By Nadha CHAOS THEORY

Size: px
Start display at page:

Download "By Nadha CHAOS THEORY"

Transcription

1 By Nadha CHAOS THEORY

2

3 What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with nonlinear systems It is commonly referred to as the Butterfly Effect

4 What is a nonlinear system? In mathematics, a nonlinear system is a system which is not linear It is a system which does not satisfy the superposition principle, or whose output is not directly proportional to its input. Less technically, a nonlinear system is any problem where the variable(s) to be solved for cannot be written as a linear combination of independent components.

5 the SUPERPOSITION PRINCIPLE states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). So a nonlinear system does not satisfy this principal.

6 There are 3 criteria that a chaotic system satisfies 1) sensitive dependence on initial conditions 2) topological mixing 3) periodic orbits are dense

7 1) Sensitive dependence on initial conditions This is popularly known as the "butterfly effect It got its name because of the title of a paper given by Edward Lorenz titled Predictability: Does the Flap of a Butterfly s Wings in Brazil set off a Tornado in Texas? The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to large-scale phenomena. Had the butterfly not flapped its wings, the trajectory of the system might have been vastly different. A consequence of sensitivity to initial conditions is that if we start with only a finite amount of information about the system, then beyond a certain time the system will no longer be predictable. This is most familiar in the case of weather, which is generally predictable only about a week ahead.

8 2) Topological Mixing Topological mixing means that the system will evolve over time so that any given region or open set of its phase space will eventually overlap with any other given region. This mathematical concept of "mixing" corresponds to the standard intuition. The mixing of colored dyes or fluids is an example of a chaotic system.

9 3) Dense Periodicity Density of periodic orbits means that every point in the space is approached arbitrarily closely by periodic orbits. This means that there is no true periodicity There is only quasi- periodicity Quasiperiodic orbits: Periodic solutions with at least two incommensurable frequencies (i.e., the ratio of the frequencies is an irrational number).

10 The Butterfly Effect Edward Lorenz. In 1960, he was working on the problem of weather prediction. He had a computer set up, with a set of twelve equations to model the weather. It didn't predict the weather itself. However this computer program did theoretically predict what the weather might be.

11 The Butterfly Effect Figure 1: Lorenz's experiment: the difference between the starting values of these curves is only (Ian Stewart, Does God Play Dice? The Mathematics of Chaos, pg. 141)

12 The Butterfly Effect One day in 1961, he wanted to see a particular sequence again. To save time, he started in the middle of the sequence, instead of the beginning. He entered the number off his printout and left to let it run. When he came back an hour later, the sequence had evolved differently. Instead of the same pattern as before, it diverged from the pattern, ending up completely different from the original.

13 The Butterfly Effect This effect came to be known as the butterfly effect. The amount of difference in the starting points of the two curves is so small that it is comparable to a butterfly flapping its wings. The flapping of a single butterfly's wing today produces a tiny change in the state of the atmosphere. Over a period of time, the atmosphere actually does diverge from what it would have been. So, in a month's time, a tornado that would have devastated the Indonesian coast doesn't happen. Or maybe one that wasn't going to happen, does. (Ian Stewart, Does God Play Dice? The Mathematics of Chaos, pg. 141)

14 So to sum up so far Chaos theory is the study of nonlinear dynamics, where seemingly random events are actually predictable from simple deterministic equations.

15 Deterministic Chaos Most prominent effect of nonlinear dynamics A key element of deterministic chaos is the sensitive dependence of the trajectory on the initial conditions

16 Deterministic Chaos A horizontally driven pendulum Both initial conditions differ in one arcsec only. But 10 seconds later they behave very differently.

17 Deterministic Chaos At the beginning the distance of the trajectories increases on average exponentially (see the inset which shows the distance in phase space). The rate of divergence is measured by the largest Lyapunov exponent.

18 The Lyapunov exponent The Lyapunov exponent characterises the extent of the sensitivity to initial conditions. Quantitatively, two trajectories in phase space with initial separation diverge where λ is the Lyapunov exponent. It is common to just refer to the largest one, i.e. to the Maximal Lyapunov Exponent (MLE), because it determines the overall predictability of the system. A positive MLE is usually taken as an indication that the system is chaotic.

19 Stability and Instability Local instability versus global stability: In order to have amplification of small errors and noise, the behavior must be locally unstable: over short times nearby states move away from each other. But for the system to consistently produce stable behavior, over long times the set of behaviors must fall back into itself. The tension of these two properties leads to very elegantly structured chaotic attractors. plexicon/chaos.html

20 Some examples of chaotic systems Double Pendulum Rayleigh-Bénard convection

21 Double Pendulum This is considered to be a dynamical system It is a pendulum with another pendulum attached to its end The motion of this system is controlled by a set of coupled ordinary differential equations This motion can be considered chaotic

22 Double Pendulum Video: To demonstrate the motion of the double pendulum within its constraints Motion of the double compound pendulum (from numerical integration of the equations of motion)

23 Double Pendulum Double Pendulum long exposure, tracked with LED light at its end. wiki/file:dple.jpg

24 Rayleigh-Bénard convection An example of a self- organizing nonlinear system A type of natural convection that occurs in a plane of fluid heated from below The fluid develops a regular pattern of convection cells known as Benard cells It is well studied because of its accessibility both experimentally and analytically

25 Rayleigh-Bénard convection The experimental set-up uses a layer of liquid, e.g. water, between two parallel planes. The height of the layer is small compared to the horizontal dimension. We can consider different cases 1) The temperature of the bottom plane is the same as the top plane. The liquid will then tend towards an equilibrium, where its temperature is the same as its surroundings. At equilibrium, the liquid is perfectly uniform: to an observer it would appear the same from any position

26 Rayleigh-Bénard convection 2) If the temperature of the bottom plane is increased slightly yielding a flow of thermal energy conducted through the liquid. The system will begin to have a structure of thermal conductivity

27 Rayleigh-Bénard convection The temperature, and the density and pressure with it, will vary linearly between the bottom and top plane. A uniform linear gradient of temperature will be established. Once conduction is established, the microscopic random movement spontaneously becomes ordered on a macroscopic level, forming Bénard convection cells, with a characteristic correlation length.

28 Convection cells in a gravity field

29 Simulation of Rayleigh-Bénard convection in 3D

30 Rayleigh-Bénard convection the deterministic law at the microscopic level produces a non-deterministic arrangement of the cells: if the experiment is repeated, a particular position in the experiment will be in a clockwise cell in some cases, and a counter-clockwise cell in others. Microscopic perturbations of the initial conditions are enough to produce a (nondeterministic) macroscopic effect. This inability to predict long-range conditions and sensitivity to initial-conditions are characteristics of chaotic systems (i.e., the butterfly effect). If the temperature of the bottom plane was to be further increased, the structure would become more complex in space and time; the turbulent flow would become chaotic.

31 THE END

http://www.ibiblio.org/e-notes/mset/logistic.htm On to Fractals Now let s consider Scale It s all about scales and its invariance (not just space though can also time And self-organized similarity

More information

PH36010: Numerical Methods - Evaluating the Lorenz Attractor using Runge-Kutta methods Abstract

PH36010: Numerical Methods - Evaluating the Lorenz Attractor using Runge-Kutta methods Abstract PH36010: Numerical Methods - Evaluating the Lorenz Attractor using Runge-Kutta methods Mr. Benjamen P. Reed (110108461) IMPACS, Aberystwyth University January 31, 2014 Abstract A set of three coupled ordinary

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

A Very Brief and Shallow Introduction to: Complexity, Chaos, and Fractals. J. Kropp

A Very Brief and Shallow Introduction to: Complexity, Chaos, and Fractals. J. Kropp A Very Brief and Shallow Introduction to: Complexity, Chaos, and Fractals J. Kropp Other Possible Titles: Chaos for Dummies Learn Chaos in 1 hour All you need to know about Chaos Definition of Complexity

More information

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

More information

Introduction to Nonlinear Dynamics and Chaos

Introduction to Nonlinear Dynamics and Chaos Introduction to Nonlinear Dynamics and Chaos Sean Carney Department of Mathematics University of Texas at Austin Sean Carney (University of Texas at Austin) Introduction to Nonlinear Dynamics and Chaos

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

Real Randomness with Noise and Chaos

Real Randomness with Noise and Chaos Real Randomness with Noise and Chaos by Kevin Fei working with Professor Rajarshi Roy, Professor Tom Murphy, and Joe Hart Random numbers are instrumental to modern computing. They are used by scientists

More information

IMHO In My Humble Opinion

IMHO In My Humble Opinion IMHO In My Humble Opinion Home Chaos Theory: A Brief Introduction What exactly is chaos? The name "chaos theory" comes from the fact that the systems that the theory describes are apparently disordered,

More information

Environmental Physics Computer Lab #8: The Butterfly Effect

Environmental Physics Computer Lab #8: The Butterfly Effect Environmental Physics Computer Lab #8: The Butterfly Effect The butterfly effect is the name coined by Lorenz for the main feature of deterministic chaos: sensitivity to initial conditions. Lorenz has

More information

Predictability is the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively.

Predictability is the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively. Predictability is the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively. The ability to make a skillful forecast requires both that

More information

MAS212 Assignment #2: The damped driven pendulum

MAS212 Assignment #2: The damped driven pendulum MAS Assignment #: The damped driven pendulum Sam Dolan (January 8 Introduction In this assignment we study the motion of a rigid pendulum of length l and mass m, shown in Fig., using both analytical and

More information

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering Chaos & Recursive Equations (Properties, Dynamics, and Applications ) Ehsan Tahami PHD student of biomedical engineering Tahami@mshdiau.a.ir Index What is Chaos theory? History of Chaos Introduction of

More information

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to

More information

Math 345 Intro to Math Biology Lecture 7: Models of System of Nonlinear Difference Equations

Math 345 Intro to Math Biology Lecture 7: Models of System of Nonlinear Difference Equations Math 345 Intro to Math Biology Lecture 7: Models of System of Nonlinear Difference Equations Junping Shi College of William and Mary, USA Equilibrium Model: x n+1 = f (x n ), here f is a nonlinear function

More information

THE ESSENCE OF... HAO~ Edward N. Lorenz UNIVERSITY OF WASHINGTON PRESS. Seattle

THE ESSENCE OF... HAO~ Edward N. Lorenz UNIVERSITY OF WASHINGTON PRESS. Seattle THE ESSENCE OF... HAO~ Edward N. Lorenz UNIVERSITY OF WASHINGTON PRESS Seattle The Butterfly Effect THE FOLLOWING is the text of a talk that I presented in a session devoted to the Global Atmospheric Research

More information

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad Chaos Dr. Dylan McNamara people.uncw.edu/mcnamarad Discovery of chaos Discovered in early 1960 s by Edward N. Lorenz (in a 3-D continuous-time model) Popularized in 1976 by Sir Robert M. May as an example

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Chaos and Liapunov exponents

Chaos and Liapunov exponents PHYS347 INTRODUCTION TO NONLINEAR PHYSICS - 2/22 Chaos and Liapunov exponents Definition of chaos In the lectures we followed Strogatz and defined chaos as aperiodic long-term behaviour in a deterministic

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

Discussion of the Lorenz Equations

Discussion of the Lorenz Equations Discussion of the Lorenz Equations Leibniz Universität Hannover Proseminar Theoretische Physik SS/2015 July 22, 2015 (LUH) Lorenz Equations July 22, 2015 1 / 42 Outline 1 2 3 4 5 6 7 8 (LUH) Lorenz Equations

More information

Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences

Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences Chaos Theory Namit Anand Y1111033 Integrated M.Sc.(2011-2016) Under the guidance of Prof. S.C. Phatak Center for Excellence in Basic Sciences University of Mumbai 1 Contents 1 Abstract 3 1.1 Basic Definitions

More information

What is Chaos? Implications of Chaos 4/12/2010

What is Chaos? Implications of Chaos 4/12/2010 Joseph Engler Adaptive Systems Rockwell Collins, Inc & Intelligent Systems Laboratory The University of Iowa When we see irregularity we cling to randomness and disorder for explanations. Why should this

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys From Last Time Gravitational forces are apparent at a wide range of scales. Obeys F gravity (Mass of object 1) (Mass of object 2) square of distance between them F = 6.7 10-11 m 1 m 2 d 2 Gravitational

More information

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

More information

PH36010: Numerical Methods - Evaluating the Lorenz Attractor using Runge-Kutta methods Abstract

PH36010: Numerical Methods - Evaluating the Lorenz Attractor using Runge-Kutta methods Abstract PH36010: Numerical Methods - Evaluating the Lorenz Attractor using Runge-Kutta methods Mr. Benjamen P. Reed (110108461) IMPACS, Aberystwyth University January 31, 2014 Abstract A set of three coupled ordinary

More information

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction Chapter 6: Ensemble Forecasting and Atmospheric Predictability Introduction Deterministic Chaos (what!?) In 1951 Charney indicated that forecast skill would break down, but he attributed it to model errors

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

A Search for the Simplest Chaotic Partial Differential Equation

A Search for the Simplest Chaotic Partial Differential Equation A Search for the Simplest Chaotic Partial Differential Equation C. Brummitt University of Wisconsin-Madison, Department of Physics cbrummitt@wisc.edu J. C. Sprott University of Wisconsin-Madison, Department

More information

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos Introduction Knot Theory Nonlinear Dynamics Open Questions Summary A tangled tale about knot, link, template, and strange attractor Centre for Chaos & Complex Networks City University of Hong Kong Email:

More information

Scenarios for the transition to chaos

Scenarios for the transition to chaos Scenarios for the transition to chaos Alessandro Torcini alessandro.torcini@cnr.it Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale

More information

Chaos theory. Applications. From Wikipedia, the free encyclopedia

Chaos theory. Applications. From Wikipedia, the free encyclopedia Chaos theory From Wikipedia, the free encyclopedia Chaos theory is a field of study in mathematics, with applications in several disciplines including physics, engineering, economics, biology, and philosophy.

More information

MATH 415, WEEK 12 & 13: Higher-Dimensional Systems, Lorenz Equations, Chaotic Behavior

MATH 415, WEEK 12 & 13: Higher-Dimensional Systems, Lorenz Equations, Chaotic Behavior MATH 415, WEEK 1 & 13: Higher-Dimensional Systems, Lorenz Equations, Chaotic Behavior 1 Higher-Dimensional Systems Consider the following system of differential equations: dx = x y dt dy dt = xy y dz dt

More information

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Michael Cross California Institute of Technology Beijing Normal University May 2006 Michael Cross (Caltech, BNU) Pattern Formation

More information

Why are Discrete Maps Sufficient?

Why are Discrete Maps Sufficient? Why are Discrete Maps Sufficient? Why do dynamical systems specialists study maps of the form x n+ 1 = f ( xn), (time is discrete) when much of the world around us evolves continuously, and is thus well

More information

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Article history: Received 22 April 2016; last revision 30 June 2016; accepted 12 September 2016 FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Mihaela Simionescu Institute for Economic Forecasting of the

More information

What is Climate Change?

What is Climate Change? Lecture 1: An Overview of the Issue of Climate Change Global Warming in the Past 100 Years What do we know about the global warming Uncertainties in science How policy cope with the uncertainties in science

More information

Chaos, Quantum Mechanics, and Computers

Chaos, Quantum Mechanics, and Computers What do Climate Modeling and Quantum Mechanics have in common? Chaos, Quantum Mechanics, and Computers Computer simulation: now one of the most important ingredients for progress... Dark Matter Technology

More information

Lecture 1 Monday, January 14

Lecture 1 Monday, January 14 LECTURE NOTES FOR MATH 7394 ERGODIC THEORY AND THERMODYNAMIC FORMALISM INSTRUCTOR: VAUGHN CLIMENHAGA Lecture 1 Monday, January 14 Scribe: Vaughn Climenhaga 1.1. From deterministic physics to stochastic

More information

Lecture 1: An Overview of the Issue of Climate Change

Lecture 1: An Overview of the Issue of Climate Change Lecture 1: An Overview of the Issue of Climate Change What do we know about the global warming Uncertainties in science How policy cope with the uncertainties in science What is Climate Change? Climate

More information

Atmospheric Predictability experiments with a large numerical model (E. N. Lorenz, 1982)

Atmospheric Predictability experiments with a large numerical model (E. N. Lorenz, 1982) Atmospheric Predictability experiments with a large numerical model (E. N. Lorenz, 1982) Imran Nadeem University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria OUTLINE OF TALK Introduction

More information

Maps and differential equations

Maps and differential equations Maps and differential equations Marc R. Roussel November 8, 2005 Maps are algebraic rules for computing the next state of dynamical systems in discrete time. Differential equations and maps have a number

More information

Smooth Particle Applied Mechanics: The Method, with Three Example Problems

Smooth Particle Applied Mechanics: The Method, with Three Example Problems Smooth Particle Applied Mechanics: The Method, with Three Example Problems Carol G. Hoover & William G. Hoover Ruby Valley Research Institute Ruby Valley, NV 89833, USA Foundations of Nonequilibrium Statistical

More information

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE INTRODUCTION TO CHAOS THEORY BY T.R.RAMAMOHAN C-MMACS BANGALORE -560037 SOME INTERESTING QUOTATIONS * PERHAPS THE NEXT GREAT ERA OF UNDERSTANDING WILL BE DETERMINING THE QUALITATIVE CONTENT OF EQUATIONS;

More information

A 3D Strange Attractor with a Distinctive Silhouette. The Butterfly Effect Revisited

A 3D Strange Attractor with a Distinctive Silhouette. The Butterfly Effect Revisited A 3D Strange Attractor with a Distinctive Silhouette. The Butterfly Effect Revisited Safieddine Bouali University of Tunis, Management Institute Department of Quantitative Methods & Economics 41, rue de

More information

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 ca. 1974 Central theorem of chaos (Lorenz, 1960s): a) Unstable systems have finite predictability

More information

Edward Lorenz: Predictability

Edward Lorenz: Predictability Edward Lorenz: Predictability Master Literature Seminar, speaker: Josef Schröttle Edward Lorenz in 1994, Northern Hemisphere, Lorenz Attractor I) Lorenz, E.N.: Deterministic Nonperiodic Flow (JAS, 1963)

More information

Laboratory Instruction-Record Pages

Laboratory Instruction-Record Pages Laboratory Instruction-Record Pages The Driven Pendulum Geology 200 - Evolutionary Systems James Madison University Lynn S. Fichter and Steven J. Baedke Brief History of Swinging Many things in this universe

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

Dynamics and Chaos. Copyright by Melanie Mitchell

Dynamics and Chaos. Copyright by Melanie Mitchell Dynamics and Chaos Copyright by Melanie Mitchell Conference on Complex Systems, September, 2015 Dynamics: The general study of how systems change over time Copyright by Melanie Mitchell Conference on Complex

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

Dynamics: The general study of how systems change over time

Dynamics: The general study of how systems change over time Dynamics: The general study of how systems change over time Planetary dynamics P http://www.lpi.usra.edu/ Fluid Dynamics http://pmm.nasa.gov/sites/default/files/imagegallery/hurricane_depth.jpg Dynamics

More information

A Hybrid Method with Lorenz attractor based Cryptography and LSB Steganography

A Hybrid Method with Lorenz attractor based Cryptography and LSB Steganography International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article A Hybrid

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

MATH 20D TAKE - HOME FINAL AUDREY TERRAS 7408 AP&M 1 4 P.M.

MATH 20D TAKE - HOME FINAL AUDREY TERRAS 7408 AP&M 1 4 P.M. MATH 20D TAKE - HOME FINAL AUDREY TERRAS Hand it in at my office 7408 AP&M between 1 and 4 P.M. Tuesday, June 13 or in the classroom (Pepper Canyon Hall 109) Thursday June 15, 11:30 a.m. - 2:30 p.m. No

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

Chaotic behaviour of Zeeman machines at introductory course of mechanics

Chaotic behaviour of Zeeman machines at introductory course of mechanics Chaotic behaviour of Zeeman machines at introductory course of mechanics Péter Nagy 1 and Péter Tasnádi 2 1 Faculty of Mechanical Engineering and Automation, Kecskemét College, Kecskemét, Hungary 2 Faculty

More information

The Definition Of Chaos

The Definition Of Chaos The Definition Of Chaos Chaos is a concept that permeates into our lives from our heartbeats to the fish population in the reflecting pond. To many this concept strikes fear in their hearts because this

More information

Chaos Control for the Lorenz System

Chaos Control for the Lorenz System Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 181-188 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8413 Chaos Control for the Lorenz System Pedro Pablo Cárdenas Alzate

More information

Harnessing Nonlinearity: Predicting Chaotic Systems and Saving

Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication Publishde in Science Magazine, 2004 Siamak Saliminejad Overview Eco State Networks How to build ESNs Chaotic

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

Chua s Circuit: The Paradigm for Generating Chaotic Attractors

Chua s Circuit: The Paradigm for Generating Chaotic Attractors Chua s Circuit: The Paradigm for Generating Chaotic Attractors EE129 Fall 2007 Bharathwaj Muthuswamy NOEL: Nonlinear Electronics Lab 151M Cory Hall Department of EECS University of California, Berkeley

More information

Attractor of a Shallow Water Equations Model

Attractor of a Shallow Water Equations Model Thai Journal of Mathematics Volume 5(2007) Number 2 : 299 307 www.math.science.cmu.ac.th/thaijournal Attractor of a Shallow Water Equations Model S. Sornsanam and D. Sukawat Abstract : In this research,

More information

Measuring Topological Chaos

Measuring Topological Chaos Measuring Topological Chaos Jean-Luc Thiffeault http://www.ma.imperial.ac.uk/ jeanluc Department of Mathematics Imperial College London Measuring Topological Chaos p.1/22 Mixing: An Overview A fundamental

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging diverging channel flow

Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging diverging channel flow Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging diverging channel flow Cristina H. Amon, a) Amador M. Guzmán, a) and Benoit Morel b) Carnegie Mellon University, Pittsburgh, Pennsylvania

More information

Complex system approach to geospace and climate studies. Tatjana Živković

Complex system approach to geospace and climate studies. Tatjana Živković Complex system approach to geospace and climate studies Tatjana Živković 30.11.2011 Outline of a talk Importance of complex system approach Phase space reconstruction Recurrence plot analysis Test for

More information

Butterfly Effects of the First and Second Kinds in Lorenz Models

Butterfly Effects of the First and Second Kinds in Lorenz Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Butterfly Effects of the First and Second Kinds in Lorenz Models by B.-W. Shen 1,*, R. A. Pielke Sr. 2, X. Zeng 3, S. Faghih-Naini 1,4 C.-L.

More information

Application of Binary Sequences to Problems of Chaos

Application of Binary Sequences to Problems of Chaos Application of Binary Sequences to Problems of Chaos P. Singh, P. Mohr, D.D. Joseph Department of Aerospace Engineering and Mechanics, University of Minnesota 107 Akerman Hall, Minneapolis, M 55455 ABSTRACT

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers Chaotic Vibrations An Introduction for Applied Scientists and Engineers FRANCIS C. MOON Theoretical and Applied Mechanics Cornell University Ithaca, New York A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY

More information

ATM S 111, Global Warming Climate Models

ATM S 111, Global Warming Climate Models ATM S 111, Global Warming Climate Models Jennifer Fletcher Day 27: July 29, 2010 Using Climate Models to Build Understanding Often climate models are thought of as forecast tools (what s the climate going

More information

June 17 19, 2015 Fields Institute, Stewart Library 2015 Summer Solstice 7th International Conference on Discrete Models of Complex Systems

June 17 19, 2015 Fields Institute, Stewart Library 2015 Summer Solstice 7th International Conference on Discrete Models of Complex Systems Yoothana Suansook June 17 19, 2015 at the Fields Institute, Stewart Library 2015 Summer Solstice 7th International Conference on Discrete Models of Complex Systems June 17 19, 2015 at the Fields Institute,

More information

Testing for Chaos in Type-I ELM Dynamics on JET with the ILW. Fabio Pisano

Testing for Chaos in Type-I ELM Dynamics on JET with the ILW. Fabio Pisano Testing for Chaos in Type-I ELM Dynamics on JET with the ILW Fabio Pisano ACKNOWLEDGMENTS B. Cannas 1, A. Fanni 1, A. Murari 2, F. Pisano 1 and JET Contributors* EUROfusion Consortium, JET, Culham Science

More information

CHAOS THEORY AND EXCHANGE RATE PROBLEM

CHAOS THEORY AND EXCHANGE RATE PROBLEM CHAOS THEORY AND EXCHANGE RATE PROBLEM Yrd. Doç. Dr TURHAN KARAGULER Beykent Universitesi, Yönetim Bilişim Sistemleri Bölümü 34900 Büyükçekmece- Istanbul Tel.: (212) 872 6437 Fax: (212)8722489 e-mail:

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

METHODS TO ANALYSE INSTABILITIES IN FLUID DYNAMICS

METHODS TO ANALYSE INSTABILITIES IN FLUID DYNAMICS Scientific Bulletin of the Politehnica University of Timisoara Transactions on Mechanics Special issue The 6 th International Conference on Hydraulic Machinery and Hydrodynamics Timisoara, Romania, October

More information

Two Decades of Search for Chaos in Brain.

Two Decades of Search for Chaos in Brain. Two Decades of Search for Chaos in Brain. A. Krakovská Inst. of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic, Email: krakovska@savba.sk Abstract. A short review of applications

More information

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel Nonlinear dynamics course - VUB

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel   Nonlinear dynamics course - VUB Chaos Lendert Gelens KU Leuven - Vrije Universiteit Brussel www.gelenslab.org Nonlinear dynamics course - VUB Examples of chaotic systems: the double pendulum? θ 1 θ θ 2 Examples of chaotic systems: the

More information

Predictability and Chaotic Nature of Daily Streamflow

Predictability and Chaotic Nature of Daily Streamflow 34 th IAHR World Congress - Balance and Uncertainty 26 June - 1 July 211, Brisbane, Australia 33 rd Hydrology & Water Resources Symposium 1 th Hydraulics Conference Predictability and Chaotic Nature of

More information

Economy and Application of Chaos Theory

Economy and Application of Chaos Theory Economy and Application of Chaos Theory 1. Introduction The theory of chaos came into being in solution of technical problems, where it describes the behaviour of nonlinear systems that have some hidden

More information

Chaotic Motion (One or two weights)

Chaotic Motion (One or two weights) Page 1 of 8 Chaotic Motion (One or two weights) Exercises I through IV form the one-weight experiment. Exercises V through VII, completed after Exercises I-IV, add one weight more. This challenging experiment

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Double Pendulum: A Bridge between Regular Dynamics and Chaos

Double Pendulum: A Bridge between Regular Dynamics and Chaos Title: Original: Revision: Authors: Appropriate Level: Abstract: Time Required: Double Pendulum: A Bridge between Regular Dynamics and Chaos July 26, 2005 (v1) Nov 14, 2005 (v2), May 23, 2006 (v3), June

More information

Preferred spatio-temporal patterns as non-equilibrium currents

Preferred spatio-temporal patterns as non-equilibrium currents Preferred spatio-temporal patterns as non-equilibrium currents Escher Jeffrey B. Weiss Atmospheric and Oceanic Sciences University of Colorado, Boulder Arin Nelson, CU Baylor Fox-Kemper, Brown U Royce

More information

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS International Journal of Bifurcation and Chaos, Vol. 12, No. 6 (22) 1417 1422 c World Scientific Publishing Company CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS JINHU LÜ Institute of Systems

More information

Deterministic Chaos Lab

Deterministic Chaos Lab Deterministic Chaos Lab John Widloski, Robert Hovden, Philip Mathew School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 I. DETERMINISTIC CHAOS LAB This laboratory consists of three major

More information

We honor Ed Lorenz ( ) who started the whole new science of predictability

We honor Ed Lorenz ( ) who started the whole new science of predictability Atmospheric Predictability: From Basic Theory to Forecasting Practice. Eugenia Kalnay Alghero, May 2008, Lecture 1 We honor Ed Lorenz (1917-2008) who started the whole new science of predictability Ed

More information

Point Vortex Dynamics in Two Dimensions

Point Vortex Dynamics in Two Dimensions Spring School on Fluid Mechanics and Geophysics of Environmental Hazards 9 April to May, 9 Point Vortex Dynamics in Two Dimensions Ruth Musgrave, Mostafa Moghaddami, Victor Avsarkisov, Ruoqian Wang, Wei

More information

Multistability in the Lorenz System: A Broken Butterfly

Multistability in the Lorenz System: A Broken Butterfly International Journal of Bifurcation and Chaos, Vol. 24, No. 10 (2014) 1450131 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414501314 Multistability in the Lorenz System: A Broken

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

arxiv:nlin/ v1 [nlin.cd] 27 Mar 2003

arxiv:nlin/ v1 [nlin.cd] 27 Mar 2003 Complex behavior from a simple physical system: A numerical investigation Robert K. Murawski Stevens Institute of Technology arxiv:nlin/0303065v1 [nlin.cd] 27 Mar 2003 Department of Physics and Engineering

More information

6. Well-Stirred Reactors III

6. Well-Stirred Reactors III 6. Well-Stirred Reactors III Reactors reaction rate or reaction velocity defined for a closed system of uniform pressure, temperature, and composition situation in a real reactor is usually quite different

More information