ. Ψ R 1 2 (1 + γ 5)Ψ (2.3.1)

Ψ L 1 2 (1 γ 5)Ψ. Ψ R 1 2 (1 + γ 5)Ψ (2.3.1) .3 THE SPIN 1 FERMION FIELD We next desire to describe non-interacting (free) particles with spin 1.Aswe know these particles will obey Fermi- Dirac statistics due to the Pauli exclusion principle. Hence,

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning.

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning. Imperial College London QFFF MSc TEST January 017 QUANTUM FIELD THEORY TEST For QFFF MSc Students Monday, 9th January 017: 14:00 to 16:00 Answer ALL questions. Please answer each question in a separate

More information

7 Quantized Free Dirac Fields

7 Quantized Free Dirac Fields 7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section

More information

Week 7 Lecture: Concepts of Quantum Field Theory (QFT)

Week 7 Lecture: Concepts of Quantum Field Theory (QFT) Week 7 Lecture: Concepts of Quantum Field Theory QFT Andrew Forrester February, 008 Deriving the Klein-Gordon Equation with a Physical Model This Week s Questions/Goals How do you derive the Klein-Gordon

More information

= η a ψγ 0 σ µν P ψp = η a ψγ 0 σ µν η a γ 0 ψ = i 2 ψγ 0 [γ µ, γ ν ] γ 0 ψ

= η a ψγ 0 σ µν P ψp = η a ψγ 0 σ µν η a γ 0 ψ = i 2 ψγ 0 [γ µ, γ ν ] γ 0 ψ Peskin and Schroeder: 3.7 a Compute the transformation properties under P, C, and T of the antisymmetric tensor fermion bilinears, ψσ µν ψ, with σ µν = i 2 [γµ, γ ν ]. Solution: Applying the symmetry operators

More information

Lecture notes for the 2016 HEP School for Experimental High Energy Physics Students University of Lancaster, 4-16 September, 2016

Lecture notes for the 2016 HEP School for Experimental High Energy Physics Students University of Lancaster, 4-16 September, 2016 Technical Report RAL-TR-2016-007 Lecture notes for the 2016 HEP School for Experimental High Energy Physics Students University of Lancaster, 4-16 September, 2016 Lecturers: A Banfi, DG Cerdeño, C Englert,

More information

Quantum Field Theory. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 10, 2012

Quantum Field Theory. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 10, 2012 Quantum Field Theory Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 10, 2012 1 Concours Doctorat Physique Théorique Théorie Des Champs Quantique v1

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem 1a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S.1 In particularly,

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

Quantum Field Theory. Damon Binder

Quantum Field Theory. Damon Binder Quantum Field Theory Damon Binder 19 June 2017 1 Books and Other Resources Many books exist on quantum field theory and its applications. Here I mention just the ones that are most helpful as an introduction

More information

Physics 615, Lectures 1-3 Sept. 5 12, Introduction

Physics 615, Lectures 1-3 Sept. 5 12, Introduction Last Latexed: September 12, 213 at 1:18 1 Physics 615, Lectures 1-3 Sept. 5 12, 213 1 Introduction Introduction Copyright c 25 by Joel A. Shapiro According to the catalogue, this course is Overview of

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Quantum Gravity. Chapter Problems of General Relativity

Quantum Gravity. Chapter Problems of General Relativity Chapter 9 Quantum Gravity The quantum field theory of gravitation is constructed in terms of Lagrangian density of Dirac fields which couple to the electromagnetic field A µ as well as the gravitational

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information