# Introduction to Dynamical Systems Basic Concepts of Dynamics

Size: px
Start display at page:

## Transcription

1 Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic rules for moving between states. (Minor exception: stochastic dynamical systems). Iterators. State diagrams that plot x t+1 vs. x t characterize a dynamical system. Example asymptotic behaviors Fixed point Limit cycles and quasi-periodicity Chaotic Limit sets: The set of points in the asymptotic limit. Goal: Make quantitative or qualitative predictions of the asymptotic behavior of a system.

2 Chaos Chaotic dynamical systems Have complicated, often apparently random behavior Are deterministic Are predictable in the short term Are not predictable in the long term Are everywhere Turbulence Planetary orbits Weather?disease dynamics, stock markets and other CAS?

3 Introduction Two main types of dynamical systems: Differential equations Iterated maps (difference equations) Primarily concerned with how systems change over time, so focus on ordinary differential equations (one independent variable). Framework for ODE: x 1 = f 1 (x 1, x 2,...,x n ) x n = f n (x 1, x 2,..., x n ) x i dx i /dt Phase space is the space with coordinates <x 1, x n > We call this a n-dimensional system or an n-th order system.

4 Linear vs. Nonlinear A system is said to be linear if all x i on the right-hand side appear to the first power only. Typical nonlinear terms are products, powers, and functions of x i, e.g., x 1 x 2 (x 1 ) 3 cos x 2 Why are nonlinear systems difficult to solve? Linear systems can be broken into parts and nonlinear systems cannot. In many cases, we can use geometric reasoning to draw trajectories through phase space without actually solving the system.

5 Example Chaotic Dynamical System The Logistic Map Consider the following iterative equation: x t +1 = 4rx t (1 x t ) x t,r [0,1] We are interested in the following questions: What are the possible asymptotic trajectories given different x 0 for fixed r? Fixed points Limit cycles Chaos How do these trajectories change with small perturbations? Stable Unstable What happens as we vary r?

6 The Logistic Map cont. The logistic map: x t +1 = 4rx t (1 x t ) What is the behavior of this equation for different values of r and x 0? For r 1 x t ==> 0 (stable fixed point) 4 For 1 x t ==> stable fixed point attractor (next slide) 4 < r < 3 4 note: x t = 0 is a second fixed point (unstable) For x t ==> periodic with unstable points and chaos r > 3 4 If r < 1/4 then x t+1 < x t However, consider what happens as r increases, between 1/4 and 3/4: For an given r, system settles into a limit cycle (period) Successive period doublings (called bifurcations) as r increases

7 Logistic Map State Diagram x t +1 = 4rx t (1 x t )

8

9 Figure 10.2 goes here.

10 Transition to Chaos

11 Characteristics of Chaos Deterministic. Unpredictable: Behavior of a trajectory is unpredictable in long run. Sensitive dependence on initial conditions. Mixing : The points of an arbitrary small interval eventually become spread over the whole unit interval. Ergodic (every state space trajectory will return to the local region of a previous point in the trajectory, for an arbitrarily small local region). Chaotic orbits densely cover the unit interval. Embedded (infinite number of unstable periodic orbits within a chaotic attractor). In a system with sensitivity there is no possibility of detecting a periodic orbit by running the time series on a computer (limited precision, round-off error). Bifurcations. Fractal regions in the bifurcation diagram

12 Predicting chaos The cascade of bifurcations can be predicted from the Feigenbaum constant The value of r at which logistic map bifurcates into period 2 n limit cycle is an d k = (a k - a k -1 )/(a k+1 -a k ) d approaches so that the rate of time between bifurcations approaches a constant.

13 Information Loss Chaos as Mixing and Folding Information loss as loss of correlation from initial conditions

14 Reading: Chapter 11, 12 for Monday Complexity in Climate Change Models for Wednesday

15 Transition to chaos in the Logistic Map The Lorenz Equations

16 Chaos and Strange Attractors Bifurcations leading to chaos: In the 1 D logistic map, the amount by which r must be increased to get new period doublings gets smaller and smaller for each new bifurcation. This continues until the critical point is reached (transition to chaos). Why is chaos important? Seemingly random behavior may have a simple, deterministic explanation. Contrast with world view based on probability distributions. A formal definition of chaos: Chaos is defined by the presence of positive Lyapunov exponents. Working definition (Strogatz, 1994) Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions. Strange Attractors: chaotic systems with an asymptotic dynamic equilibrium. The system comes close to previous states, but never repeats them. Initially, a trajectory through a dynamical system may be erratic. This is known as the initial transient, or start-up transient. The asymptotic behavior of the system is known as equilibrium, steady state, or dynamic equilibrium. The equilibrium states which can be observed experimentally are those modeled by limit sets which receive most of the trajectories. These are called attractors.

17 Attractor Basins (from Abraham and Shaw, 1984) Basin of attraction: The points of all trajectories that converge to a given attractor. In a typical phase portrait, there will be more than one attractor. The dividing boundaries (or regions) between different attractor regions (basins) are called separatrices. Any point not in a basin of attraction belongs to a separatrix.

18 Example Trajectories Linear Vector Fields Wikipedia, 2007

20 Chapter 12: Producer Consumer Dynamics State Spaces: A Geometric Approach (Abraham and Shaw, 1984) An system of interest is observed in different states. These observed states are the target of modeling activity. State space: a geometric model of the set of all modeled states. Trajectory: A curve in the state space, connecting subsequent observations. Time series: A graph of the trajectory. Example: Lotka-Volterra equations: population growth of 2 linked populations df/dt = F(a-bS) ds/dt = S(cF-d)

21 Lotka Volterra 2 spp Lotka Voltera df/dt = F(a-bS) ds/dt = S(cF-d) a is reproduction rate of Fish b is # of Fish a Shark can eat c is the energy of a Fish (fraction of a new shark) d is death rate of a shark Compare to single population logistic map x t +1 = 4rx t (1 x t ) Where is the equilibrium?

22 Tuning parameters to find chaotic regimes Discrete vs continuous equations continuous chaos requires 3 dimensions (3 populations) A is a matrix of coefficients that spp j has on spp i A = A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 A = α

23 Lotka Volterra Time Series

24 Individual Models Implementing chaos as a quasi CA Each individual is represented explicitly Compare the sizes of the state spaces 3 floating point numbers vs 2 bits per individual x the number of individuals What can we hope to predict in such a complicated system? How can we hope to find ecosystem stability? Relate to Wolfram s CA classes

25

26 Just one more little complication We ve gone from simple 1 species population model To a model where multiple populations interact To a model where each individual is represented What if there are differences between individuals? Natural selection Geometric increases in population sizes Carrying capacity (density dependence) that limits growth Heritable variation in individuals that results in differential survival Populations become dynamical complex adaptive systems

27 Reading & References Chaos and Fractals by by H. Peitgen, H. Jurgens, and D. Saupe. Springer-Verlag (1992). Nonlinear Dynamics and Chaos by S. H. Strogatz. Westview (1994). J. Gleick Chaos. Viking (1987). Robert L. Devaney An Introduction to Chaotic Dynamical Systems. Addison-Wesley (1989). Ralph Abraham and Christopher D. Shaw Dynamics-The Geometry of Behavior Vol. 1-3 (1984).

### Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

### Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

### Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad

Chaos Dr. Dylan McNamara people.uncw.edu/mcnamarad Discovery of chaos Discovered in early 1960 s by Edward N. Lorenz (in a 3-D continuous-time model) Popularized in 1976 by Sir Robert M. May as an example

### 6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

### ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

Journal of Pure and Applied Mathematics: Advances and Applications Volume 0 Number 0 Pages 69-0 ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS HENA RANI BISWAS Department of Mathematics University of Barisal

### Unit Ten Summary Introduction to Dynamical Systems and Chaos

Unit Ten Summary Introduction to Dynamical Systems Dynamical Systems A dynamical system is a system that evolves in time according to a well-defined, unchanging rule. The study of dynamical systems is

### 2 One-dimensional models in discrete time

2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

### Chaos and Liapunov exponents

PHYS347 INTRODUCTION TO NONLINEAR PHYSICS - 2/22 Chaos and Liapunov exponents Definition of chaos In the lectures we followed Strogatz and defined chaos as aperiodic long-term behaviour in a deterministic

### ... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

### The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986)

The Big Picture Discuss Examples of unpredictability Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) Lecture 2: Natural Computation & Self-Organization, Physics 256A (Winter

### Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

### SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to

### More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

### Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

### Chaotic motion. Phys 750 Lecture 9

Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

### Lecture 1: Introduction, history, dynamics, nonlinearity, 1-D problem, phase portrait

Lecture 1: Introduction, history, dynamics, nonlinearity, 1-D problem, phase portrait Dmitri Kartofelev, PhD Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of

### Complicated dynamics from simple functions

Complicated dynamics from simple functions Math Outside the Box, Oct 18 2016 Randall Pyke rpyke@sfu.ca This presentation: www.sfu.ca/~rpyke Presentations Dynamics Discrete dynamical systems: Variables

### LECTURE 8: DYNAMICAL SYSTEMS 7

15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

### Nonlinear Dynamics and Chaos Summer 2011

67-717 Nonlinear Dynamics and Chaos Summer 2011 Instructor: Zoubir Benzaid Phone: 424-7354 Office: Swart 238 Office Hours: MTWR: 8:30-9:00; MTWR: 12:00-1:00 and by appointment. Course Content: This course

### WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

### Chaos in the Dynamics of the Family of Mappings f c (x) = x 2 x + c

IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 10, Issue 4 Ver. IV (Jul-Aug. 014), PP 108-116 Chaos in the Dynamics of the Family of Mappings f c (x) = x x + c Mr. Kulkarni

### Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

### FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

Article history: Received 22 April 2016; last revision 30 June 2016; accepted 12 September 2016 FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Mihaela Simionescu Institute for Economic Forecasting of the

### THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

### Chaos and Cryptography

Chaos and Cryptography Vishaal Kapoor December 4, 2003 In his paper on chaos and cryptography, Baptista says It is possible to encrypt a message (a text composed by some alphabet) using the ergodic property

### Igor A. Khovanov,Vadim S. Anishchenko, Astrakhanskaya str. 83, Saratov, Russia

Noise Induced Escape from Dierent Types of Chaotic Attractor Igor A. Khovanov,Vadim S. Anishchenko, Dmitri G. Luchinsky y,andpeter V.E. McClintock y Department of Physics, Saratov State University, Astrakhanskaya

### Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

### Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

### Dynamics and Chaos. Copyright by Melanie Mitchell

Dynamics and Chaos Copyright by Melanie Mitchell Conference on Complex Systems, September, 2015 Dynamics: The general study of how systems change over time Copyright by Melanie Mitchell Conference on Complex

### Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Khatiwala, et.al.

Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change Questions What are the characteristics of the unforced Lorenz system? What

### Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

Chapter 4 Transition towards chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different

### Deterministic Chaos Lab

Deterministic Chaos Lab John Widloski, Robert Hovden, Philip Mathew School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 I. DETERMINISTIC CHAOS LAB This laboratory consists of three major

### Scenarios for the transition to chaos

Scenarios for the transition to chaos Alessandro Torcini alessandro.torcini@cnr.it Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale

### Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

### Chapitre 4. Transition to chaos. 4.1 One-dimensional maps

Chapitre 4 Transition to chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different manners

### Is the Hénon map chaotic

Is the Hénon map chaotic Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology, Poland, galias@agh.edu.pl International Workshop on Complex Networks and Applications

### NONLINEAR DYNAMICS PHYS 471 & PHYS 571

NONLINEAR DYNAMICS PHYS 471 & PHYS 571 Prof. R. Gilmore 12-918 X-2779 robert.gilmore@drexel.edu Office hours: 14:00 Quarter: Winter, 2014-2015 Course Schedule: Tuesday, Thursday, 11:00-12:20 Room: 12-919

### Neuchatel #1, a talk at SSC Hearing, Friday September 4, 1998 Submitted to the Proceedings, Thomas Bernold, ed., Friday October 30, 1998

MS##97.GST1 Abraham 1 Neuchatel #1, a talk at SSC Hearing, Friday September 4, 1998 Submitted to the Proceedings, Thomas Bernold, ed., Friday October 30, 1998 A Stairway to Chaos by Ralph H. Abraham Professor

### UNI 101z November 9, 2004 Population Dynamics and Chaos: A Descriptive Introduction Thomas Caraco Department of Biological Sciences 1.

UNI 101z November 9, 2004 Population Dynamics and Chaos: A Descriptive Introduction Thomas Caraco Department of Biological Sciences 1. PRELIMINARIES 1.1. Objectives I want to introduce some significant

### B5.6 Nonlinear Systems

B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

### One dimensional Maps

Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

### PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

### TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

### Reconstruction Deconstruction:

Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

### Dynamics: The general study of how systems change over time

Dynamics: The general study of how systems change over time Planetary dynamics P http://www.lpi.usra.edu/ Fluid Dynamics http://pmm.nasa.gov/sites/default/files/imagegallery/hurricane_depth.jpg Dynamics

### Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

### Chapter 2 Chaos theory and its relationship to complexity

Chapter 2 Chaos theory and its relationship to complexity David Kernick This chapter introduces chaos theory and the concept of non-linearity. It highlights the importance of reiteration and the system

### 7 Planar systems of linear ODE

7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

### Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

### MATH 415, WEEKS 14 & 15: 1 Recurrence Relations / Difference Equations

MATH 415, WEEKS 14 & 15: Recurrence Relations / Difference Equations 1 Recurrence Relations / Difference Equations In many applications, the systems are updated in discrete jumps rather than continuous

### ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine

ECE 8803 Nonlinear Dynamics and Applications Spring 2018 Georgia Tech Lorraine Brief Description Introduction to the nonlinear dynamics of continuous-time and discrete-time systems. Routes to chaos. Quantification

### A SIMPLE MATHEMATICAL MODEL FOR BATESIAN MIMICRY

A SIMPLE MATHEMATICAL MODEL FOR BATESIAN MIMICRY TERENCE R. BLOWS AND BARRY J. WIMMER Received 24 September 2003 A simple mathematical model is presented for Batesian mimicry, which occurs when a harmless

### Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel Nonlinear dynamics course - VUB

Chaos Lendert Gelens KU Leuven - Vrije Universiteit Brussel www.gelenslab.org Nonlinear dynamics course - VUB Examples of chaotic systems: the double pendulum? θ 1 θ θ 2 Examples of chaotic systems: the

### xt+1 = 1 ax 2 t + y t y t+1 = bx t (1)

Exercise 2.2: Hénon map In Numerical study of quadratic area-preserving mappings (Commun. Math. Phys. 50, 69-77, 1976), the French astronomer Michel Hénon proposed the following map as a model of the Poincaré

### René Thomas Université de Bruxelles. Frontier diagrams: a global view of the structure of phase space.

René Thomas Université de Bruxelles Frontier diagrams: a global view of the structure of phase space. We have the tools to identify and characterise steady states and trajectories. But WHY several steady

### Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences

Chaos Theory Namit Anand Y1111033 Integrated M.Sc.(2011-2016) Under the guidance of Prof. S.C. Phatak Center for Excellence in Basic Sciences University of Mumbai 1 Contents 1 Abstract 3 1.1 Basic Definitions

### Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability.

ISO 9001:008 Certified Volume, Issue, March 013 Dynamical Behavior in a Discrete Prey- Predator Interactions M.ReniSagaya Raj 1, A.George Maria Selvam, R.Janagaraj 3.and D.Pushparajan 4 1,,3 Sacred Heart

### The Big Picture. Python environment? Discuss Examples of unpredictability. Chaos, Scientific American (1986)

The Big Picture Python environment? Discuss Examples of unpredictability Email homework to me: chaos@cse.ucdavis.edu Chaos, Scientific American (1986) Odds, Stanislaw Lem, The New Yorker (1974) 1 Nonlinear

### Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

### Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

### Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

### Period-doubling cascades of a Silnikov equation

Period-doubling cascades of a Silnikov equation Keying Guan and Beiye Feng Science College, Beijing Jiaotong University, Email: keying.guan@gmail.com Institute of Applied Mathematics, Academia Sinica,

### Persistent Chaos in High-Dimensional Neural Networks

Persistent Chaos in High-Dimensional Neural Networks D. J. Albers with J. C. Sprott and James P. Crutchfield February 20, 2005 1 Outline: Introduction and motivation Mathematical versus computational dynamics

### A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

### Numerical Algorithms as Dynamical Systems

A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

### Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach

Contents 1 Dynamical Systems... 1 1.1 Introduction... 1 1.2 DynamicalSystems andmathematical Models... 1 1.3 Kinematic Interpretation of a System of Differential Equations... 3 1.4 Definition of a Dynamical

### From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

From Last Time Gravitational forces are apparent at a wide range of scales. Obeys F gravity (Mass of object 1) (Mass of object 2) square of distance between them F = 6.7 10-11 m 1 m 2 d 2 Gravitational

### On the periodic logistic equation

On the periodic logistic equation Ziyad AlSharawi a,1 and James Angelos a, a Central Michigan University, Mount Pleasant, MI 48858 Abstract We show that the p-periodic logistic equation x n+1 = µ n mod

### The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

Original Article International Journal of Fuzzy Logic and Intelligent Systems Vol. 15, No. 2, June 2015, pp. 121-125 http://dx.doi.org/10.5391/ijfis.2015.15.2.121 ISSN(Print) 1598-2645 ISSN(Online) 2093-744X

### Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

### v n+1 = v T + (v 0 - v T )exp(-[n +1]/ N )

Notes on Dynamical Systems (continued) 2. Maps The surprisingly complicated behavior of the physical pendulum, and many other physical systems as well, can be more readily understood by examining their

### A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors

EJTP 5, No. 17 (2008) 111 124 Electronic Journal of Theoretical Physics A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors Zeraoulia Elhadj a, J. C. Sprott b a Department of Mathematics,

### Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

### INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

INTRODUCTION TO CHAOS THEORY BY T.R.RAMAMOHAN C-MMACS BANGALORE -560037 SOME INTERESTING QUOTATIONS * PERHAPS THE NEXT GREAT ERA OF UNDERSTANDING WILL BE DETERMINING THE QUALITATIVE CONTENT OF EQUATIONS;

### A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

### Nonlinear dynamics in the Cournot duopoly game with heterogeneous players

arxiv:nlin/0210035v1 [nlin.cd] 16 Oct 2002 Nonlinear dynamics in the Cournot duopoly game with heterogeneous players H. N. Agiza and A. A. Elsadany Department of Mathematics, Faculty of Science Mansoura

### 8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds

c Dr Igor Zelenko, Spring 2017 1 8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds to section 2.5) 1.

By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

### CHAOS THEORY AND EXCHANGE RATE PROBLEM

CHAOS THEORY AND EXCHANGE RATE PROBLEM Yrd. Doç. Dr TURHAN KARAGULER Beykent Universitesi, Yönetim Bilişim Sistemleri Bölümü 34900 Büyükçekmece- Istanbul Tel.: (212) 872 6437 Fax: (212)8722489 e-mail:

### Are numerical studies of long term dynamics conclusive: the case of the Hénon map

Journal of Physics: Conference Series PAPER OPEN ACCESS Are numerical studies of long term dynamics conclusive: the case of the Hénon map To cite this article: Zbigniew Galias 2016 J. Phys.: Conf. Ser.

### Population Dynamics II

Population Dynamics II In this class, we shall analyze behavioral patterns of ecosystems, in which more than two species interact with each other. Such systems frequently exhibit chaotic behavior. Chaotic

### Lesson 4: Non-fading Memory Nonlinearities

Lesson 4: Non-fading Memory Nonlinearities Nonlinear Signal Processing SS 2017 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 22, 2017 NLSP SS

### 2 Discrete growth models, logistic map (Murray, Chapter 2)

2 Discrete growth models, logistic map (Murray, Chapter 2) As argued in Lecture 1 the population of non-overlapping generations can be modelled as a discrete dynamical system. This is an example of an

### CHAOS -SOME BASIC CONCEPTS

CHAOS -SOME BASIC CONCEPTS Anders Ekberg INTRODUCTION This report is my exam of the "Chaos-part" of the course STOCHASTIC VIBRATIONS. I m by no means any expert in the area and may well have misunderstood

### Discrete Time Coupled Logistic Equations with Symmetric Dispersal

Discrete Time Coupled Logistic Equations with Symmetric Dispersal Tasia Raymer Department of Mathematics araymer@math.ucdavis.edu Abstract: A simple two patch logistic model with symmetric dispersal between

### Julia Sets and the Mandelbrot Set

December 14, 2007 : Dynamical System s Example Dynamical System In general, a dynamical system is a rule or function that describes a point s position in space over time, where time can be modeled as a

### Lecture 7. Order Out of Chaos

Lecture 7 Order Out of Chaos Lyapunov Exponents: Recall from Last Time The Lyapunov exponent for maps is: < 0if f 0 (x ) < 1 =ln f 0 (x ) = > 0if f 0 (x ) > 1 Lyapunov Exponents: Numerical Estimation Lyapunov

### Discrete Dynamical Systems

Discrete Dynamical Systems Justin Allman Department of Mathematics UNC Chapel Hill 18 June 2011 What is a discrete dynamical system? Definition A Discrete Dynamical System is a mathematical way to describe

### Co-existence of Regular and Chaotic Motions in the Gaussian Map

EJTP 3, No. 13 (2006) 29 40 Electronic Journal of Theoretical Physics Co-existence of Regular and Chaotic Motions in the Gaussian Map Vinod Patidar Department of Physics, Banasthali Vidyapith Deemed University,

Invariant measures (Sethna, "Entropy, Order Parameters, and Complexity", ex. 4.3) 2017, James Sethna, all rights reserved. This exercise was developed in collaboration with Christopher Myers. Liouville's

### Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos

Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos (Max useful score: 100 - Available points: 125) 15-382: Collective Intelligence (Spring 2018)

### Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

### Computed Chaos or Numerical Errors. Lun-Shin Yao

Computed Chaos or Numerical Errors Lun-Shin Yao Department of Mechanical and Aerospace Engineering Arizona State University Tempe, Arizona E-mail: ls_yao@asu.edu Abstract Discrete numerical methods with

### Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction

Chapter 6: Ensemble Forecasting and Atmospheric Predictability Introduction Deterministic Chaos (what!?) In 1951 Charney indicated that forecast skill would break down, but he attributed it to model errors

### Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

### Lecture 1 Monday, January 14

LECTURE NOTES FOR MATH 7394 ERGODIC THEORY AND THERMODYNAMIC FORMALISM INSTRUCTOR: VAUGHN CLIMENHAGA Lecture 1 Monday, January 14 Scribe: Vaughn Climenhaga 1.1. From deterministic physics to stochastic

### Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 7, No. 2, pp. 284 310 c 2008 Society for Industrial and Applied Mathematics Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models Abdul-Aziz

### Complex Dynamical Systems

MS#98.GST2 Abraham 1 Neuchatel #2, a talk at Neuchatel GST Summer School, Monday September 7, 1998 Submitted to the Proceedings, Eric Schwartz, ed., Saturday December 19, 1998 Complex Dynamical Systems