CHAOS THEORY AND EXCHANGE RATE PROBLEM

Size: px
Start display at page:

Download "CHAOS THEORY AND EXCHANGE RATE PROBLEM"

Transcription

1 CHAOS THEORY AND EXCHANGE RATE PROBLEM Yrd. Doç. Dr TURHAN KARAGULER Beykent Universitesi, Yönetim Bilişim Sistemleri Bölümü Büyükçekmece- Istanbul Tel.: (212) Fax: (212) Key Words: chaos, modelling, exchange-rate Abstract Chaos theory has been well around in the world of science. In recent years, also the economists and management scientists have begun approaching the theory. It is well known fact that financial markets, particularly capital markets and market economy applications exhibit some chaotic behaviours. In addition to that, it has experimentally been proved that business cycles of both national and global economies also show chaotic characteristics. In this work, the application of the theory in a specific area, the prediction of exchange rates, is examined. 1-Introduction In science, for a long time, it has been assumed that regularity therefore predictability has been the centre of approaches to explain the behaviours of systems. Whereas in real life, it is a well known fact that systems exhibit unexpected behaviours which lead to irregular and unpredictable outcomes. This approach, named as non-linear dynamics, produces much closer representation of real happenings. The chaos theory which is one of methods of non-linear dynamics, has recently attracted many scientist from all different fields. In this work, the chaos theory is briefly introduced. A simple model of exchange rate problem by Ellis (1) is selected as an example to show a typical chaotic behaviour. 2-Non-linear systems and chaos In many problems, the behaviour of systems are accepted as linear types although their true characteristics are non-linear. The reason for the assumption is that modelling non-linear behaviours were highly difficult. This is why using some assumptions and making some simplifications for transferring non-linear relations into linear ones have been very practical and useful. This trend has been changing since powerful computers are available and usable for tackling complex calculations. Unlike a linear relationship in which a given cause has only one effect, in a non-linear relationship, a cause may have more than one outcomes. Thus non-linear equations can have more than one solution. Furthermore the additive property satisfied in linear systems do not 527

2 exist in non-linear systems. Because of existence of synergy within a non-linear system, understanding the behaviours of systems requires not a reductionist approach but a systemic approach in which all the patterns of behaviour are considered together as a whole. Non-linearity originates mainly from the presence of feedback systems representing the interaction between the various parameters of the system. The research work on non-linear feedback systems is relatively new. In 60 s, Lorenz s (2) and Feigenbaum s (3) works on atmospheric turbulence and bifurcations respectively are described as the first serious studies of the subject. Lorenz in his work on climate showed that atmospheric events are strongly unpredictable (all forecasts are valid for only a few days) and also very much sensitive to the changes in conditions (tiny changes that could not even be detected might lead to extensively different states of behaviours). However this unpredictability is restricted within specific boundaries. (in February, a temperature in Siberia can be anything but not as high as 40 0 C). This phenomena, in fact, is described as instability within stability or a mixture of order and disorder and represents the main characteristic of chaos. A chaotic nature can be highly complex and seemingly unstable. Yet they remain constrained due to the existence of attractors within the system. There are three types of attractors named as normal, periodic and strange. A normal or a point attractor leads the system to a steady state therefore to a predictable outcome. The periodic attractor shows itself in cases of regular and periodic motions such that a clock pendulum repeats the motion continuously. The rest of attractors which are neither point nor cyclic types are called as strange attractors and exhibit complex oscillations. The strange attractors are the ones lead to chaos as the path is non-periodic and non-stable but is not completely unstable either. The motions are constrained within the region of the attractors. This type of complex behaviours neither purely stable nor instable take place at the borders between stability and instability and describe a third state named as bounded instability or in other words chaos. Non-linear feedback systems or chaotic systems produce forms of behaviour that are neither stable nor unstable but continuously new and creative. 3-Chaos in exchange-rate The chaotic behaviours are commonly encountered in different fields of economics and management. For example in financial markets, particularly in capital markets, the chaotic characteristics are often observed. The business cycles of global and national economies also exhibit chaotic patterns. A detailed analysis of chaotic behaviours met in economics and management is given in Hobart paper by Parker and Stacey (4). In this section, the non-linear dynamics and the chaos are examined for the exchange-rate problem, in accordance with Li-Yorke theorem (5). In the model, the exchange rate is assumed to be determined by the interactions of speculators and trades. Non-linearity shows up in the model through the speculators demand for foreign currency. This nonlinearity is enough to generate chaotic dynamics at some values of parameters of the model. The speculators net demand for foreign currency is determined by the percentage deviation of the current exchange rate from the expected future exchange rate; 528 S t = α ( e f / e t - 1) (1) where α : sensitivity factor and its value is equal or greater than zero, e t : current domestic price of foreign currency, e f : expected future exchange rate.

3 In the formula above, if α = 0 there is no speculative demand for the foreign currency, and α = any deviation of the exchange rate from its expected value leads to infinite net demand. The above formula is indeed non-linear as more the current price of currency is undervalued, proportionally the demand gets larger. At small α values, little undervalued current price of the currency does not lead to large demands. Since in the model, the trade balance T t is assumed as a linear function of current and previous exchange rates therefore it is described as below T t = β (e t e f ) + γ (e t-1 e f ) (2) where β, γ >0. In the equation above, It is normally expected that the second part (the previous exchange rate) may have a bigger effect on T t. Therefore at much larger values of γ than β if so the system could exhibit a chaotic behaviour. When speculators do not intend to buy or sell, the exchange rate is said to be at its steady state value and at this state, the expected future exchange rate is determined by the fundamental variables such as the interest rate differential and relative money supplies which are not considered in this model. This is why time scale of the model is relatively short and limited to only daily or weekly periods in which the fundamentals are not expected to change. If the exchange rate is at its steady state value that e* = e t = e t-1 the trade balance becomes zero and the value of e* is assumed to be 1 for the sake of simplicity in the calculations. In the model, within each period the exchange rate is calculated at!s t = T t. From equations (1) and (2) β e t-1 e 2 t - {(β + γ) e t-1 - γ e 2 t-1 - α} e t - α e t-1 = 0 (3) At parameter values of α = 2, β = 3, γ = 20 as seen in figure 1, chaos appears in the model in accordance with Li-Yorke sense which states that chaos may happen if a function s value falls following 2 consecutive increases. The time variation of the exchange rate for 200 iterations shown in figure 2, also displays a chaotic behaviour as the exchange rate sometimes moves towards the steady state value but departs away shortly from this stabile point towards another unpredictable path. This feature may represent an actual case for the rate-time variation such that there might be periods of a highly volatile situation on the market followed by relatively a calm situation. In the model, if the current exchange rate is known, the next period exchange rate can be determined easily. However the main concern in the model is the high degree of dependency to the initial conditions and to the sensitivity parameters which cause the chaos. If the actual problem is chaotic, prediction of the future will be extremely difficult. Figure 3 displays the effect of initial conditions. A slight change in the value of starting point from to led to a great difference on the curve of exchange rate-time curves. Similarly Figure 4 displays the effect of slight change in the value of α from to Although the difference between values is as small as %0,1 still enough to generate a vast change in the result. In the work, the variation of actual exchange rates with the model is shown in figure 5. Although very little amount of data (Sterling & Dollar exchange-rates for 10 consecutive days in April 2000) is used in the graph, the trend looks interestingly similar. Obviously to be able to make a better comparison, much larger time scaled data along with optimum parameter values need to be used in the model. 529

4 Figure 1 The exchange-rate variation e t = f(e t-1 ) Figure 2 The time series of exchange rate (200 iterations) Figure 3 Sensitivity to initial values 530

5 Figure 4 Sensitivity to α parameter values Figure 5 Actual Exchange-Rate & Model Results 4-Conclusion The chaos theory and non-linear dynamics of systems behaviours are briefly introduced. A simple model of exchange rate-problem is used to display the chaotic behaviour. As the results taken from the model show that the main sources of chaos for this particular problem are the high sensitivity of the system output to the initial values of input and slight changes of system parameter values. When a system exhibits a chaotic behaviour, it will be almost impossible to predict long-term outcomes as the future of a chaotic system is open-ended and inherently unknowable. Currently, there is no alternative suggestion for the chaotic systems except change and see what happens policy. Only the very near future can be predictable if distortion or noise free input and parameter values are provided to the models. Thus the big task for understanding behaviours of these systems is to obtain reliable and highly precise massive data 531

6 5-References [1] Ellis, J. M. An Investigation of Nonlinearities and Chaos in Exchange-Rates, Doctoral dissertation, University of Oregon (1992) [2] Lorenz, E. N. Deterministic Non-period Flows, Journal of Atmospheric Sciences, 20, pp: (1963) [3] Feigenbaum, M. Quantitative Universality for a class of Non-linear Transformations, Journal of Statistical Physics, 19, (1978) [4] Parker, D. & Stacey, R. Chaos, Management and Economics published by Institute of Economics Affairs, (1994) [5] Li, T. Y. & Yorke, J. A. Period Three Implies Chaos, American Mathematical Monthly, 82, pp:

The Nonlinear Real Interest Rate Growth Model : USA

The Nonlinear Real Interest Rate Growth Model : USA Advances in Management & Applied Economics, vol. 4, no.5, 014, 53-6 ISSN: 179-7544 (print version), 179-755(online) Scienpress Ltd, 014 The Nonlinear Real Interest Rate Growth Model : USA Vesna D. Jablanovic

More information

Relationships between phases of business cycles in two large open economies

Relationships between phases of business cycles in two large open economies Journal of Regional Development Studies2010 131 Relationships between phases of business cycles in two large open economies Ken-ichi ISHIYAMA 1. Introduction We have observed large increases in trade and

More information

http://www.ibiblio.org/e-notes/mset/logistic.htm On to Fractals Now let s consider Scale It s all about scales and its invariance (not just space though can also time And self-organized similarity

More information

Chaos Theory and Lorenz Attractors

Chaos Theory and Lorenz Attractors Sohag J. Sci. 1, No. 1, 7-12 (2016) 7 Chaos Theory and Lorenz Attractors O. El-Basha *, A. El-Shahat and H. Fayed. University of Science and Technology, Zewail City, Sheik Zayed District 12588, 6th of

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Detecting Macroeconomic Chaos Juan D. Montoro & Jose V. Paz Department of Applied Economics, Umversidad de Valencia,

Detecting Macroeconomic Chaos Juan D. Montoro & Jose V. Paz Department of Applied Economics, Umversidad de Valencia, Detecting Macroeconomic Chaos Juan D. Montoro & Jose V. Paz Department of Applied Economics, Umversidad de Valencia, Abstract As an alternative to the metric approach, two graphical tests (close returns

More information

INTRICATE ASSET PRICE

INTRICATE ASSET PRICE Chapter 1 INTRICATE ASSET PRICE DYNAMICS AND ONE-DIMENSIONAL DISCONTINUOUS MAPS F. Tramontana, L. Gardini and F. Westerhoff * Department of Economics and Quantitative Methods, University of Urbino, Via

More information

Macroeconomics II. Dynamic AD-AS model

Macroeconomics II. Dynamic AD-AS model Macroeconomics II Dynamic AD-AS model Vahagn Jerbashian Ch. 14 from Mankiw (2010) Spring 2018 Where we are heading to We will incorporate dynamics into the standard AD-AS model This will offer another

More information

Dynamic AD-AS model vs. AD-AS model Notes. Dynamic AD-AS model in a few words Notes. Notation to incorporate time-dimension Notes

Dynamic AD-AS model vs. AD-AS model Notes. Dynamic AD-AS model in a few words Notes. Notation to incorporate time-dimension Notes Macroeconomics II Dynamic AD-AS model Vahagn Jerbashian Ch. 14 from Mankiw (2010) Spring 2018 Where we are heading to We will incorporate dynamics into the standard AD-AS model This will offer another

More information

Economy and Application of Chaos Theory

Economy and Application of Chaos Theory Economy and Application of Chaos Theory 1. Introduction The theory of chaos came into being in solution of technical problems, where it describes the behaviour of nonlinear systems that have some hidden

More information

An Empirical Analysis of RMB Exchange Rate changes impact on PPI of China

An Empirical Analysis of RMB Exchange Rate changes impact on PPI of China 2nd International Conference on Economics, Management Engineering and Education Technology (ICEMEET 206) An Empirical Analysis of RMB Exchange Rate changes impact on PPI of China Chao Li, a and Yonghua

More information

Real Randomness with Noise and Chaos

Real Randomness with Noise and Chaos Real Randomness with Noise and Chaos by Kevin Fei working with Professor Rajarshi Roy, Professor Tom Murphy, and Joe Hart Random numbers are instrumental to modern computing. They are used by scientists

More information

Introduction. Prediction MATH February 2017

Introduction. Prediction MATH February 2017 21 February 2017 Predicting the future is very difficult, especially if it s about the future. Niels Bohr Can we say what is going to happen: in the next minute? tomorrow? next year? Predicting the future

More information

Revista Economica 65:6 (2013)

Revista Economica 65:6 (2013) INDICATIONS OF CHAOTIC BEHAVIOUR IN USD/EUR EXCHANGE RATE CIOBANU Dumitru 1, VASILESCU Maria 2 1 Faculty of Economics and Business Administration, University of Craiova, Craiova, Romania 2 Faculty of Economics

More information

Control of Chaos in Strongly Nonlinear Dynamic Systems

Control of Chaos in Strongly Nonlinear Dynamic Systems Control of Chaos in Strongly Nonlinear Dynamic Systems Lev F. Petrov Plekhanov Russian University of Economics Stremianniy per., 36, 115998, Moscow, Russia lfp@mail.ru Abstract We consider the dynamic

More information

Is the Macroeconomy Locally Unstable and Why should we care?

Is the Macroeconomy Locally Unstable and Why should we care? Is the Macroeconomy Locally Unstable and Why should we care? Paul Beaudry, Dana Galizia & Franck Portier NBER macroannual April 2016 1 / 22 Introduction In most macro-models, BC fluctuation arises as the

More information

Novel Methods for Observing Economical Circulations

Novel Methods for Observing Economical Circulations Novel Methods for Observing Economical Circulations Toshihiro Iwata Faculty of Informatics, Kansai University, 2-1-1 Ryozenji, Takatsuki-City, Osaka, Japan Most of the time series data about an economy

More information

Unit Ten Summary Introduction to Dynamical Systems and Chaos

Unit Ten Summary Introduction to Dynamical Systems and Chaos Unit Ten Summary Introduction to Dynamical Systems Dynamical Systems A dynamical system is a system that evolves in time according to a well-defined, unchanging rule. The study of dynamical systems is

More information

Topic 4 Forecasting Exchange Rate

Topic 4 Forecasting Exchange Rate Topic 4 Forecasting Exchange Rate Why Firms Forecast Exchange Rates MNCs need exchange rate forecasts for their: hedging decisions, short-term financing decisions, short-term investment decisions, capital

More information

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino DOTTORATO IN Sistemi Tecnologie e Dispositivi per il Movimento e la Salute Cassino, 2011 NONLINEAR DYNAMICAL SYSTEMS AND CHAOS: PHENOMENOLOGICAL AND COMPUTATIONAL ASPECTS Deborah Lacitignola Department

More information

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

More information

Modeling of Chaotic Behavior in the Economic Model

Modeling of Chaotic Behavior in the Economic Model Chaotic Modeling and Simulation (CMSIM) 3: 9-98, 06 Modeling of Chaotic Behavior in the Economic Model Volodymyr Rusyn, Oleksandr Savko Department of Radiotechnics and Information Security, Yuriy Fedkovych

More information

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS Journal of Pure and Applied Mathematics: Advances and Applications Volume 0 Number 0 Pages 69-0 ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS HENA RANI BISWAS Department of Mathematics University of Barisal

More information

Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Khatiwala, et.al.

Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Khatiwala, et.al. Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change Questions What are the characteristics of the unforced Lorenz system? What

More information

Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Chaos in GDP. Abstract

Chaos in GDP. Abstract Chaos in GDP R. Kříž Abstract This paper presents an analysis of GDP and finds chaos in GDP. I tried to find a nonlinear lower-dimensional discrete dynamic macroeconomic model that would characterize GDP.

More information

The Dornbusch overshooting model

The Dornbusch overshooting model 4330 Lecture 8 Ragnar Nymoen 12 March 2012 References I Lecture 7: Portfolio model of the FEX market extended by money. Important concepts: monetary policy regimes degree of sterilization Monetary model

More information

Chapter 2 Chaos theory and its relationship to complexity

Chapter 2 Chaos theory and its relationship to complexity Chapter 2 Chaos theory and its relationship to complexity David Kernick This chapter introduces chaos theory and the concept of non-linearity. It highlights the importance of reiteration and the system

More information

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys From Last Time Gravitational forces are apparent at a wide range of scales. Obeys F gravity (Mass of object 1) (Mass of object 2) square of distance between them F = 6.7 10-11 m 1 m 2 d 2 Gravitational

More information

Dynamics: The general study of how systems change over time

Dynamics: The general study of how systems change over time Dynamics: The general study of how systems change over time Planetary dynamics P http://www.lpi.usra.edu/ Fluid Dynamics http://pmm.nasa.gov/sites/default/files/imagegallery/hurricane_depth.jpg Dynamics

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

What is Chaos? Implications of Chaos 4/12/2010

What is Chaos? Implications of Chaos 4/12/2010 Joseph Engler Adaptive Systems Rockwell Collins, Inc & Intelligent Systems Laboratory The University of Iowa When we see irregularity we cling to randomness and disorder for explanations. Why should this

More information

Chaos in the Dynamics of the Family of Mappings f c (x) = x 2 x + c

Chaos in the Dynamics of the Family of Mappings f c (x) = x 2 x + c IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 10, Issue 4 Ver. IV (Jul-Aug. 014), PP 108-116 Chaos in the Dynamics of the Family of Mappings f c (x) = x x + c Mr. Kulkarni

More information

Masanori Yokoo. 1 Introduction

Masanori Yokoo. 1 Introduction Masanori Yokoo Abstract In many standard undergraduate textbooks of macroeconomics, open economies are discussed by means of the Mundell Fleming model, an open macroeconomic version of the IS LM model.

More information

By Nadha CHAOS THEORY

By Nadha CHAOS THEORY By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

More information

Period Doubling Cascade in Diffusion Flames

Period Doubling Cascade in Diffusion Flames Period Doubling Cascade in Diffusion Flames Milan Miklavčič Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA Combustion Theory and Modelling 11 No 1 (2007), 103-112 Abstract

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

Agenda. Complex Systems Architecting

Agenda. Complex Systems Architecting Complex Systems Architecting ~ Erik Philippus "Chaos often breeds life, when order breeds habit." IMPROVEMENT BV 1 erik.philippus@improvement-services.nl Agenda Introduction Complicated or Complex?, Definitions

More information

A New Science : Chaos

A New Science : Chaos A New Science : Chaos Li Shi Hai Department of Mathematics National University of Singapore In the new movie Jurassic Park [C], Malcolm, a mathematician specialized in Chaos Theory, explained that Hammond's

More information

Dynamic IS-LM model with Philips Curve and International Trade

Dynamic IS-LM model with Philips Curve and International Trade Journal of Mathematics and System Science 6 (2016) 147-158 doi: 10.17265/2159-5291/2016.04.003 D DAVID PUBLISHING Dynamic IS-LM model with Philips Curve and International Trade Michiya Nozaki Gifu Keizai

More information

Decision Models Lecture 5 1. Lecture 5. Foreign-Currency Trading Integer Programming Plant-location example Summary and Preparation for next class

Decision Models Lecture 5 1. Lecture 5. Foreign-Currency Trading Integer Programming Plant-location example Summary and Preparation for next class Decision Models Lecture 5 1 Lecture 5 Foreign-Currency Trading Integer Programming Plant-location example Summary and Preparation for next class Foreign Exchange (FX) Markets Decision Models Lecture 5

More information

peak half-hourly Tasmania

peak half-hourly Tasmania Forecasting long-term peak half-hourly electricity demand for Tasmania Dr Shu Fan B.S., M.S., Ph.D. Professor Rob J Hyndman B.Sc. (Hons), Ph.D., A.Stat. Business & Economic Forecasting Unit Report for

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to

More information

Problem Sheet 1.1 First order linear equations;

Problem Sheet 1.1 First order linear equations; Problem Sheet 1 First order linear equations; In each of Problems 1 through 8 find the solution of the given initial value problem 5 6 7 8 In each of Problems 9 and 10: (a) Let be the value of for which

More information

The Chaotic Marriage of Physics and Finance

The Chaotic Marriage of Physics and Finance The Chaotic Marriage of Physics and Finance Claire G. Gilmore Professor of Finance King s College, US June 2011 Rouen, France SO, how did it all begin??? What did he see in her? What did she see in him?

More information

Forecasting Exchange Rate Change between USD and JPY by Using Dynamic Adaptive Neuron-Fuzzy Logic System

Forecasting Exchange Rate Change between USD and JPY by Using Dynamic Adaptive Neuron-Fuzzy Logic System Forecasting Exchange Rate Change between USD and JPY by Using Dynamic Adaptive Neuron-Fuzzy Logic System Weiping Liu Eastern Connecticut State University 83 Windham Rd Willimantic, CT 6226 USA Tel (86)465

More information

Dynamics and Chaos. Copyright by Melanie Mitchell

Dynamics and Chaos. Copyright by Melanie Mitchell Dynamics and Chaos Copyright by Melanie Mitchell Conference on Complex Systems, September, 2015 Dynamics: The general study of how systems change over time Copyright by Melanie Mitchell Conference on Complex

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

More information

Lecture 2. Business Cycle Measurement. Randall Romero Aguilar, PhD II Semestre 2017 Last updated: August 18, 2017

Lecture 2. Business Cycle Measurement. Randall Romero Aguilar, PhD II Semestre 2017 Last updated: August 18, 2017 Lecture 2 Business Cycle Measurement Randall Romero Aguilar, PhD II Semestre 2017 Last updated: August 18, 2017 Universidad de Costa Rica EC3201 - Teoría Macroeconómica 2 Table of contents 1. Introduction

More information

Department of Economics, UCSB UC Santa Barbara

Department of Economics, UCSB UC Santa Barbara Department of Economics, UCSB UC Santa Barbara Title: Past trend versus future expectation: test of exchange rate volatility Author: Sengupta, Jati K., University of California, Santa Barbara Sfeir, Raymond,

More information

CHAPTER 4: DATASETS AND CRITERIA FOR ALGORITHM EVALUATION

CHAPTER 4: DATASETS AND CRITERIA FOR ALGORITHM EVALUATION CHAPTER 4: DATASETS AND CRITERIA FOR ALGORITHM EVALUATION 4.1 Overview This chapter contains the description about the data that is used in this research. In this research time series data is used. A time

More information

International Macro Finance

International Macro Finance International Macro Finance Economies as Dynamic Systems Francesco Franco Nova SBE February 21, 2013 Francesco Franco International Macro Finance 1/39 Flashback Mundell-Fleming MF on the whiteboard Francesco

More information

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Article history: Received 22 April 2016; last revision 30 June 2016; accepted 12 September 2016 FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Mihaela Simionescu Institute for Economic Forecasting of the

More information

Discrete Dynamical Systems

Discrete Dynamical Systems Discrete Dynamical Systems Justin Allman Department of Mathematics UNC Chapel Hill 18 June 2011 What is a discrete dynamical system? Definition A Discrete Dynamical System is a mathematical way to describe

More information

PRICING AND PROBABILITY DISTRIBUTIONS OF ATMOSPHERIC VARIABLES

PRICING AND PROBABILITY DISTRIBUTIONS OF ATMOSPHERIC VARIABLES PRICING AND PROBABILITY DISTRIBUTIONS OF ATMOSPHERIC VARIABLES TECHNICAL WHITE PAPER WILLIAM M. BRIGGS Abstract. Current methods of assessing the probability distributions of atmospheric variables are

More information

Working March Tel: +27

Working March Tel: +27 University of Pretoria Department of Economics Working Paper Series Are BRICS Exchange Rates Chaotic? Vasilios Plakandaras Democritus University of Thrace Rangann Gupta University of Pretoria Luis A. Gil-Alana

More information

FADING MEMORY LEARNING IN THE COBWEB MODEL WITH RISK AVERSE HETEROGENEOUS PRODUCERS

FADING MEMORY LEARNING IN THE COBWEB MODEL WITH RISK AVERSE HETEROGENEOUS PRODUCERS FADING MEMORY LEARNING IN THE COBWEB MODEL WITH RISK AVERSE HETEROGENEOUS PRODUCERS CARL CHIARELLA, XUE-ZHONG HE AND PEIYUAN ZHU School of Finance and Economics University of Technology, Sydney PO Box

More information

The phenomenon: complex motion, unusual geometry

The phenomenon: complex motion, unusual geometry Part I The phenomenon: complex motion, unusual geometry Chapter 1 Chaotic motion 1.1 What is chaos? Certain long-lasting, sustained motion repeats itself exactly, periodically. Examples from everyday life

More information

A new method for short-term load forecasting based on chaotic time series and neural network

A new method for short-term load forecasting based on chaotic time series and neural network A new method for short-term load forecasting based on chaotic time series and neural network Sajjad Kouhi*, Navid Taghizadegan Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz,

More information

General Examination in Macroeconomic Theory SPRING 2013

General Examination in Macroeconomic Theory SPRING 2013 HARVARD UNIVERSITY DEPARTMENT OF ECONOMICS General Examination in Macroeconomic Theory SPRING 203 You have FOUR hours. Answer all questions Part A (Prof. Laibson): 48 minutes Part B (Prof. Aghion): 48

More information

Application of Chaotic Number Generators in Econophysics

Application of Chaotic Number Generators in Econophysics 1 Application of Chaotic Number Generators in Econophysics Carmen Pellicer-Lostao 1, Ricardo López-Ruiz 2 Department of Computer Science and BIFI, Universidad de Zaragoza, 50009 - Zaragoza, Spain. e-mail

More information

Vulnerability of economic systems

Vulnerability of economic systems Vulnerability of economic systems Quantitative description of U.S. business cycles using multivariate singular spectrum analysis Andreas Groth* Michael Ghil, Stéphane Hallegatte, Patrice Dumas * Laboratoire

More information

Mathematical models in economy. Short descriptions

Mathematical models in economy. Short descriptions Chapter 1 Mathematical models in economy. Short descriptions 1.1 Arrow-Debreu model of an economy via Walras equilibrium problem. Let us consider first the so-called Arrow-Debreu model. The presentation

More information

Handout 2: Invariant Sets and Stability

Handout 2: Invariant Sets and Stability Engineering Tripos Part IIB Nonlinear Systems and Control Module 4F2 1 Invariant Sets Handout 2: Invariant Sets and Stability Consider again the autonomous dynamical system ẋ = f(x), x() = x (1) with state

More information

IMHO In My Humble Opinion

IMHO In My Humble Opinion IMHO In My Humble Opinion Home Chaos Theory: A Brief Introduction What exactly is chaos? The name "chaos theory" comes from the fact that the systems that the theory describes are apparently disordered,

More information

Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule

Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule Auckland University of Technology From the SelectedWorks of Reza Moosavi Mohseni Summer August 6, 2015 Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule Reza Moosavi

More information

Table 01A. End of Period End of Period End of Period Period Average Period Average Period Average

Table 01A. End of Period End of Period End of Period Period Average Period Average Period Average SUMMARY EXCHANGE RATE DATA BANK OF ZAMBIA MID-RATES Table 01A Period K/USD K/GBP K/ZAR End of Period End of Period End of Period Period Average Period Average Period Average Monthly January 6.48 6.46 9.82

More information

Chaos in Dynamical Systems. LIACS Natural Computing Group Leiden University

Chaos in Dynamical Systems. LIACS Natural Computing Group Leiden University Chaos in Dynamical Systems Overview Introduction: Modeling Nature! Example: Logistic Growth Fixed Points Bifurcation Diagrams Application Examples 2 INTRODUCTION 3 Linear and Non-linear dynamic systems

More information

Handling of Chaos in Two Dimensional Discrete Maps

Handling of Chaos in Two Dimensional Discrete Maps Handling of Chaos in Two Dimensional Discrete Maps Anil Kumar Jain Assistant Professor, Department of Mathematics Barama College, Barama, Assam, Pincode-781346, India (Email: jainanil965@gmail.com) Abstract:

More information

Pattern Matching and Neural Networks based Hybrid Forecasting System

Pattern Matching and Neural Networks based Hybrid Forecasting System Pattern Matching and Neural Networks based Hybrid Forecasting System Sameer Singh and Jonathan Fieldsend PA Research, Department of Computer Science, University of Exeter, Exeter, UK Abstract In this paper

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 What is Phase-Locked Loop? The phase-locked loop (PLL) is an electronic system which has numerous important applications. It consists of three elements forming a feedback loop:

More information

peak half-hourly New South Wales

peak half-hourly New South Wales Forecasting long-term peak half-hourly electricity demand for New South Wales Dr Shu Fan B.S., M.S., Ph.D. Professor Rob J Hyndman B.Sc. (Hons), Ph.D., A.Stat. Business & Economic Forecasting Unit Report

More information

Asymmetry of the exchange rate pass-through: An exercise on the Polish data

Asymmetry of the exchange rate pass-through: An exercise on the Polish data National Bank of Poland Asymmetry of the exchange rate pass-through: An exercise on the Polish data Jan Przystupa Ewa Wróbel 0th Annual NBP - SNB Seminar June 4, 03 Zurich PLN/USD fluctuations Band +/-5%

More information

Theoretical premises of the Keynesian approach

Theoretical premises of the Keynesian approach origin of Keynesian approach to Growth can be traced back to an article written after the General Theory (1936) Roy Harrod, An Essay in Dynamic Theory, Economic Journal, 1939 Theoretical premises of the

More information

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

More information

Business Cycle Dating Committee of the Centre for Economic Policy Research. 1. The CEPR Business Cycle Dating Committee

Business Cycle Dating Committee of the Centre for Economic Policy Research. 1. The CEPR Business Cycle Dating Committee Business Cycle Dating Committee of the Centre for Economic Policy Research Michael Artis Fabio Canova Jordi Gali Francesco Giavazzi Richard Portes (President, CEPR) Lucrezia Reichlin (Chair) Harald Uhlig

More information

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo Project Topic Simulation of turbulent flow laden with finite-size particles using LBM Leila Jahanshaloo Project Details Turbulent flow modeling Lattice Boltzmann Method All I know about my project Solid-liquid

More information

Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences

Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences Chaos Theory Namit Anand Y1111033 Integrated M.Sc.(2011-2016) Under the guidance of Prof. S.C. Phatak Center for Excellence in Basic Sciences University of Mumbai 1 Contents 1 Abstract 3 1.1 Basic Definitions

More information

TIMES SERIES INTRODUCTION INTRODUCTION. Page 1. A time series is a set of observations made sequentially through time

TIMES SERIES INTRODUCTION INTRODUCTION. Page 1. A time series is a set of observations made sequentially through time TIMES SERIES INTRODUCTION A time series is a set of observations made sequentially through time A time series is said to be continuous when observations are taken continuously through time, or discrete

More information

Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites

Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites Tiago Santos 1 Simon Walk 2 Denis Helic 3 1 Know-Center, Graz, Austria 2 Stanford University 3 Graz University of Technology

More information

Applied Econometrics and International Development Vol.9-1 (2009)

Applied Econometrics and International Development Vol.9-1 (2009) FUNCTIONAL FORMS AND PPP: THE CASE OF CANADA, THE EU, JAPAN, AND THE U.K. HSING, Yu Abstract This paper applies an extended Box-Cox model to test the functional form of the purchasing power parity hypothesis

More information

Abstract: Complex responses observed in an experimental, nonlinear, moored structural

Abstract: Complex responses observed in an experimental, nonlinear, moored structural AN INDEPENDENT-FLOW-FIELD MODEL FOR A SDOF NONLINEAR STRUCTURAL SYSTEM, PART II: ANALYSIS OF COMPLEX RESPONSES Huan Lin e-mail: linh@engr.orst.edu Solomon C.S. Yim e-mail: solomon.yim@oregonstate.edu Ocean

More information

Nonlinearity of nature and its challenges. Journal Club Marc Emmenegger

Nonlinearity of nature and its challenges. Journal Club Marc Emmenegger Nonlinearity of nature and its challenges Journal Club Marc Emmenegger 20170725 The scientific method System Observe and describe Discern pattern, find rules (deduction) F = mg Using the language of mathematics

More information

SIMULATED CHAOS IN BULLWHIP EFFECT

SIMULATED CHAOS IN BULLWHIP EFFECT Journal of Management, Marketing and Logistics (JMML), ISSN: 2148-6670 Year: 2015 Volume: 2 Issue: 1 SIMULATED CHAOS IN BULLWHIP EFFECT DOI: 10.17261/Pressacademia.2015111603 Tunay Aslan¹ ¹Sakarya University,

More information

2. Linear Programming Problem

2. Linear Programming Problem . Linear Programming Problem. Introduction to Linear Programming Problem (LPP). When to apply LPP or Requirement for a LPP.3 General form of LPP. Assumptions in LPP. Applications of Linear Programming.6

More information

Lecture 1: Introduction, history, dynamics, nonlinearity, 1-D problem, phase portrait

Lecture 1: Introduction, history, dynamics, nonlinearity, 1-D problem, phase portrait Lecture 1: Introduction, history, dynamics, nonlinearity, 1-D problem, phase portrait Dmitri Kartofelev, PhD Tallinn University of Technology, School of Science, Department of Cybernetics, Laboratory of

More information

Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method

Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method International Journal of Engineering & Technology IJET-IJENS Vol:10 No:02 11 Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method Imtiaz Ahmed Abstract-- This

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Chapter 1 Functions, Graphs, and Limits MA1103 Business Mathematics I Semester I Year 016/017 SBM International Class Lecturer: Dr. Rinovia Simanjuntak 1.1 Functions Function A function is a rule that

More information

Autonomous systems. Ordinary differential equations which do not contain the independent variable explicitly are said to be autonomous.

Autonomous systems. Ordinary differential equations which do not contain the independent variable explicitly are said to be autonomous. Autonomous equations Autonomous systems Ordinary differential equations which do not contain the independent variable explicitly are said to be autonomous. i f i(x 1, x 2,..., x n ) for i 1,..., n As you

More information

Closed economy macro dynamics: AD-AS model and RBC model.

Closed economy macro dynamics: AD-AS model and RBC model. Closed economy macro dynamics: AD-AS model and RBC model. Ragnar Nymoen Department of Economics, UiO 22 September 2009 Lecture notes on closed economy macro dynamics AD-AS model Inflation targeting regime.

More information

Global Bifurcations in a Three-Dimensional Financial Model of Bull and Bear Interactions

Global Bifurcations in a Three-Dimensional Financial Model of Bull and Bear Interactions Global Bifurcations in a Three-Dimensional Financial Model of Bull and Bear Interactions Fabio Tramontana, Laura Gardini, Roberto Dieci, and Frank Westerhoff 1 Introduction In a previous paper Tramontana

More information

Slides to Lecture 3 of Introductory Dynamic Macroeconomics. Linear Dynamic Models (Ch 2 of IDM)

Slides to Lecture 3 of Introductory Dynamic Macroeconomics. Linear Dynamic Models (Ch 2 of IDM) Partial recap of lecture 2 1. We used the ADL model to make precise the concept of dynamic multiplier. Slides to Lecture 3 of Introductory Dynamic Macroeconomics. Linear Dynamic Models (Ch 2 of IDM) Ragnar

More information

El Niño 2015 Conference

El Niño 2015 Conference El Niño 2015 Conference Case Study: El Nino of 2015 and the Indian summer monsoon Sulochana Gadgil (on the basis of inputs from IMD) IRI, 17 November 2015 All-India rainfall: The mean monthly rainfall

More information

Chapter 1: Introduction

Chapter 1: Introduction 1 Chapter 1: Introduction Stochastic Processes The concept of a random variable gives a mathematical formulation to the notion of a quantifiable event whose current value is not exactly known or whose

More information