SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008

Size: px
Start display at page:

Download "SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008"

Transcription

1 SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008

2 Transient Stability Transient stability refers to the ability of a synchronous generator connected to the grid to maintain synchronism when subjected to severe disturbances due to heavy load changes, loss of generation in other units or faults in the system. When there is a sudden disturbance, the machine rotor starts to oscillate about its equilibrium position. These oscillations are modeled using swing equation. 1 Swing equation When there is an unbalance between mechanical torque (T m ) and electrical torque (T e ), it will cause the rotor to accelerate or decelerate. The difference in the torque (T a ) is given by, J dω m T a = T m T e = T m T e (1) where J is the moment of inertia of the rotor in kg.m and ω m is the angular velocity of the rotor in rad/s. Equation (1) can be normalised as follows: Defining inertia constant H as where T base = V A base ω 0m H = 1 Jω 0m V A base J = HV A base ω 0m = H ω 0m T base (). Combining (1) and () we get, H d ( ) ωm ω 0m H d ω r = T m T e T base = T m T e (3) = ωr ω 0 where the variables superscripted with indicates per unit quantities and ωm ω 0m ω r is the velocity of the rotor in electrical rad/s and ω 0 is its rated value. If δ is the angular position of the rotor with respect to the rotating reference frame, = ω r and δ = ω r t ω 0 t + δ 0 (4) where δ 0 = δ at t = 0. Differentiating (4) twice with respect to time, dδ = ω r ω 0 = ω r (5) = d ( ω r) = d (ω 0 ω r ω 0 ) (6) = ω 0 d ω r 1 (7)

3 Substituting in (3), H ω 0 = T m T e (8) To include the rotor damping effects, we include rotor damping constant K D and proportional to change in speed and we have, H ω 0 = T m T e K D ω r (9) Equation (9) is known as swing equation. In pu representation, torque and power are equal, so we can represent (9) as, H ω 0 = P m P e K D ω r (10) Single machine on infinite bus (SMIB) model Infinite bus is the one with constant frequency and voltage. Consider a generator G connected to infinite bus through a transformer and a transmission line as shown in Figure 1(a). The reactance of the line X line, transformer X trans and the transient reactance X d are indicated in Figure 1(b). E is the generator voltage behind X d and E bus is the infinite bus voltage. Generator voltage E leads the E bus by an angle δ. The given network can be reduced as shown in Figure 1(c) where X T = X d + X trans + X line. Let E be the reference vector, the current I t is given by, Apparent power behind X d is given by, I t = E 0 E bus δ jx T = E 0 E bus (cos δ j sin δ) jx T (11) S = P + jq = E I t = E E bus sin δ X T + j E (E E bus cos δ) X T (1) If we neglect the stator resistance loss, the airgap power will be the terminal power P e. P e = E E bus sin δ X T = P max sin δ (13) where P max = E E bus X T. Equation (13) is diagrammatically represented in Figure. Under steady

4 Figure 1: Single machine on infinite bus system state P m = P e, and let the corresponding rotor angle be δ. From (13), P max is inversely proportional to X T. With X T increased to X T 1, P max reduces to P max1 as shown in Figure and also the steady state angle δ increases to δ 1. Combining (8) and (13) we get, H ω 0 = P m P max sin δ (14).1 Rotor angle response to sudden change in P m When the mechanical power P m is increased to P m1 as shown in Figure 5, since P m1 > P e, rotor accelerates increasing rotor angle towards δ 1. At y, P m1 = P e, but the rotor speed is higher than the synchronous speed ω 0 and so the rotor angle continues to increase. This will increase P e, now since P m1 < P e, rotor will start decelerate. At z with δ, rotor speed reaches syn.speed but still P m1 < P e rotor continues to decelerate with speed falling below ω 0. The rotor retraces the path, after reaching x the rotor continues to oscillate about the new equilibrium point δ 1 3

5 Power Angle Figure : Power angle curve. Equivalent single machine system We can represent a system consisting of many generators operating in parallel by an equivalent single machine system. Find the equivalent single machine system of the following multimachine systems. 1. Each machine 30 kva, H = 6 s, xd = 0.5 pu. (Refer Figure 3).. G 1 = 30 kva, H 1 = 6 s, xd 1 = 0.5 pu and G = 60 kva, H = 4 s, xd = 0.3 pu (Refer Figure 4). 3 Stability based on equal area criterion Using SMIB model, the stability of rotor angle oscillations can be determined graphically without solving the swing equations. Even though this method cannot be applied to multimachine systems, it can provide basic understanding and information about critical clearing angle and stability limits. From equation (14) we have = ω 0 H (P m P e ) (15) 4

6 Figure 3: 3 M/C system Figure 4: M/C system Multiplying by dδ, Integrating (16) we get, dδ = ω 0 H (P m P e ) dδ ( ) d dδ = ω 0 H (P m P e ) dδ (16) ( ) dδ ω0 = H (P m P e ) dδ (17) Under steady state conditions dδ = 0, during disturbance δ will be changed, but after the removal of disturbance the system should regain steady state conditions without δ deviating unboundedly. For stability equation (17) should be equal to zero i.e, δ ω 0 δ 0 H (P m P e ) dδ = 0 (18) 5

7 Power Angle Figure 5: Rotor angle oscillations where δ 0 is the steady state rotor angle, δ is the maximum rotor angle (see Figure 5). For the equation (18) to be zero, the area described by the function P m P e must be zero. From Figure 5, the kinetic energy gained is given by area A 1 and is given by, A 1 = δ1 δ 0 (P m P e ) dδ (19) The energy lost during deceleration is given by the area A and is given by, for stability, A = δ δ 1 (P m P e ) dδ (0) Area A 1 = Area A (1) i.e, kinetic energy gained = energy lost during deceleration Equation (1) represents the principle of stability through equal area criterion. 3.1 Stability during sudden input power change For sudden change in input power stability can be found by using the stability criteria given by (1). Stability can be maintained only if we can find area A in the power angle curve such that (1) is satisfied. The maximum rotor angle δ max is given by the rotor angle corresponding to P m for which π < δ > π as shown in Figure 6. 6

8 Power Angle Figure 6: Power angle curve for sudden change in P m Using (13) and (1) we can write, P m (δ 1 δ 0 ) On simplification, δ1 δ 0 P max sin δ dδ = δmax δ 1 P max sin δ dδ P m (δ max δ 1 ) () ] P m (δ max δ 0 ) = P max [( cos δ) δ 1 δ 0 + ( cos δ) δmax δ 1 At stability limit P m = P max sin δ max, substituting in (3), = P max (cos δ 0 cos δ max ) (3) sin δ max (δ max δ 0 ) + cos δ max = cos δ 0 (4) Equation (4) is a nonlinear equation which can be solved by iterative technique to get δ max. With δ max known we can find δ 1 and P m as follows: 3. Stability during 3 phase fault δ 1 = π δ max and P m = P max sin δ 1 (5) Fault at sending end. When fault occurs near the sending end as in Figure 7, no power is send to the infinite bus. If we neglect the resistance of transformer and generator P e is zero during fault. Since P e is zero, P m is used to accelerate rotor and this increases rotor angle to δ 1. At 7

9 Figure 7: Fault at the sending end δ 1, the fault is cleared and P e takes the value corresponding to y as shown in Figure 8(a). At y since P e < P m, rotor decelerates to z and then returns back to x and starts to oscillate about δ 0. Critical clearing angle δ c is reached when area A becomes less than A 1 [see Figure 8(b)] and at z the rotor angle becomes δ max. Using (1) solving for δ c, P m (δ c δ 0 ) = δmax δ c (P max sin δ P m ) dδ = P max (cos δ c cos δ max ) P m (δ max δ c ) P m (δ max δ 0 ) = P max cos δ c P max cos δ max (6) [ δ c = cos 1 cos δ max + P ] m (δ max δ 0 ) P max To find the critical time t c, substitute P e = 0 in (15), Integrating both sides from time 0 to t we get, (7) = ω 0 H P m (8) dδ = ω 0 H P mt δ = ω 0 4H P mt + δ 0 (9) at δ = δ max, t = t c, substituting in (9), t c = 4H (δ max δ 0 ) ω 0 P m (30) 8

10 Power Power m m Angle 0 c max Angle Figure 8: Power angle curve for fault at sending end 4 Numerical Example Let us consider a 50 Hz single machine on infinite bus system. The machine is connected to infinite bus through a transformer and a transmission line. The system data is included in the Figure 9. A temporary 3 phase fault occurs at sending end and the system is restored back to normal after fault clearance. Find the critical clearing angle and critical clearing time above which the system will become unstable. 9

11 Figure 9: Power system for numerical example. 0.9 j0.08 Generator Current I G = = 0.9 j0.08 pu 1 0 Total reactance X T 1 = = pu Generator voltage behind x d, E q = V bus I G X T 1 = j (0.9 j0.08) = pu ( ) Initial power angle δ 0 = sin 1 Pe X T 1 = E q V bus Maximum power angle δ max = 180 δ 0 = [ Critical clearing angle δ c = cos 1 cos δ max + P ] m (δ max δ 0 ) = P max 4H (δ max δ 0 ) Critical clearing time t c = = 0.71 s ω 0 P m 10

12 Figure 10: Power angle curve for the numerical example. 11

POWER SYSTEM STABILITY

POWER SYSTEM STABILITY LESSON SUMMARY-1:- POWER SYSTEM STABILITY 1. Introduction 2. Classification of Power System Stability 3. Dynamic Equation of Synchronous Machine Power system stability involves the study of the dynamics

More information

Examples of Applications of Potential Functions in Problem Solving (Web Appendix to the Paper)

Examples of Applications of Potential Functions in Problem Solving (Web Appendix to the Paper) Examples of Applications of otential Functions in roblem Solving (Web Appendix to the aper) Ali Mehrizi-Sani and Reza Iravani May 5, 2010 1 Introduction otential functions may be exploited to formulate

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

Chapter 9: Transient Stability

Chapter 9: Transient Stability Chapter 9: Transient Stability 9.1 Introduction The first electric power system was a dc system built by Edison in 1882. The subsequent power systems that were constructed in the late 19 th century were

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Computer Methods in Power Systems Course Code : A60222

More information

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ From now, we ignore the superbar - with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for

More information

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1 ower ystems ower ystem tability QUETION BANK. A cylindrical rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator no-load

More information

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System 1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

REAL-TIME TRANSIENT STABILITY ASSESSMENT

REAL-TIME TRANSIENT STABILITY ASSESSMENT CHAPTER 3 REAL-TIME TRANSIENT STABILITY ASSESSMENT In Chapter 2, the basic multimachine theory and the different dynamic, state and transient energy equations have been presented and the basic criterion

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Philadelphia University Faculty of Engineering Student Name Student No: Serial No Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Course Title: Power II Date: 21 st June 2016 Course

More information

The synchronous machine (SM) in the power system (2) (Where does the electricity come from)?

The synchronous machine (SM) in the power system (2) (Where does the electricity come from)? 1 The synchronous machine (SM) in the power system (2) (Where does the electricity come from)? 2 Lecture overview Synchronous machines with more than 2 magnetic poles The relation between the number of

More information

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10

More information

Power System Stability GENERATOR CONTROL AND PROTECTION

Power System Stability GENERATOR CONTROL AND PROTECTION Power System Stability Outline Basis for Steady-State Stability Transient Stability Effect of Excitation System on Stability Small Signal Stability Power System Stabilizers Speed Based Integral of Accelerating

More information

KINGS COLLEGE OF ENGINEERING Punalkulam

KINGS COLLEGE OF ENGINEERING Punalkulam KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK

More information

EE2351 POWER SYSTEM ANALYSIS

EE2351 POWER SYSTEM ANALYSIS EE351 POWER SYSTEM ANALYSIS A.Ahamed Riazudeen EEE DEPARTMENT 1 UNIT I INTRODUCTION Power system network 3 SINGLE LINE DIAGRAM It is a diagrammatic representation of a power system in which the components

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

Power Angle & Time Domain Plots 1.0 The power-angle curves

Power Angle & Time Domain Plots 1.0 The power-angle curves Power Angle & Time Domain Plots 1.0 The power-angle curves Consider a generator connected to an infinite bus through a network, as shown in Fig. 1 below (all in pu). E E NETWORK X V V 0 Fig. 1 We assume

More information

ECEN 667 Power System Stability Lecture 25: FFT, Energy Methods

ECEN 667 Power System Stability Lecture 25: FFT, Energy Methods ECEN 667 Power System Stability Lecture 5: FFT, Energy Methods Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter 9 Final

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

max clear Figure 1 below illustrates a stable case. P post (f) (g) (e) A 2 (d) (c)

max clear Figure 1 below illustrates a stable case. P post (f) (g) (e) A 2 (d) (c) Stability 4. Introduction In the previous notes (Stability 3, we developed the equal area iterion, which says that For stability, A =A, which means the decelerating energy (A must equal the accelerating

More information

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating

More information

Minimax Approximation Synthesis in PSS Design by Embedding

Minimax Approximation Synthesis in PSS Design by Embedding Minimax Approximation Synthesis in PSS Design by Embedding Gravitational Search Algorithm Dr. Akash Saxena Department of Electrical Engineering Swami Keshvanand Institute of Technology Jaipur, India Power

More information

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A 1. What are the advantages of an inter connected system? The advantages of an inter-connected system are

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

Enhancement of transient stability analysis of multimachine power system

Enhancement of transient stability analysis of multimachine power system WWJMRD 2016; 2(6): 41-45 www.wwjmrd.com Impact Factor MJIF: 4.25 e-issn: 2454-6615 Oyediran Oyebode Olumide Department of Computer Engineering, Osun State Polytechnic Iree, Osun State, Nigeria Ogunwuyi

More information

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil

More information

Power system modelling under the phasor approximation

Power system modelling under the phasor approximation ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasor-mode simulations

More information

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 01-09 www.iosrjournals.org Design of PSS and SVC Controller

More information

arxiv: v1 [cs.sy] 24 Mar 2016

arxiv: v1 [cs.sy] 24 Mar 2016 Nonlinear Analysis of an Improved Swing Equation Pooya Monshizadeh, Claudio De Persis, Nima Monshizadeh, and Arjan van der Schaft arxiv:603.07440v [cs.sy] 4 Mar 06 Abstract In this paper, we investigate

More information

EE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION

EE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION EE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION PART: A 1. Define per unit value of an electrical quantity. Write equation for base impedance with respect to 3-phase system. 2. What is bus admittance

More information

Micro-grid to System Synchronization Based on Pre-Insertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015

Micro-grid to System Synchronization Based on Pre-Insertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015 Micro-grid to System Synchronization Based on Pre-Insertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015 Outline 1. What is Synchronization? 2. Synchronization Concerns?

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Nonlinear Control Design of Series FACTS Devices for Damping Power System Oscillation

Nonlinear Control Design of Series FACTS Devices for Damping Power System Oscillation American Journal of Applied Sciences 8 (): 4-8, 0 ISSN 546-939 00 Science Publications Nonlinear Control Design of Series FACTS Devices for Damping Power System Oscillation Prechanon Kumkratug Department

More information

Open Conductor Faults and Dynamic Analysis of a Power System

Open Conductor Faults and Dynamic Analysis of a Power System Open Conductor Faults and Dynamic Analysis of a Power System Simon Jorums Mabeta Master of Science in Electric Power Engineering Submission date: June 2012 Supervisor: Kjetil Uhlen, ELKRAFT Co-supervisor:

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

BEE701 POWER SYSTEM ANALYSIS

BEE701 POWER SYSTEM ANALYSIS BEE701 POWER SYSTEM ANALYSIS UNIT I POWER SYSTEM COMPONENTS Power system analysis The evaluation of power system is called as power system analysis Functions of power system analysis To monitor the voltage

More information

1 Unified Power Flow Controller (UPFC)

1 Unified Power Flow Controller (UPFC) Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,

More information

SPEED-GRADIENT-BASED CONTROL OF POWER NETWORK: CASE STUDY

SPEED-GRADIENT-BASED CONTROL OF POWER NETWORK: CASE STUDY CYBERNETICS AND PHYSICS, VOL. 5, NO. 3, 2016, 85 90 SPEED-GRADIENT-BASED CONTROL OF POWER NETWORK: CASE STUDY Igor Furtat Control of Complex Systems ITMO University Russia cainenash@mail.ru Nikita Tergoev

More information

Self-Tuning Control for Synchronous Machine Stabilization

Self-Tuning Control for Synchronous Machine Stabilization http://dx.doi.org/.5755/j.eee.2.4.2773 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 392-25, VOL. 2, NO. 4, 25 Self-Tuning Control for Synchronous Machine Stabilization Jozef Ritonja Faculty of Electrical Engineering

More information

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as:

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: 2H Re ( t) T au T mu T eu (1) and when speed is in per-unit as 2H u ( t) Tau Tmu Teu (2) We note that in both cases

More information

ECE 422 Power System Operations & Planning 7 Transient Stability

ECE 422 Power System Operations & Planning 7 Transient Stability ECE 4 Power System Operations & Planning 7 Transient Stability Spring 5 Instructor: Kai Sun References Saaat s Chapter.5 ~. EPRI Tutorial s Chapter 7 Kunur s Chapter 3 Transient Stability The ability of

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Mamalapuram Chennai QUESTION BANK V SEMESTER. EE6501-Power system Analysis

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Mamalapuram Chennai QUESTION BANK V SEMESTER. EE6501-Power system Analysis DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Mamalapuram Chennai DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER EE6501-Power system Analysis Regulation 2013

More information

Model of Induction Machine to Transient Stability Programs

Model of Induction Machine to Transient Stability Programs Model of Induction Machine to Transient Stability Programs Pascal Garcia Esteves Instituto Superior Técnico Lisbon, Portugal Abstract- this paper reports the work performed on the MSc dissertation Model

More information

θ α W Description of aero.m

θ α W Description of aero.m Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

More information

The Mathematical Model of Power System with Thyristor Controlled Series Capacitor in Long Transmission Line

The Mathematical Model of Power System with Thyristor Controlled Series Capacitor in Long Transmission Line American Journal of Applied Sciences 9 (5): 654-658, 01 ISSN 1546-939 01 Science Publications The Mathematical Model of Power System with Thyristor Controlled Series Capacitor in Long Transmission Line

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD

MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD K. Ashwini 1, G. N. Sreenivas 1 and T. Giribabu 2 1 Department of Electrical and Electronics Engineering, JNTUH

More information

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter

More information

1. Introduction. Keywords Transient Stability Analysis, Power System, Swing Equation, Three-Phase Fault, Fault Clearing Time

1. Introduction. Keywords Transient Stability Analysis, Power System, Swing Equation, Three-Phase Fault, Fault Clearing Time Energy and Power 17, 7(1): -36 DOI: 1.593/j.ep.1771.3 Numerical Simulations for Transient Stability Analysis of Two-Machine Power System Considering Three-Phase Fault under Different Fault Clearing Times

More information

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 2 (2014), pp. 257-270 International Research Publication House http://www.irphouse.com Robust Tuning of Power System Stabilizers

More information

CURENT Course Power System Coherency and Model Reduction

CURENT Course Power System Coherency and Model Reduction CURENT Course Power System Coherency and Model Reduction Prof. Joe H. Chow Rensselaer Polytechnic Institute ECSE Department November 1, 2017 Slow Coherency A large power system usually consists of tightly

More information

7. Transient stability

7. Transient stability 1 7. Transient stability In AC power system, each generator is to keep phase relationship according to the relevant power flow, i.e. for a certain reactance X, the both terminal voltages V1and V2, and

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

EVALUATION OF THE IMPACT OF POWER SECTOR REFORM ON THE NIGERIA POWER SYSTEM TRANSIENT STABILITY

EVALUATION OF THE IMPACT OF POWER SECTOR REFORM ON THE NIGERIA POWER SYSTEM TRANSIENT STABILITY EVALUATION OF THE IMPACT OF POWER SECTOR REFORM ON THE NIGERIA POWER SYSTEM TRANSIENT STABILITY F. I. Izuegbunam * Department of Electrical & Electronic Engineering, Federal University of Technology, Imo

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

The Operation of a Generator on Infinite Busbars

The Operation of a Generator on Infinite Busbars The Operation of a Generator on Infinite Busbars In order to simplify the ideas as much as possible the resistance of the generator will be neglected; in practice this assumption is usually reasonable.

More information

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and

More information

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Address for Correspondence a Research Scholar, Department of Electrical & Electronics Engineering,

More information

University of Auckland Research Repository, ResearchSpace. The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

University of Auckland Research Repository, ResearchSpace. The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). http://researchspace.auckland.ac.nz University of Auckland Research Repository, ResearchSpace Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This

More information

The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line

The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line American Journal of Applied Sciences 9 (6): 846-850, 01 ISSN 1546-939 01 Science Publications The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line Prechanon Kumkratug

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS

CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 28 CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 3.1 INTRODUCTION This chapter focuses on the mathematical state space modeling of all configurations involved

More information

Module 3 : Sequence Components and Fault Analysis

Module 3 : Sequence Components and Fault Analysis Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects

More information

Determination of stability limits - Angle stability -

Determination of stability limits - Angle stability - Workshop Increased Utilisation of the Nordic Power Transmission System NTNU/SINTEF 30-31. October 2002 Determination of stability limits Magni Þ. Pálsson AS Trondheim 1 Contents Definitions and descriptions

More information

Critical clearing time evaluation of Nigerian 330kV transmission system

Critical clearing time evaluation of Nigerian 330kV transmission system American Journal of Electrical Power and Energy Systems 2013; 2(6): 123-128 Published online October 20, 2013 (http://www.sciencepublishinggroup.com/j/epes) doi: 10.11648/j.epes.20130206.11 Critical clearing

More information

QFT Framework for Robust Tuning of Power System Stabilizers

QFT Framework for Robust Tuning of Power System Stabilizers 45-E-PSS-75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh Izadi-Zamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence

More information

Mechatronics Engineering. Li Wen

Mechatronics Engineering. Li Wen Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

More information

IJSER. 1. Introduction

IJSER. 1. Introduction International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 1543 Transient Stability Analysis of Generation and Transmission system of a thermal power plant of Pakistan. Izhar

More information

A Decoupling Based Direct Method for Power System Transient Stability Analysis

A Decoupling Based Direct Method for Power System Transient Stability Analysis A Decoupling Based Direct Method for Power System Transient Stability Analysis Bin Wang, Kai Sun Electrical Engineering and Computer Science University of Tennessee, Knoxville, TN USA bwang13@utk.edu,

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session Name: Student ID: Signature: THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications FINALEXAMINATION Session 00 ELEC46 Power System Analysis TIME ALLOWED: 3 hours TOTAL

More information

Frequency and Damping Characteristics of Generators in Power Systems

Frequency and Damping Characteristics of Generators in Power Systems Frequency and Damping Characteristics of Generators in Power Systems Xiaolan Zou Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the

More information

Transient Stability Assessment Using Energy Function Method

Transient Stability Assessment Using Energy Function Method Transient Stability Assessment Using Energy Function Method K Ramanjulu A Thesis Submitted to Indian Institute of Technology Hyderabad In Partial Fulfillment of the Requirements for The Degree of Master

More information

Part A: From (14.19) in your text (see notes Stability1 ), we have

Part A: From (14.19) in your text (see notes Stability1 ), we have Prob14.4 14.4 Consider a round-rotor generator delivering a steady-state power P G =.5 to an infinite bus through a transmission line with reactance X L =.4. Assume that E a =1.8, V =1/_, H=5sec, and X

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information

A Power System Dynamic Simulation Program Using MATLAB/ Simulink

A Power System Dynamic Simulation Program Using MATLAB/ Simulink A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

More information

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives Module 6 : Preventive, Emergency and Restorative Control Lecture 27 : Normal and Alert State in a Power System Objectives In this lecture you will learn the following Different states in a power system

More information

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System (Ms) N Tambey, Non-member Prof M L Kothari, Member This paper presents a systematic

More information

A Spreadsheet Illustration of the Transient Stability Analysis of Power Systems

A Spreadsheet Illustration of the Transient Stability Analysis of Power Systems Spreadsheets in Education (ejsie) Volume 3 Issue 3 Article 6 3-28-2010 A Spreadsheet Illustration of the Transient Stability Analysis of Power Systems Mark A. Lau Universidad del Turabo, mlau@suagm.edu

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Multiple Swing Out-of-Step Relaying

Multiple Swing Out-of-Step Relaying Multiple Swing Out-of-Step Relaying Francisco G. Velez Cedeno Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION EE 6501 POWER SYSTEMS UNIT I INTRODUCTION PART A (2 MARKS) 1. What is single line diagram? A Single line diagram is diagrammatic representation of power system in which the components are represented by

More information

DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS Journal of Engineering Science and Technology Vol. 1, No. 1 (26) 76-88 School of Engineering, Taylor s College DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS JAGADEESH PASUPULETI School of Engineering,

More information

Reliability of Bulk Power Systems (cont d)

Reliability of Bulk Power Systems (cont d) Reliability of Bulk Power Systems (cont d) Important requirements of a reliable electric power service Voltage and frequency must be held within close tolerances Synchronous generators must be kept running

More information

A. P. Sakis Meliopoulos and George J. Cokkinides Power System Relaying, Theory and Applications. Chapter 8 2 Generator Protection 2

A. P. Sakis Meliopoulos and George J. Cokkinides Power System Relaying, Theory and Applications. Chapter 8 2 Generator Protection 2 DRAFT and INCOMPLETE Table of Contents from A. P. Sakis Meliopoulos and George J. Cokkinides Power System Relaying, Theory and Applications Chapter 8 Generator Protection 8. Introduction 8. Generator Protection

More information

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE LATHA.R Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004,

More information

Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems

Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems Yaar Küçükefe 1 and Adnan Kaypmaz 2 1 National Power Enerji, Tekirda, Turkey yasar.kucukefe@ieee.org 2 stanbul Technical

More information

AN EVOLUTIONARY PROGRAMMING APPROACH TO OPTIMIZE SYNCHRONOUS GENERATOR INPUT POWER USING AREA-BASED TRANSIENT STABILITY INDEXES

AN EVOLUTIONARY PROGRAMMING APPROACH TO OPTIMIZE SYNCHRONOUS GENERATOR INPUT POWER USING AREA-BASED TRANSIENT STABILITY INDEXES AN EVOLUTIONARY PROGRAMMING APPROACH TO OPTIMIZE SYNCHRONOUS GENERATOR INPUT POWER USING AREA-BASED TRANSIENT STABILITY INDEXES 1 H. HASHIM, 2 I. Z. ABIDIN, 3 I. MUSIRIN, 4 KEEM SIAH YAP, 5 Y. R. OMAR,

More information

Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment

Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment 2013 IREP Symposium-Bulk Power System Dynamics and Control IX (IREP), August 25-30, 2013, Rethymnon, Greece Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment Tilman

More information

Chapter 8 VOLTAGE STABILITY

Chapter 8 VOLTAGE STABILITY Chapter 8 VOTAGE STABIITY The small signal and transient angle stability was discussed in Chapter 6 and 7. Another stability issue which is important, other than angle stability, is voltage stability.

More information

Lecture 1: Induction Motor

Lecture 1: Induction Motor 1 / 22 Lecture 1: Induction Motor ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes

More information

STUDY OF SMALL SIGNAL STABILITY WITH STATIC SYNCHRONOUS SERIESCOMPENSATOR FOR AN SMIB SYSTEM

STUDY OF SMALL SIGNAL STABILITY WITH STATIC SYNCHRONOUS SERIESCOMPENSATOR FOR AN SMIB SYSTEM STUDY OF SMLL SIGNL STBILITY WITH STTIC SYNCHRONOUS SERIESCOMPENSTOR FOR N SMIB SYSTEM K.Geetha, Dr.T.R.Jyothsna 2 M.Tech Student, Electrical Engineering, ndhra University, India 2 Professor,Electrical

More information

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams

More information

ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions

ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information