From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

Size: px
Start display at page:

Download "From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys"

Transcription

1 From Last Time Gravitational forces are apparent at a wide range of scales. Obeys F gravity (Mass of object 1) (Mass of object 2) square of distance between them F = m 1 m 2 d 2 Gravitational Constant

2 The deterministic solar system

3 Simple Planetary motion more_stuff/flashlets/kepler6.htm

4 Newtonian Determinism Newton s laws seem to determine all future motion. All future behavior exactly known.

5 The three-body problem Newton could not solve any problem past a single planet orbiting the sun. Prize offered for solution of 3-body problem. Poincare in 1896 showed problem not analytically solvable.

6 Complicated motion of 3 bodies

7 Sensitivity to initial conditions in the 3-body problem Flash simulation ThreeBody/ThreeBody.html Two planets start out with almost identical positions and velocities. Resulting motions due to gravitational attraction to the two suns are very different Sensitive to initial conditions

8 How can we summarize this motion? The three-body problem exhibits all of the hallmarks of chaos. In particular, the outcome of any given interaction depends sensitively on the initial conditions. The following image shows how the final state of a scattering encounter between a binary star system and another star depends on the initial phase (horizontal axis) of the binary and the impact parameter (vertical axis) of the incomer. Color represents the angle at which the star that eventually escapes leave the interaction region. Note the alternating regions of regular (smooth) and irregular (chaotic, resonant) behavior. Each pixel in this image coresponds to a complete three-body encounter. The particular series of calculations shown here has relative velocity at infinity equal to 10% of the binary orbit speed. Encounters such as these are believed to be important in determining the dynamical evolution of globular star clusters in the Milky Way galaxy.

9 Dynamical Systems The system evolves in time according to a set of rules. The present conditions determine the future. The rules are usually nonlinear. There may be many interacting variables.

10 Examples of Dynamical Systems The Solar System The atmosphere (the weather) The economy (stock market) The human body (heart, brain, lungs,...) Ecology (plant and animal populations) Cancer growth Spread of epidemics Chemical reactions The electrical power grid The Internet

11 A double pendulum One way to drive a pendulum is to hang it from another that is swinging. DoublePendulum.ht ml

12 The weather The strange behavior of nonlinear systems was not fully appreciated until computers permitted extensive numerical simulations of motions not susceptible to analytic methods Edward Lorenz discovered that a rather simple model of atmospheric processes exhibited erratic behavior.

13 Lorenz model Lorenz studied a simple model of the evolution of temperature and pressure and found a small change in initial value led to ultimately wildly different results.

14 Lorentz attractor in 3D

15 Simple sensitive systems Released balloon Air hose (fire hose instability)

16 The magnetic pendulum Pendulum comes to rest above one of the stationary magnets (attractors) Result depends sensitively on point of release. Two similar release points Different trajectory and rest point

17 Quantify the dependence on initial conditions Blue and white regions show initial positions which correspond to the magnet coming to equilibrium around either the blue or white fixed magnet.

18 Fractal structure of the boundary If we could blow up the region around the boundaries between blue and white areas, we would find that they are not infinitely sharp. Instead, we would see a complex structure which is termed a fractal. Fractals have fractional dimensions and the unique property of self-similarity to all levels of magnification. If you magnify any part of a fractal, you see a miniature copy of the overall fractal structure repeated on the small scale.

19 Three magnet pendulum Now have three attractors for the magnet on the pendulum. Release pendulum at diff. Points & see where it comes to rest Three almost identical starting positions, but three different final positions.

20 Basins of attraction for 3-magnet pendulum Color coding indicates final rest position of magnet on pendulum Green is above green stationary magnet, etc. Region of solid color is called a basin of attraction This shows a fractal, selfsimilar structure. y release position x release position

21 Fractal structure in a similar problem By fractal, or selfsimilar, we mean similar on all length scales. I.e. the picture looks the same after zooming in much closer.

22 Driven systems The magnet pendula were examples of systems attracted to a fixed, stable position after some time. The stable positions are attractors, and the final position depends sensitively on the initial release point of the pendulum. In this case the initial motion was damped out by frictional forces. But if the pendulum were continually driven, it would continue to oscillate forever. We could say it is attracted to a fixed, stable motion rather than a final position.

23 The driven pendulum Pendulum driven (pushed) with a particular strength, and at a particular frequency. Drive mechanism ω θ θ = angle of pendulum ω = angular velocity (e.g. rotation rate) If we know both θ and ω at a particular instant of time, we know the motion of the pendulum.

24 Describe motion with phase-space plot Can plot θ vs ω for all times instead of θ vs time. Makes a compact, self-contained description of the motion. If we take a strobe photograph of the pendulum, once per drive cycle, we will get pairs of θ and ω that we can plot in phase space This is a Poincare plot.

25 Small drive amplitude: periodic motion Drive amplitude Poincare plot Angular velocity (ω) Phase-space plot Angle (θ)

26 Increase the drive amplitude Drive amplitude = 0.665, period doubling

27 Period four oscillation Drive amplitude = 0.667, period doubles again, to four times the drive period Angular velocity Angle

28 Chaotic motion Drive amplitude = 0.68, motion is now chaotic

29 More chaotic motion Drive amplitude = 0.69, chaotic motion Angular velocity Angle

30

31

32

33

34

35

36 Route to chaos in the driven pendulum Increasing drive amplitude induces period doubling, quadrupling, then chaotic behavior. For each value of drive, the pendulum angular velocity is plotted at intervals of the drive period (vert. axis of Poincare plot).

37 Driven pendulum, basins of attraction Even something as simple as a periodically forced damped pendulum can have complex behavior. The computer-generated images below show initial positions that asymptote to one of different behaviors (one color for each behavior). For example, orbits starting at points in the blue region would yield a different type of motion from orbits starting in the red region. The brighter the shade of color, the longer it takes to settle into the corresponding motion. The different regions are separated by fractal basin boundaries.

38 Everyday chaos: A dripping faucet Water dripping from a faucet can show chaotic behavior. Small average flow rate results in water droplets falling perfectly periodically from the faucet. Faster drip rate leads to period doubling, then chaotic falling droplets. When drop detaches, it leaves vibrations on remaining water For slow enough rates, these vibrations die out, so each drop independent. At high drop rate, vibrations influence next drop detachment

39 Natural Fractals

40 Fractal coastline

41 Basins of attraction Release position green - pendulum comes to rest above green magnet Diagram indicates relation between initial conditions and final motion. y release position x release position

42 Fractals as art Many different systems show chaotic or fractal behavior. They range from physical systems, to purely mathematical ones. In a phase space plot, the color coding usually indicates the basin of attraction of some attractor (dynamical state). The saturation of the color might indicate the rate at which the system is attracted to that dynamical state. Following are several fractal images from the web. See sprott.physics.wisc.edu/fractals.htm for many other fascinating phase space plots.

43

44

45

46

47

48

49

50

51

52

The phenomenon: complex motion, unusual geometry

The phenomenon: complex motion, unusual geometry Part I The phenomenon: complex motion, unusual geometry Chapter 1 Chaotic motion 1.1 What is chaos? Certain long-lasting, sustained motion repeats itself exactly, periodically. Examples from everyday life

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Autonomous Systems A set of coupled autonomous 1st-order ODEs. Here "autonomous" means that the right hand side of the equations does not explicitly

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Laboratory Instruction-Record Pages

Laboratory Instruction-Record Pages Laboratory Instruction-Record Pages The Driven Pendulum Geology 200 - Evolutionary Systems James Madison University Lynn S. Fichter and Steven J. Baedke Brief History of Swinging Many things in this universe

More information

Entrainment Alex Bowie April 7, 2004

Entrainment Alex Bowie April 7, 2004 Entrainment Alex Bowie April 7, 2004 Abstract The driven Van der Pol oscillator displays entrainment, quasiperiodicity, and chaos. The characteristics of these different modes are discussed as well as

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

More information

Transitioning to Chaos in a Simple Mechanical Oscillator

Transitioning to Chaos in a Simple Mechanical Oscillator Transitioning to Chaos in a Simple Mechanical Oscillator Hwan Bae Physics Department, The College of Wooster, Wooster, Ohio 69, USA (Dated: May 9, 8) We vary the magnetic damping, driver frequency, and

More information

Energy in Planetary Orbits

Energy in Planetary Orbits Lecture 19: Energy in Orbits, Bohr Atom, Oscillatory Motion 1 Energy in Planetary Orbits Consequences of Kepler s First and Third Laws According to Kepler s First Law of Planetary Motion, all planets move

More information

Chaotic Motion (One or two weights)

Chaotic Motion (One or two weights) Page 1 of 8 Chaotic Motion (One or two weights) Exercises I through IV form the one-weight experiment. Exercises V through VII, completed after Exercises I-IV, add one weight more. This challenging experiment

More information

Chaotic Motion (One or two weights)

Chaotic Motion (One or two weights) Page 1 of 8 Chaotic Motion (One or two weights) Exercises I through IV form the one-weight experiment. Exercises V through VII, completed after Exercises I-IV, add one weight more. This challenging experiment

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Double Transient Chaotic Behaviour of a Rolling Ball

Double Transient Chaotic Behaviour of a Rolling Ball Open Access Journal of Physics Volume 2, Issue 2, 2018, PP 11-16 Double Transient Chaotic Behaviour of a Rolling Ball Péter Nagy 1 and Péter Tasnádi 2 1 GAMF Faculty of Engineering and Computer Science,

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 HW and Exam #1 HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed

More information

LAST TIME: Simple Pendulum:

LAST TIME: Simple Pendulum: LAST TIME: Simple Pendulum: The displacement from equilibrium, x is the arclength s = L. s / L x / L Accelerating & Restoring Force in the tangential direction, taking cw as positive initial displacement

More information

Double Pendulum: A Bridge between Regular Dynamics and Chaos

Double Pendulum: A Bridge between Regular Dynamics and Chaos Title: Original: Revision: Authors: Appropriate Level: Abstract: Time Required: Double Pendulum: A Bridge between Regular Dynamics and Chaos July 26, 2005 (v1) Nov 14, 2005 (v2), May 23, 2006 (v3), June

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

Gravitation and Dark Matter

Gravitation and Dark Matter PHYS 1105 SMU Physics Dept. Gravitation and Dark Matter Goal: To calculate the amount of Dark Matter in galaxy NGC 134 The (Very) Big Picture The force of gravity acts upon any object with mass and is

More information

Exam #1. On-line review questions for chapters 3-6 at uw.physics.wisc.edu/~rzchowski/phy107. Sep. 27, 2004 Physics 107, Lecture 10

Exam #1. On-line review questions for chapters 3-6 at uw.physics.wisc.edu/~rzchowski/phy107. Sep. 27, 2004 Physics 107, Lecture 10 Exam #1 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed. Can write on both sides Questions are multiple choice Scantron sheets will be used

More information

Oscillations in Damped Driven Pendulum: A Chaotic System

Oscillations in Damped Driven Pendulum: A Chaotic System International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 3, Issue 10, October 2015, PP 14-27 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Oscillations

More information

http://www.ibiblio.org/e-notes/mset/logistic.htm On to Fractals Now let s consider Scale It s all about scales and its invariance (not just space though can also time And self-organized similarity

More information

Midterm EXAM PHYS 401 (Spring 2012), 03/20/12

Midterm EXAM PHYS 401 (Spring 2012), 03/20/12 Midterm EXAM PHYS 401 (Spring 2012), 03/20/12 Name: Signature: Duration: 75 minutes Show all your work for full/partial credit! In taking this exam you confirm to adhere to the Aggie Honor Code: An Aggie

More information

Deterministic Chaos. (a) (b) ONE CYCLE

Deterministic Chaos. (a) (b) ONE CYCLE Class Notes, Phyx Deterministic Chaos I. INTRODUCTION - ORDER VS CHAOS One of the most mysterious aspects of the natural world is the coexistence of order and disorder. Some things appear to be fairly

More information

Modeling the Duffing Equation with an Analog Computer

Modeling the Duffing Equation with an Analog Computer Modeling the Duffing Equation with an Analog Computer Matt Schmitthenner Physics Department, The College of Wooster, Wooster, Ohio 44691, USA (Dated: December 13, 2011) The goal was to model the Duffing

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

APPM 2460 CHAOTIC DYNAMICS

APPM 2460 CHAOTIC DYNAMICS APPM 2460 CHAOTIC DYNAMICS 1. Introduction Today we ll continue our exploration of dynamical systems, focusing in particular upon systems who exhibit a type of strange behavior known as chaos. We will

More information

Chaos and stability in the vicinity of a Jovian planet

Chaos and stability in the vicinity of a Jovian planet BEREA COLLEGE Chaos and stability in the vicinity of a Jovian planet by Shiblee Ratan Barua Berea College /22/28 It has been widely known that the influence of large bodies (the Sun, the terrestrial and

More information

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino DOTTORATO IN Sistemi Tecnologie e Dispositivi per il Movimento e la Salute Cassino, 2011 NONLINEAR DYNAMICAL SYSTEMS AND CHAOS: PHENOMENOLOGICAL AND COMPUTATIONAL ASPECTS Deborah Lacitignola Department

More information

By Nadha CHAOS THEORY

By Nadha CHAOS THEORY By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

More information

LECTURE 19: Simple harmonic oscillators

LECTURE 19: Simple harmonic oscillators Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 19: Simple harmonic oscillators Be able to identify the features of a system that oscillates - i.e. systems with a restoring force and a potential energy

More information

IMHO In My Humble Opinion

IMHO In My Humble Opinion IMHO In My Humble Opinion Home Chaos Theory: A Brief Introduction What exactly is chaos? The name "chaos theory" comes from the fact that the systems that the theory describes are apparently disordered,

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields Surname Centre Number Candidate Number Other Names 2 GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields P.M. WEDNESDAY, 11 June 2014 1 hour 30 minutes For s use Question Maximum Mark Mark Awarded

More information

The dynamics of the Forced Damped Pendulum. John Hubbard Cornell University and Université de Provence

The dynamics of the Forced Damped Pendulum. John Hubbard Cornell University and Université de Provence The dynamics of the Forced Damped Pendulum John Hubbard Cornell University and Université de Provence Three ways to view the pendulum Three ways to view the pendulum 1. As a physical object Three ways

More information

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed.

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed. ASTRON 331 Astrophysics TEST 1 May 5, 2003 Name: This is a closed-book test. No notes, books, or calculators allowed. Orders of Magnitude (20 points): simply circle the correct answer. 1. The brightest

More information

Chaos in the Hénon-Heiles system

Chaos in the Hénon-Heiles system Chaos in the Hénon-Heiles system University of Karlstad Christian Emanuelsson Analytical Mechanics FYGC04 Abstract This paper briefly describes how the Hénon-Helies system exhibits chaos. First some subjects

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion 11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,

More information

Period 13 Activity Solutions: Energy Balance of the Earth

Period 13 Activity Solutions: Energy Balance of the Earth Period 13 Activity Solutions: Energy Balance of the Earth 13.1 Sensitivity of Systems to Initial Conditions 1) Motion and Newton s Laws Your instructor will demonstrate a cart moving on a track. a) Is

More information

u Today I will look for key ideas in the text to support the role gravity has on the formation of the planets.

u Today I will look for key ideas in the text to support the role gravity has on the formation of the planets. Space SC.8.E.5.4 SC.8.E.5.4: Explore the Law of Universal Gravitation by explaining the role that gravity plays in the formation of planets, stars, and solar systems, and determining their motions Game

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

Dynamics Examples. Robin Hughes and Anson Cheung. 28 th June, 2010

Dynamics Examples. Robin Hughes and Anson Cheung. 28 th June, 2010 Dynamics Examples Robin Hughes and Anson Cheung 28 th June, 2010 1 Newton s Laws Figure 1: 3 connected blocks Figure 2: Masses on a trolley 1. Two blocks of mass m 1 = 1kg and m 2 = 2kg on a frictionless

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

Fractals and the Large-Scale Structure in the Universe

Fractals and the Large-Scale Structure in the Universe Fractals and the Large-Scale Structure in the Universe 2. Is the Cosmological Principle Valid? A K Mittal and T R Seshadri In Part 1 of this article, we had introduced the reader to some basic concepts

More information

Relativity and Black Holes

Relativity and Black Holes Relativity and Black Holes Post-MS Evolution of Very High Mass (>15 M Θ ) Stars similar to high mass except more rapid lives end in Type II supernova explosions main difference: mass of iron core at end

More information

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

PH 120 Project # 2: Pendulum and chaos

PH 120 Project # 2: Pendulum and chaos PH 120 Project # 2: Pendulum and chaos Due: Friday, January 16, 2004 In PH109, you studied a simple pendulum, which is an effectively massless rod of length l that is fixed at one end with a small mass

More information

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering Chaos & Recursive Equations (Properties, Dynamics, and Applications ) Ehsan Tahami PHD student of biomedical engineering Tahami@mshdiau.a.ir Index What is Chaos theory? History of Chaos Introduction of

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Chua s Circuit: The Paradigm for Generating Chaotic Attractors

Chua s Circuit: The Paradigm for Generating Chaotic Attractors Chua s Circuit: The Paradigm for Generating Chaotic Attractors EE129 Fall 2007 Bharathwaj Muthuswamy NOEL: Nonlinear Electronics Lab 151M Cory Hall Department of EECS University of California, Berkeley

More information

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction Chapter 6: Ensemble Forecasting and Atmospheric Predictability Introduction Deterministic Chaos (what!?) In 1951 Charney indicated that forecast skill would break down, but he attributed it to model errors

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

LESSON 1. Solar System

LESSON 1. Solar System Astronomy Notes LESSON 1 Solar System 11.1 Structure of the Solar System axis of rotation period of rotation period of revolution ellipse astronomical unit What is the solar system? 11.1 Structure of the

More information

Nonlinear Oscillators: Free Response

Nonlinear Oscillators: Free Response 20 Nonlinear Oscillators: Free Response Tools Used in Lab 20 Pendulums To the Instructor: This lab is just an introduction to the nonlinear phase portraits, but the connection between phase portraits and

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

Lecture V : Oscillatory motion and spectral analysis

Lecture V : Oscillatory motion and spectral analysis Lecture V : Oscillatory motion and spectral analysis I. IDEAL PENDULUM AND STABILITY ANALYSIS Let us remind ourselves of the equation of motion for the pendulum. Remembering that the external torque applied

More information

Mechanical Resonance and Chaos

Mechanical Resonance and Chaos Mechanical Resonance and Chaos You will use the apparatus in Figure 1 to investigate regimes of increasing complexity. Figure 1. The rotary pendulum (from DeSerio, www.phys.ufl.edu/courses/phy483l/group_iv/chaos/chaos.pdf).

More information

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1 Astro 110-01 Lecture 12 Energy and Gravity (Cont d) 13/02/09 Habbal Astro110-01 Lecture 12 1 Energy due to movement of Kinetic Energy: object E k = ½ m v 2 13/02/09 Habbal Astro110-01 Lecture 12 2 Gravitational

More information

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS ANALYTICAL MECHANICS LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS Preface xi 1 LAGRANGIAN MECHANICS l 1.1 Example and Review of Newton's Mechanics: A Block Sliding on an Inclined Plane 1

More information

ConcepTest 14.6a Period of a Spring I

ConcepTest 14.6a Period of a Spring I ConcepTest 14.6a Period of a Spring I A glider with a spring attached to each end oscillates with a certain period. If the mass of the glider is doubled, what will happen to the period? 1) period will

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

Analytical Mechanics - Extra Problems

Analytical Mechanics - Extra Problems Analytical Mechanics - Extra Problems Physics 105, F17 (R) are review problems. Review problems are those that have already been covered in prior courses, mostly Intro to Physics I and II. Some are math

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Why are Discrete Maps Sufficient?

Why are Discrete Maps Sufficient? Why are Discrete Maps Sufficient? Why do dynamical systems specialists study maps of the form x n+ 1 = f ( xn), (time is discrete) when much of the world around us evolves continuously, and is thus well

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Class 18 Linear Harmonic Last Class We saw how motion in a circle is mathematically similar to motion in a straight line. We learned that there is a centripetal acceleration (and

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars Classifying Stars In the early 1900s, Ejnar Hertzsprung and Henry Russell made some important observations. They noticed that, in general, stars with higher temperatures also have brighter absolute magnitudes.

More information

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad Chaos Dr. Dylan McNamara people.uncw.edu/mcnamarad Discovery of chaos Discovered in early 1960 s by Edward N. Lorenz (in a 3-D continuous-time model) Popularized in 1976 by Sir Robert M. May as an example

More information

Dynamics and Chaos. Copyright by Melanie Mitchell

Dynamics and Chaos. Copyright by Melanie Mitchell Dynamics and Chaos Copyright by Melanie Mitchell Conference on Complex Systems, September, 2015 Dynamics: The general study of how systems change over time Copyright by Melanie Mitchell Conference on Complex

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to

More information

Parametric Resonance and Elastic Pendulums

Parametric Resonance and Elastic Pendulums Parametric Resonance and Elastic Pendulums Ravitej Uppu Abstract In this I try to extend the theoretical conception of Elastic Pendulum that can be explained by the Driven Pendulums that I presented during

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

CHAOS -SOME BASIC CONCEPTS

CHAOS -SOME BASIC CONCEPTS CHAOS -SOME BASIC CONCEPTS Anders Ekberg INTRODUCTION This report is my exam of the "Chaos-part" of the course STOCHASTIC VIBRATIONS. I m by no means any expert in the area and may well have misunderstood

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

Chap. 15: Simple Harmonic Motion

Chap. 15: Simple Harmonic Motion Chap. 15: Simple Harmonic Motion Announcements: CAPA is due next Tuesday and next Friday. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Examples of periodic motion vibrating guitar

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

CIE Physics IGCSE. Topic 1: General Physics

CIE Physics IGCSE. Topic 1: General Physics CIE Physics IGCSE Topic 1: General Physics Summary Notes Length and time A ruler (rule) is used to measure the length of an object between 1mm and 1m. The volume of an object of irregular shape can be

More information

Today. Review. Momentum and Force Consider the rate of change of momentum. What is Momentum?

Today. Review. Momentum and Force Consider the rate of change of momentum. What is Momentum? Today Announcements: HW# is due Wednesday 8:00 am. HW#3 will be due Wednesday Feb.4 at 8:00am Review and Newton s 3rd Law Gravity, Planetary Orbits - Important lesson in how science works and how ultimately

More information

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency.

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency. Q1.For a body performing simple harmonic motion, which one of the following statements is correct? The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is

More information

RETHINKING GRAVITY. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to it.

RETHINKING GRAVITY. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to it. RETHINKING GRAVITY. What causes gravity? The mass of an atom is the source of gravity. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to

More information

Resonant Cosmos. Resume. planet's rotation around a central body (star) in the plane of celestial equator and

Resonant Cosmos. Resume. planet's rotation around a central body (star) in the plane of celestial equator and V.D. Krasnov Email: apeyron7@yandex.ru Resonant Cosmos (Oscillatory motion and forming of the inclination of the planets' rotation plane) Resume A mechanism of originating and forming of the inclination

More information

Oscillations. The Force. The Motion

Oscillations. The Force. The Motion Team Oscillations Oscillatory motion is motion that repeats itself. Oscillations are everywhere: guitar string, pendulum, piston, neutron star (pulsar), drumhead, nuclear magnetic resonance (NMR), alternating

More information