AMONG POWER SYSTEM CONTROLS IMPACT OF INTERACTIONS EPRI/NSF WORKSHOP PLAYACAR, APRIL 2002 GLOBAL DYNAMIC OPTIMISATION OF THE ELECTRIC POWER GRID

Size: px
Start display at page:

Download "AMONG POWER SYSTEM CONTROLS IMPACT OF INTERACTIONS EPRI/NSF WORKSHOP PLAYACAR, APRIL 2002 GLOBAL DYNAMIC OPTIMISATION OF THE ELECTRIC POWER GRID"

Transcription

1 EPRI/NSF WORKSHOP PLAYACAR, APRIL 00 GLOBAL DYNAMIC OPTIMISATION OF THE ELECTRIC POWER GRID IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS NELSON MARTINS JULIO C.R. FERRAZ, SERGIO GOMES JR. CEPEL COPPE/UFRJ R.,

2 PRESENTATION CONTENTS Adverse effects on intra-plant modes caused by improperly designed power system stabilizers Using zeros to understand the adverse terminal voltage transients induced by the presence of PSSs Hopf bifurcations in the control parameters space Simultaneous partial pole placement for power system oscillation damping control Secondary voltage regulation: preliminary study in the Rio Area

3 IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS ADERSE EFFECTSFFECTS ON INTRA-PLANT MODESODES CAUSEDAUSED BY IMPROPERLY DESIGNED POWEROWER SYSTEMYSTEM STABILIZERS

4 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS Large systems most multi-unit power plants are usually modeled as single equivalent machines Reduces the number of system states, but Does not capture the intra-plant dynamics When improperly designed, PSSs may cause adverse interactions and intra-plant mode instability 4

5 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS Two-unit power plant connected through a high impedance to the infinite bus -Machine system Equivalent SMIB representation pu AR 3 4 AR 50 MA 0. pu 0.6 pu AR 300 MA 0. pu 0.6 pu 5 50 MA

6 6 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS SMIB, pole-zero map of [ω / REF ] 5 0% 5% 0% 5% Exciter Mode Local Mode Real

7 7 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS SMIB system PSS (center frequency =.0 Hz) 5 0% 5% 0% 5% 0 5 Exciter Mode 0 5 Local Mode Real

8 8 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS -machine system, pole-zero map of [ω / REF ] 5 0% 5% 0% 5% Intra-Plant Mode Plant Exciter Mode Local Mode Real

9 9 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS -machine system, pole-zero map of [(ω + ω )/ REF ] 5 5% 0% 5% Intra-Plant Mode Plant Exciter Mode Local Mode Real

10 0 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS Map of zeros for different number of modeled machines (from to 7) 0 5% 0% 5% X Title

11 ADERSE EFFECTS FFECTS ON I 7 Machines, PSS ON INTRA-PLANT MODES CAUSED BY BY PSS 0. 0% 5% 0% 5% 6. Intra-Plant Mode. 7.9 Plant Exciter Mode 3.9 Local Mode Real

12 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS -Machine system PSS (center frequency =.0 Hz) 0 5% 0% 5% 5 0 Plant Exciter Mode Intra-Plant Mode 5 Local Mode Real

13 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS -Machine system PSSs (center frequency =.0 Hz) 5 5% 0% 5% Intra-Plant Mode Plant Exciter Mode 5 Local Mode Real

14 4 ADERSE EFFECTS FFECTS ON I ON INTRA-PLANT MODES CAUSED BY BY PSS -Machine system PSSs (center frequency 5.0 Hz) 5 5% 0% 5% 0 Intra-Plant Mode Plant Exciter Mode Local Mode Real

15 IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS USINGSING ZEROSEROS TO UNDERSTAND THE ADERSE TERMINAL OLTAGE TRANSIENTS INDUCED BY THE PRESENCE OF PSSS

16 ADERSE IMPACTS ON TERMINAL OLTAGE DUE TO PSSS Studying zeros to understand the adverse voltage transients induced by the presence of PSSs Comparing the performances of PSSs derived from either rotor speed or terminal power signals 6

17 7 ACTIE POWER CHANGES FOLLOWING PMEC IN SMIB 0,00 0,05 0,00 0,005 PSSω PSSPT 0,000 0,0 5,0 0,0 5,0 0,0 5,0 Tempo Time (s) (s)

18 REACTIE POWER CHANGES FOLLOWING PMEC IN SMIB 0,004 0,00 0,000-0,00-0, ,006-0,008 0,0 5,0 0,0 5,0 0,0 5,0 Tempo Time (s) (s) PSSω PSSPT

19 9 PT) POLE-ZERO ERO MAP FOR QT/ PMEC (PSSPT Zero near the origin causes bigger overshoot in the step response Badly Located Zero

20 0 POLE-ZERO ERO MAP FOR QT/ PMEC (PSSω)

21 IMPACT MPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS HOPFOPF BIFURCATIONS IN THE CONTROL PARAMETERS SPACEPACE

22 HOPF BIFURCATION ALGORITHMS Compute parameter values that cause crossings of the small-signal stability boundary by critical eigenvalues Hopf bifurcations are computed for: Single-parameter changes Multiple-parameter changes the parameter space) (minimum distance in

23 HOPF BIFURCATIONS TEST SYSTEM UTILIZED Brazilian North-South Interconnection:,400 buses, 3,400 lines, 0 generators and associated ARs, 46 stabilizers, 00 speed-governors, 4 SCs, TCSCs, HDC link Matrix dimension is 3,06 with 48,5 nonzeros and,676 states 5 Eigenvalue Spectrum Real Part (/s)

24 4 HOPF BIFURCATIONS TEST SYSTEM PROBLEM Two TCSCs located at each end of the North-South intertie, equiped with PODs to damp the 0.7 Hz mode The Hopf bifurcation algorithms were applied to compute eigenvalue crossings of the security boundary (5% damping ratio) for gain changes in the two PODs

25 5 ROOT CONTOUR WHEN REDUCING THE GAINS OF THE TCSCs.0 5%.6. North-South mode K= K= Adverse control Interaction mode K=0 K=

26 6 ROOT CONTOUR WHEN HEN INCREASING THE HE GAINS AINS OF THE HE TCSCs.0 5%.6 K=3.6. North-South mode K= Adverse control Interaction mode K= K=

27 7 DETERMINING SECURITY BOUNDARIES THROUGH HOPF (5%).0 5%.6. North-South mode K= K= Adverse control Interaction mode K=

28 8 DETERMINING SECURITY BOUNDARIES THROUGH HOPF (5%).0 5%.6. North-South mode K= Adverse control Interaction mode K= K=

29 HOPF BIFURCATIONS - CONCLUSIONS Two crossings of the security boundary were found, both being related to POD gains far away from the nominal values( pu): 3.59 > K > 0.08 Computational cost of Hopf bifurcation algorithm Single-parameter changes : 0.6 s (per iteration) Multiple-parameter changes : 0.35 s (per iteration) 9

30 IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS SIMULTANEOUS PARTIALARTIAL POLEOLE PLACEMENT FOR POWEROWER SYSTEMYSTEM OSCILLATION DAMPING CONTROL

31 INTRODUCTION Purpose choose adequate gains for the Power System Stabilizers (PSSs) installed on generators of a test system PSSs used to improve the damping factor of electromechanical modes of oscillation Stabilization procedure: Determine the system critical modes Determine the machines where the installation of PSSs would be more effective Assess each PSS contribution to the control effort 3 Tune the gains of the PSSs using transfer function residues associated with other information

32 TEST SYSTEM Simplified representation of the Brazilian Southern system Characteristics: Southeastern region represented by an infinite bus Static exciters with high gain (Ka = 00, Ta = 0.05 s) Itaipu ~ Southeast Foz do Areia Salto Santiago ~ Salto Segredo ~ South ~ 3

33 CRITICAL OSCILLATORY MODES Critical electromechanical modes of oscillation Real Imag. Freq. (Hz) Damping ± % ± % Parameters related to the phase tuning of the PSSs Number of lead blocks Tw (s) Tn (s) Td (s)

34 CRITICAL OSCILLATORY MODES : Itaipu x (South + Southeast) Itaipu ~ = ± j 5.9 Southeast Foz do Areia Salto Santiago ~ Salto Segredo ~ South 34 ~

35 35 CRITICAL OSCILLATORY MODES : Southeast x (Itaipu + South) Itaipu ~ = ± j 4.64 Southeast Foz do Areia Salto Santiago ~ Salto Segredo ~ South ~

36 Impact Impact of of Interactions Interactions Among Among Power Power System System Controls Controls 36 CONTRIBUTION OF ONTRIBUTION OF EACH ACH PSS PSS TO THE TO THE SHIFT HIFT A change in the gain vector Κ will produce shifts in both the real and imaginary parts of the eigenvalues The contribution of each PSS to these shifts can be estimated using the matrix of transfer function residues For and three PSSs: [ ] [ ] = ,,, Im,,, Re Im Re K K K R R R R R R REF PSS REF PSS REF PSS REF PSS REF PSS REF PSS

37 CONTRIBUTION OF EACH PSS TO THE SHIFT Normalized contribution of each PSS in the shifts of the real and imaginary parts of the two critical eigenvalues 37 Re[Res(pss/ref)] 0.5 I II III.5 I II III Im[Res(pss/ref)] 0.5 I II III.5 I II III Oscillatory Modes Itaipu mode Southern mode PSS Location I Itaipu II S. Segredo III Foz do Areia

38 POLE-ZERO ERO MAP OF [ω/ REF ] Map of poles and zeros for the matrix transfer function [ω/ REF ] with PSS in Itaipu % 0.0% 5.0% Real

39 39 Root-Locus for Gain Changes at Itaipu PSS Real

40 Impact Impact of of Interactions Interactions Among Among Power Power System System Controls Controls 40 POLE OLE PLACEMENT LACEMENT M MODES AND ODES AND PSS PSSS Improve the damping factors of two critical oscillatory modes by the use of two PSSs installed in: Itaipu and Salto Segredo The gains of the PSSs are computed for a desired shift in the real part of the eigenvalues Gain vector Κ will be calculated at each Newton iteration using the following relation: = Re,, Re,, Re REF PSS REF PSS REF PSS REF PSS R R R R K K

41 POLE-ZERO ERO MAP OF [ω/ REF ] x Map of poles and zeros for the matrix transfer function [ω/ REF ] x with PSSs in Itaipu and S. Segredo % 0.0% 5.0% Real

42 LACEMENT MODES M AND PSSS POLE PLACEMENT % 0.0% 5.0% K Itaipu = 5 K S.Segredo = 9 ζ = 0.4 % ζ = 0.9 % Real % 0.0% 5.0% Real K Itaipu = 4 K S.Segredo = 9 ζ =.0 % ζ = 3.5 %

43 43 LACEMENT MODES M AND PSSS POLE PLACEMENT The pole location must be carefully chosen `Some specified pole locations may require high PSS gains and cause exciter mode instability Comments on the installation of a third PSS Facilitates the pole placement more convenient pole-zero map Number of PSSs differs from the number of poles to be placed pseudo-inverse of a non-square matrix must be computed Algorithm must be modified

44 PSEUDO-INERSE ALGORITHM Problems without unique solution pseudo-inverse algorithm Re [ R] = [ ] mx mxn K nx Re m = number of modes n = number of PSSs If m < n the algorithm will produce gain values that ensure a minimum norm for the gain vector min K If m > n the algorithm will produce gain values that ensure a minimum norm for the error vector (solution of the least square problem) min Re [ R] K Re[ ] 44

45 Impact Impact of of Interactions Interactions Among Among Power Power System System Controls Controls 45 POLE OLE PLACEMENT LACEMENT M MODES AND ODES AND 3 PSS 3 PSSS Three PSSs installed in: Itaipu, Salto Segredo and Foz do Areia Pseudo-inverse algorithm will provide the solution with minimum norm for the gain vector Κ The gains of the PSSs are computed for a desired shift in the real part of the eigenvalues At every iteration, the pseudo-inverse algorithm updates and solves the following matrix equation: = Re,,, Re,,, Re REF PSS REF PSS REF PSS REF PSS REF PSS REF PSS R R R R R R K K K

46 POLE-ZERO ERO MAP OF [ω/ REF ] 3x3 Map of poles and zeros for the matrix transfer function [ω/ REF ] 3x3 with PSSs in Itaipu, S. Segredo and Foz do Areia % 0.0% 5.0% Real

47 LACEMENT MODES M AND 3 PSSS POLE PLACEMENT % 5.0% 0.0% 5.0% K Itaipu = K S.Segredo = K Foz do Areia = ζ = 5.9 % Real 0.0% 5.0% 0.0% 5.0% Real ζ = 5.9 % K Itaipu = 0.4 K S.Segredo = 6.3 K Foz do Areia = 6.3 ζ =.0 % ζ =.4 %

48 48 CONCLUSIONS Proposed pole placement algorithm: Based on transfer function residues and Newton method Uses generalized inverse matrices to address cases without unique solution Inspection of the pole-zero map is very useful Pole placement method Selected pole location can impose constraints that may be unnecessarily severe Results may be not feasible pole placement may yield undesirably high values for the PSS gains

49 49 FINAL REMARKS Important developments and increased use of modal analysis Large-scale, control-oriented eigenanalysis Much room for further improvements

DEVELOPMENTS IN STABILITY

DEVELOPMENTS IN STABILITY Panel Session on Recent Applications of Linear Analysis Techniques SOME RECENT DEVELOPMENTS IN SMALL-SIGNAL STABILITY AND CONTROL NELSON MARTINS 1 SERGIO GOMES JR 1 JULIO CR FERRAZ 1,3 SERGIO L VARRICCHIO

More information

IEEE PES Task Force on Benchmark Systems for Stability Controls

IEEE PES Task Force on Benchmark Systems for Stability Controls IEEE PES Task Force on Benchmark Systems for Stability Controls Report on Benchmark #2 The Brazilian 7 Bus (Equivalent Model) Version 1 - October 23 rd, 214 Fernando J. de Marco, Leonardo Lima and Nelson

More information

CHAPTER 3 SYSTEM MODELLING

CHAPTER 3 SYSTEM MODELLING 32 CHAPTER 3 SYSTEM MODELLING 3.1 INTRODUCTION Models for power system components have to be selected according to the purpose of the system study, and hence, one must be aware of what models in terms

More information

Aug 2015 PES-TR18. Benchmark Systems for Small-Signal Stability Analysis and Control. IEEE Power & Energy Society TECHNICAL REPORT

Aug 2015 PES-TR18. Benchmark Systems for Small-Signal Stability Analysis and Control. IEEE Power & Energy Society TECHNICAL REPORT IEEE Power & Energy Society Aug 25 TECHNICAL REPORT PES-TR8 Benchmark Systems for Small-Signal Stability Analysis and Control PREPARED BY THE Power System Dynamic Performance Committee Power System Stability

More information

QFT Framework for Robust Tuning of Power System Stabilizers

QFT Framework for Robust Tuning of Power System Stabilizers 45-E-PSS-75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh Izadi-Zamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

LOC-PSS Design for Improved Power System Stabilizer

LOC-PSS Design for Improved Power System Stabilizer Journal of pplied Dynamic Systems and Control, Vol., No., 8: 7 5 7 LOCPSS Design for Improved Power System Stabilizer Masoud Radmehr *, Mehdi Mohammadjafari, Mahmoud Reza GhadiSahebi bstract power system

More information

In these notes, we will address (2) and then return to (1) in the next class.

In these notes, we will address (2) and then return to (1) in the next class. Linearized Analysis of the Synchronous Machine for PSS Chapter 6 does two basic things:. Shows how to linearize the 7-state model (model #2, IEEE #2., called full model without G-cct. ) of a synchronous

More information

Transient Stability Analysis with PowerWorld Simulator

Transient Stability Analysis with PowerWorld Simulator Transient Stability Analysis with PowerWorld Simulator T11: Single Machine Infinite Bus Modeling (SMIB) 21 South First Street Champaign, Illinois 6182 +1 (217) 384.633 support@powerworld.com http://www.powerworld.com

More information

Using a TCSC for Line Power Scheduling and System Oscillation Damping Small Signal and Transient Stability Studies

Using a TCSC for Line Power Scheduling and System Oscillation Damping Small Signal and Transient Stability Studies Using a TCSC for Line Power Scheduling and System Oscillation Damping Small Signal and Transient Stability Studies Nelson Martins - CEPEL Herminio Pinto - CEPEL John J. Paserba - Mitsubishi Electric Products,

More information

Minimax Approximation Synthesis in PSS Design by Embedding

Minimax Approximation Synthesis in PSS Design by Embedding Minimax Approximation Synthesis in PSS Design by Embedding Gravitational Search Algorithm Dr. Akash Saxena Department of Electrical Engineering Swami Keshvanand Institute of Technology Jaipur, India Power

More information

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10

More information

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Address for Correspondence a Research Scholar, Department of Electrical & Electronics Engineering,

More information

APPLICATIONS OF CONTROLLABLE SERIES CAPACITORS FOR DAMPING OF POWER SWINGS *

APPLICATIONS OF CONTROLLABLE SERIES CAPACITORS FOR DAMPING OF POWER SWINGS * APPLICATIONS OF CONTROLLABLE SERIES CAPACITORS FOR DAPING OF POWER SWINGS *. Noroozian P. Halvarsson Reactive Power Compensation Division ABB Power Systems S-7 64 Västerås, Sweden Abstract This paper examines

More information

IV SEPOPE IV SIMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EXPANSION PLANNING Foz do Iguaçu May, 1994

IV SEPOPE IV SIMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EXPANSION PLANNING Foz do Iguaçu May, 1994 IV SEPOPE IV SIMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EPANSION PLANNING Foz do Iguaçu May, 1994 TCSC CONTROL STRUCTURES FOR LINE POWER SCHEDULING AND METHODS TO DETERMINE THEIR LOCATION AND

More information

Transient Stability Analysis with PowerWorld Simulator

Transient Stability Analysis with PowerWorld Simulator Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com

More information

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE LATHA.R Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004,

More information

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System (Ms) N Tambey, Non-member Prof M L Kothari, Member This paper presents a systematic

More information

APPLICATION OF D-K ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN

APPLICATION OF D-K ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN APPLICATION OF D-K ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN Amitava Sil 1 and S Paul 2 1 Department of Electrical & Electronics Engineering, Neotia Institute

More information

QFT Based Controller Design of Thyristor-Controlled Phase Shifter for Power System Stability Enhancement

QFT Based Controller Design of Thyristor-Controlled Phase Shifter for Power System Stability Enhancement International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 232-9364, ISSN (Print): 232-9356 Volume 5 Issue 4 ǁ Apr. 27 ǁ PP.54-64 QFT Based Controller Design of Thyristor-Controlled

More information

Efficient computation of multivariable transfer function dominant poles

Efficient computation of multivariable transfer function dominant poles Chapter 4 Efficient computation of multivariable transfer function dominant poles Abstract. This chapter describes a new algorithm to compute the dominant poles of a high-order multi-input multi-output

More information

Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS

Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS P. PAVAN KUMAR M.Tech Student, EEE Department, Gitam University, Visakhapatnam, Andhra Pradesh, India-533045,

More information

Power System Stability GENERATOR CONTROL AND PROTECTION

Power System Stability GENERATOR CONTROL AND PROTECTION Power System Stability Outline Basis for Steady-State Stability Transient Stability Effect of Excitation System on Stability Small Signal Stability Power System Stabilizers Speed Based Integral of Accelerating

More information

Self-Tuning Control for Synchronous Machine Stabilization

Self-Tuning Control for Synchronous Machine Stabilization http://dx.doi.org/.5755/j.eee.2.4.2773 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 392-25, VOL. 2, NO. 4, 25 Self-Tuning Control for Synchronous Machine Stabilization Jozef Ritonja Faculty of Electrical Engineering

More information

TCSC-Based Wide Area Damping Controller (WADC) for Inter-area oscillations in Saudi Power Network

TCSC-Based Wide Area Damping Controller (WADC) for Inter-area oscillations in Saudi Power Network -Based Wide Area Damping Controller (WADC) for Inter-area oscillations in Saudi Power Network Saleh M. Bamasak (1)(2) *, Yusuf A. Al-Turki (1), Sreerama Kumar R. (1) & Malek M. Al-Hajji (2) 1 King Abdulaziz

More information

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 01-09 www.iosrjournals.org Design of PSS and SVC Controller

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System 1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia

More information

Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks

Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks 3rd IASME/WSEAS Int. Conf. on Energy & Environment, University of Cambridge, UK, February 3-5, 008 Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks

More information

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating

More information

FLEXIBLE ac transmission system (FACTS) devices give

FLEXIBLE ac transmission system (FACTS) devices give 694 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 19, NO. 2, APRIL 2004 A Newton-Type Current Injection Model of UPFC for Studying Low-Frequency Oscillations Kwang M. Son, Member, IEEE, and Robert H. Lasseter,

More information

Modeling Capacitor Commutated Converters in Power System Stability Studies

Modeling Capacitor Commutated Converters in Power System Stability Studies IEEE/PES Summer Meeting, July 2002. Published in Transactions on Power Systems, May 2002. Modeling Capacitor Commutated Converters in Power System Stability Studies Sergio Gomes Jr. (CEPEL) Nelson Martins

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 2 (2014), pp. 257-270 International Research Publication House http://www.irphouse.com Robust Tuning of Power System Stabilizers

More information

A Power System Dynamic Simulation Program Using MATLAB/ Simulink

A Power System Dynamic Simulation Program Using MATLAB/ Simulink A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

More information

Chapter 9: Transient Stability

Chapter 9: Transient Stability Chapter 9: Transient Stability 9.1 Introduction The first electric power system was a dc system built by Edison in 1882. The subsequent power systems that were constructed in the late 19 th century were

More information

STUDY OF SMALL SIGNAL STABILITY WITH STATIC SYNCHRONOUS SERIESCOMPENSATOR FOR AN SMIB SYSTEM

STUDY OF SMALL SIGNAL STABILITY WITH STATIC SYNCHRONOUS SERIESCOMPENSATOR FOR AN SMIB SYSTEM STUDY OF SMLL SIGNL STBILITY WITH STTIC SYNCHRONOUS SERIESCOMPENSTOR FOR N SMIB SYSTEM K.Geetha, Dr.T.R.Jyothsna 2 M.Tech Student, Electrical Engineering, ndhra University, India 2 Professor,Electrical

More information

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

IEEE PES Task Force on Benchmark Systems for Stability Controls

IEEE PES Task Force on Benchmark Systems for Stability Controls IEEE PES Task Force on Benchmark Systems for Stability Controls Report on the 68-bus system (New England / New York Test System) Version 4.0 - June 20 th, 2014 Rodrigo A. Ramos, Roman Kuiava, Tatiane C.

More information

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms Helwan University From the SelectedWorks of Omar H. Abdalla May, 2008 Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

More information

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008 SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous

More information

Application of Posicast Controller on Power System Stabilizer and Its Effect on Oscillatory Stability

Application of Posicast Controller on Power System Stabilizer and Its Effect on Oscillatory Stability 76 Application of Posicast Controller on Power System Stabilizer and Its Effect on Oscillatory Stability Shojaeddin Mirfendereski 1, Noor Izzri Abdul Wahab 2, Jasronita Jasni 3 and Mohammad Lutfi Othman

More information

POWER SYSTEM STABILITY

POWER SYSTEM STABILITY LESSON SUMMARY-1:- POWER SYSTEM STABILITY 1. Introduction 2. Classification of Power System Stability 3. Dynamic Equation of Synchronous Machine Power system stability involves the study of the dynamics

More information

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS Journal of ELECTRICAL ENGINEERING, VOL. 64, NO. 6, 2013, 366 370 COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

More information

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com June 2010

More information

Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems

Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems Yaar Küçükefe 1 and Adnan Kaypmaz 2 1 National Power Enerji, Tekirda, Turkey yasar.kucukefe@ieee.org 2 stanbul Technical

More information

Power System Stability Enhancement Using Adaptive and AI Control

Power System Stability Enhancement Using Adaptive and AI Control Power System Stability Enhancement Using Adaptive and AI Control O.P. Malik University of Calgary Calgary, Canada 1 Controller Design Requirements Selection of: System model Control signal Scaling of signals

More information

KINGS COLLEGE OF ENGINEERING Punalkulam

KINGS COLLEGE OF ENGINEERING Punalkulam KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK

More information

THE transient response of a closed-loop linear system is

THE transient response of a closed-loop linear system is 434 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 2, MAY 2008 Computing Large-Scale System Eigenvalues Most Sensitive to Parameter Changes, With Applications to Power System Small-Signal Stability Joost

More information

CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS

CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 28 CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 3.1 INTRODUCTION This chapter focuses on the mathematical state space modeling of all configurations involved

More information

Artificial immune system based algorithms for optimization and self-tuning control in power systems

Artificial immune system based algorithms for optimization and self-tuning control in power systems Scholars' Mine Masters Theses Student Research & Creative Works 007 Artificial immune system based algorithms for optimization and self-tuning control in power systems Mani Hunjan Follow this and additional

More information

1 Unified Power Flow Controller (UPFC)

1 Unified Power Flow Controller (UPFC) Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,

More information

MAE 143B - Homework 7

MAE 143B - Homework 7 MAE 143B - Homework 7 6.7 Multiplying the first ODE by m u and subtracting the product of the second ODE with m s, we get m s m u (ẍ s ẍ i ) + m u b s (ẋ s ẋ u ) + m u k s (x s x u ) + m s b s (ẋ s ẋ u

More information

Dynamic simulation of a five-bus system

Dynamic simulation of a five-bus system ELEC0047 - Power system dynamics, control and stability Dynamic simulation of a five-bus system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 16 System modelling

More information

Study of Transient Stability with Static Synchronous Series Compensator for an SMIB

Study of Transient Stability with Static Synchronous Series Compensator for an SMIB Study of Transient Stability with Static Synchronous Series Compensator for an SMIB M.Chandu, Dr.T.R.Jyosthna 2 M.tech, Electrical Department, Andhra University, Andhra Pradesh, India 2 Professor, Electrical

More information

A Computer Application for Power System Control Studies

A Computer Application for Power System Control Studies A Computer Application for Power System Control Studies Dinis C. A. Bucho Student nº55262 of Instituto Superior Técnico Technical University of Lisbon Lisbon, Portugal Abstract - This thesis presents studies

More information

Chapter 8 VOLTAGE STABILITY

Chapter 8 VOLTAGE STABILITY Chapter 8 VOTAGE STABIITY The small signal and transient angle stability was discussed in Chapter 6 and 7. Another stability issue which is important, other than angle stability, is voltage stability.

More information

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER G.V.RAJASEKHAR, 2 GVSSNS SARMA,2 Department of Electrical Engineering, Aurora Engineering College, Hyderabad,

More information

MITIGATION OF POWER SYSTEM SMALL SIGNAL OSCILLATION USING POSICAST CONTROLLER AND EVOLUTIONARY PROGRAMMING

MITIGATION OF POWER SYSTEM SMALL SIGNAL OSCILLATION USING POSICAST CONTROLLER AND EVOLUTIONARY PROGRAMMING Journal of Engineering Science and Technology Special Issue on Applied Engineering and Sciences, October (2014) 39-50 School of Engineering, Taylor s University MITIGATION OF POWER SYSTEM SMALL SIGNAL

More information

Stability Effects of Frequency Controllers and Transmission Line Configurations on Power Systems with Integration of Wind Power

Stability Effects of Frequency Controllers and Transmission Line Configurations on Power Systems with Integration of Wind Power Stability Effects of Frequency Controllers and Transmission Line Configurations on Power Systems with Integration of Wind Power by Hussein Mohamed Abdelhalim B.S. Electrical Engineering University of Florida,

More information

Aldi Mucka Tonin Dodani Marjela Qemali Rajmonda Bualoti Polytechnic University of Tirana, Faculty of Electric Engineering, Republic of Albania

Aldi Mucka Tonin Dodani Marjela Qemali Rajmonda Bualoti Polytechnic University of Tirana, Faculty of Electric Engineering, Republic of Albania 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Aldi Mucka Tonin Dodani Marjela Qemali Rajmonda Bualoti Polytechnic University of Tirana, Faculty of Electric Engineering, Republic of Albania REHABILITATIONS OF EXCITATION

More information

CURENT Course Power System Coherency and Model Reduction

CURENT Course Power System Coherency and Model Reduction CURENT Course Power System Coherency and Model Reduction Prof. Joe H. Chow Rensselaer Polytechnic Institute ECSE Department November 1, 2017 Slow Coherency A large power system usually consists of tightly

More information

Prediction of Instability Points Using System Identification

Prediction of Instability Points Using System Identification Prediction of Instability Points Using System Identification Hassan Ghasemi laudio A. añizares John Reeve hassan@thunderbox.uwaterloo.ca ccanizar@engmail.uwaterloo.ca J.Reeve@ece.uwaterloo.ca Department

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Oscillation energy based sensitivity analysis and control for multi-mode oscillation systems

Oscillation energy based sensitivity analysis and control for multi-mode oscillation systems Oscillation energy based sensitivity analysis and control for multi-mode oscillation systems Horacio Silva-Saravia, Yajun Wang, Héctor Pulgar-Painemal, Kevin Tomsovic Department of Electrical Engineering

More information

Power System Sensitivity Analysis for Probabilistic Small Signal Stability Assessment in a Deregulated Environment

Power System Sensitivity Analysis for Probabilistic Small Signal Stability Assessment in a Deregulated Environment International Power System Journal Sensitivity of Control, Analysis Automation, for Probabilistic and Systems, Small vol. Signal 3, no. 2 Stability (special Assessment edition), pp. in 355-362, a Deregulated

More information

A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE

A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE J.G. Slootweg 1, J. Persson 2, A.M. van Voorden 1, G.C. Paap 1, W.L. Kling 1 1 Electrical Power Systems Laboratory,

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

New Tools for Analysing Power System Dynamics

New Tools for Analysing Power System Dynamics 1 New Tools for Analysing Power System Dynamics Ian A. Hiskens Department of Electrical and Computer Engineering University of Wisconsin - Madison (With support from many talented people.) PSerc Research

More information

Excitation control for improving transient stability limit and voltage regulation with dynamic loads

Excitation control for improving transient stability limit and voltage regulation with dynamic loads Excitation control for improving transient stability limit and voltage regulation with dynamic loads M. J. Hossain, H. R. Pota, M. A. Mahmud, R. A. Ramos, SEIT, UNSW@ADFA, Canberra, ACT-2600, Australia.

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Testing and Model Validation of Cumberland Power Plant

Testing and Model Validation of Cumberland Power Plant Testing and Model Validation of Cumberland Power Plant Leonardo T. G. Lima, James W. Feltes and F. P. de Mello Siemens Power Transmission & Distribution, Inc. Cumberland Unit 1 Original analog UNITROL

More information

11.1 Power System Stability Overview

11.1 Power System Stability Overview 11.1 Power System Stability Overview This introductory section provides a general description of the power system stability phenomena including fundamental concepts, classification, and definition of associated

More information

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

Accurate and Estimation Methods for Frequency Response Calculations of Hydroelectric Power Plant

Accurate and Estimation Methods for Frequency Response Calculations of Hydroelectric Power Plant Accurate and Estimation Methods for Frequency Response Calculations of Hydroelectric Poer Plant SHAHRAM JAI, ABOLFAZL SALAMI epartment of Electrical Engineering Iran University of Science and Technology

More information

Power system modelling under the phasor approximation

Power system modelling under the phasor approximation ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasor-mode simulations

More information

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Computer Methods in Power Systems Course Code : A60222

More information

Hopf bifurcations induced by SVC Controllers: A didactic example

Hopf bifurcations induced by SVC Controllers: A didactic example Electric Power Systems Research 77 (2007) 234 240 Hopf bifurcations induced by SVC Controllers: A didactic example Wei Gu a,, Federico Milano b, Ping Jiang a, Guoqing Tang a a SouthEast University, Department

More information

Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Electrical Networks

Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Electrical Networks Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Dr. SWISS FEDERAL INSTITUTE OF TECHNOLOGY Electrical Engineering Department, Laboratory of Electromechanics

More information

SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations

SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations Mohammed Osman Hassan, Ahmed Khaled Al-Haj Assistant Professor, Department of Electrical Engineering, Sudan University

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Supervisory Control Scheme for FACTS and HVDC Based Damping of Inter-Area Power Oscillations in Hybrid AC-DC Power Systems

Supervisory Control Scheme for FACTS and HVDC Based Damping of Inter-Area Power Oscillations in Hybrid AC-DC Power Systems Supervisory Control Scheme for FACTS and HVDC Based Damping of Inter-Area Power Oscillations in Hybrid AC-DC Power Systems A thesis submitted to The University of Manchester for the degree of Doctor of

More information

Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load

Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load N. S. D. Arrifano, V. A. Oliveira and R. A. Ramos Abstract In this paper, a design method and application

More information

Bifurcation Control for Mitigating Subsynchronous Oscillations in Power Systems

Bifurcation Control for Mitigating Subsynchronous Oscillations in Power Systems Bifurcation Control for Mitigating Subsynchronous Oscillations in Power Systems A. M. Harb A. H. Nayfeh L. Mili Bradley Department of Electrical and Computer Engineering Department of Engineering Science

More information

Analysis of Coupling Dynamics for Power Systems with Iterative Discrete Decision Making Architectures

Analysis of Coupling Dynamics for Power Systems with Iterative Discrete Decision Making Architectures Analysis of Coupling Dynamics for Power Systems with Iterative Discrete Decision Making Architectures Zhixin Miao Department of Electrical Engineering, University of South Florida, Tampa FL USA 3362. Email:

More information

A Decoupling Based Direct Method for Power System Transient Stability Analysis

A Decoupling Based Direct Method for Power System Transient Stability Analysis A Decoupling Based Direct Method for Power System Transient Stability Analysis Bin Wang, Kai Sun Electrical Engineering and Computer Science University of Tennessee, Knoxville, TN USA bwang13@utk.edu,

More information

Damping SSR in Power Systems using Double Order SVS Auxiliary Controller with an Induction Machine Damping Unit and Controlled Series Compensation

Damping SSR in Power Systems using Double Order SVS Auxiliary Controller with an Induction Machine Damping Unit and Controlled Series Compensation 614 Damping SSR in Power Systems using Double Order SVS Auxiliary Controller with an Induction Machine Damping Unit and Controlled Series Compensation Sushil K Gupta, Narendra Kumar and A K Gupta Abstract--This

More information

On-line Monitoring and Oscillatory Stability Margin Prediction in Power Systems Based on System Identification

On-line Monitoring and Oscillatory Stability Margin Prediction in Power Systems Based on System Identification On-line Monitoring and Oscillatory Stability Margin Prediction in Power Systems Based on System Identification by Hassan Ghasemi A thesis presented to the University of Waterloo in fulfilment of the thesis

More information

Fuzzy Applications in a Multi-Machine Power System Stabilizer

Fuzzy Applications in a Multi-Machine Power System Stabilizer Journal of Electrical Engineering & Technology Vol. 5, No. 3, pp. 503~510, 2010 503 D.K.Sambariya and Rajeev Gupta* Abstract - This paper proposes the use of fuzzy applications to a 4-machine and 10-bus

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

OPTIMAL POLE SHIFT CONTROL IN APPLICATION TO A HYDRO POWER PLANT

OPTIMAL POLE SHIFT CONTROL IN APPLICATION TO A HYDRO POWER PLANT Journal of ELECTRICAL ENGINEERING, VOL. 56, NO. 11-12, 2005, 290 297 OPTIMAL POLE SHIFT CONTROL IN APPLICATION TO A HYDRO POWER PLANT Nand Kishor R. P. Saini S. P. Singh This paper presents a design technique

More information

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Engineering Review Vol. 36 Issue 2 8-86 206. 8 DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Samir Avdaković * Alija Jusić 2 BiH Electrical Utility Company

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as:

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: 2H Re ( t) T au T mu T eu (1) and when speed is in per-unit as 2H u ( t) Tau Tmu Teu (2) We note that in both cases

More information

ABSTRACT IMPLICATIONS OF THE DICHOTOMY OF MODAL PARTICIPATION FACTORS FOR MONITORING AND CONTROL OF ELECTRIC POWER NETWORKS

ABSTRACT IMPLICATIONS OF THE DICHOTOMY OF MODAL PARTICIPATION FACTORS FOR MONITORING AND CONTROL OF ELECTRIC POWER NETWORKS ABSTRACT Title of thesis: IMPLICATIONS OF THE DICHOTOMY OF MODAL PARTICIPATION FACTORS FOR MONITORING AND CONTROL OF ELECTRIC POWER NETWORKS Paul Kenton Tschirhart, Master of Science, 2013 Thesis directed

More information

SMALL SIGNAL ANALYSIS OF POWER SYSTEMS: EIGENVALUE TRACKING METHOD AND EIGENVALUE ESTIMATION CONTINGENCY SCREENING FOR DSA RODNEY H.

SMALL SIGNAL ANALYSIS OF POWER SYSTEMS: EIGENVALUE TRACKING METHOD AND EIGENVALUE ESTIMATION CONTINGENCY SCREENING FOR DSA RODNEY H. SMALL SIGNAL ANALYSIS OF POWER SYSTEMS: EIGENVALUE TRACKING METHOD AND EIGENVALUE ESTIMATION CONTINGENCY SCREENING FOR DSA BY RODNEY H. YEU DISSERTATION Submitted in partial fulfillment of the requirements

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information