Saint-Venant's problem for a second-order piezoelectric prismatic bar

Size: px
Start display at page:

Download "Saint-Venant's problem for a second-order piezoelectric prismatic bar"

Transcription

1 International Journal of Engineering Science 38 (2000) 21±45 Saint-Venant's problem for a second-order piezoelectric prismatic bar S. Vidoli a, R.C. Batra b,*, F. dell'isola a a Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma `La Sapienza', Roma, Italy b Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, MC 0219, Blacksburg, V 24061, US Received 27 October 1998; received in revised form 6 January 1999; accepted 6 January 1999 bstract For a homogeneous, transversely isotropic, second-order piezoelectric and in nitesimally prebent, prepolarized and prestretched prismatic bar, we nd second-order Saint-Venant solutions. It is found that the electric eld alone does not introduce any bending in the second-order piezoelectric bar. However, the electric eld induced by the bending of the bar can be used to ascertain the magnitude and direction of the bending vector. The curvature of the centroidal axis of the bar can be changed by the simultaneous application of the electric eld and the bending moment. Ó 1999 Elsevier Science Ltd. ll rights reserved. Keywords: Signorini's expansion; Saint-Venant's solutions; Semi-inverse method 1. Introduction Saint-Venant [1,2] studied the extension, bending, torsion and exure of a homogeneous prismatic body made of an isotropic linear elastic material. Iesan [3±6] has analysed the Saint- Venant problem for inhomogeneous and anisotropic linear elastic bodies, elastic dielectrics and microstretch elastic solids. Dell'Isola and Rosa [7,8] and Davi [9] have investigated the problem for linear piezoelectric materials and dell'isola and Batra [10] for linear elastic isotropic porous solids. Batra and Yang [11] have proved Toupin's version [12] of the Saint-Venant principle for a linear piezoelectric bar. Rivlin [13] has used the second-order elasticity theory to explain the Poynting e ect [14], i.e., the axial elongation of an elastic bar subjected to torques only at the end faces is proportional to the * Corresponding author. Tel.: ; fax: address: rbatra@vt.edu (R.C. Batra) /00/$ ± see front matter Ó 1999 Elsevier Science Ltd. ll rights reserved. PII: S (99)

2 22 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 square of the angular twist. Rivlin showed that the elongation was proportional to the secondorder elasticities. Signorini [15] proposed a perturbation method to reduce the solution of a nonlinear elastic problem to that of a series of nonhomogeneous linear elastic traction boundary value problems in which the loads for the nth problem depend upon the solution of the previous (n 1) problems. These loads must satisfy compatibility conditions for the nth-order problem to have a solution. Truesdell and Noll [16] have reviewed the pertinent literature on the Poynting e ect and the Signorini method. Green and dkins [17] pointed out that when the displacements and in nitesimal rotations of the centroid of one end face vanish, then the compatibility conditions for the loads in the nth order Signorini problem are automatically satis ed. Green and dkins [17] and Green and Shield [18] have studied the Poynting e ect in nonlinear elastic prismatic bodies. Recently, dell'isola et al. [19,20] used the Signorini expansion method to nd a solution of the Saint-Venant problem for a prismatic bar made of a second-order elastic material with the rst-order solution corresponding to either an in nitesimal twist or small bending and stretching. Batra et al. [21] used the Signorini expansion method to analyze electromechanical deformations of a transversely isotropic circular cylindrical bar made of a second-order piezoelectric material for which constitutive relations had been derived by Yang and Batra [22]. The rst-order deformations were assumed to be an in nitesimal twist and small electric eld. Here Batra et al.'s [21] work is extended to a prismatic body of a general cross-section which is initially twisted, stretched and electrically polarized by a small amount. For a bar subjected to bending moments only at the end faces, it is found that there is a second-order Poisson's e ect proportional to the square of the magnitude of the bending vector and a torsional e ect proportional to the square of the axial distance from the `clamped' end. Other second-order e ects are stated in the paper. 2. Formulation of the problem We consider a transversely isotropic and homogeneous prismatic body of cross-section and length ` occupying the domain X ˆ 0; `Š in the stress and polarization free con guration with its axis along the unit vector e that is also the direction of transverse isotropy. In the referential description of deformation, the balance of linear momentum, the balance of moment of momentum, the Maxwell law for the electric displacement with the free body charge density set equal to zero and the boundary conditions are Div T T E ˆ 0 in X; T T E F T ˆ F T T E T in X; DivD ˆ 0 in X; T T E N ˆ 0; D N ˆ 0 0; `Š; T T E e ˆ f; D e ˆ q on 0 and `; u ˆ 0; H H T ˆ 0; and w ˆ 0 at point C:

3 Here T is the rst Piola±Kirchho stress tensor, T E the rst Piola±Kirchho ±Maxwell stress tensor, D the referential electric displacement, Div the divergence operator in the reference con guration, F the deformation gradient, N a unit outward normal to the mantle in the reference con guration, f the surface traction per unit undeformed area, q the charge density, u ˆ x X the displacement of a material point that occupied place X in the reference con guration and is at place x in the present con guration, H ˆ Grad u the displacement gradient, Grad the gradient operator with respect to coordinates in the reference con guration, w the electric potential and point C is the centroid of the cross-section 0 f0g. The clamping condition (6) eliminates trivial solutions of the problem. For the problem to have a solution, f and q must satisfy f d f d ˆ 0; qd qd ˆ 0; 0 ` 0 ` 7 x ^ f d x ^ f d ˆ 0; 0 where S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 23 ` a ^ b ˆ a b b a; a b c ˆ b c a; for arbitrary vectors a, b and c. Eqs. (4), (5) and (7) imply that 0 0 T T ed E ˆ 0; D ed ˆ 0; 0 x ^ T T E ed xj 0 rˆ0 ^ T T E ed ˆ 0; 8 9 where we have taken the origin of our coordinate system at the centroid of the cross-section 0 and set X ˆ r ze: 10 In Eq. (9) a prime indicates di erentiation with respect to the axial coordinate, z. Recall that T ˆ JrF 1T ; T E ˆ Jr E F 1T ; D ˆ JF 1 D; 11 where J ˆ det F, r is the Cauchy stress tensor, r E the Cauchy±Maxwell stress tensor and D the electric displacement in the present con guration. For a piezoelectric material, we introduce, in the present con guration, electric eld ^E and electric polarization P through D ˆ P ^E: 12 Quantities P and ^E are related to their counterparts P and W in the reference con guration by P ˆ JF 1 P; W ˆ F T ^E ˆ Gradw: 13

4 24 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 The existence of w is guaranteed by I ^E dx ˆ 0; 14 where the integration is on any closed curve in X. In order to complete the formulation of the problem we need to give the constitutive relations. We choose r and r E to be symmetric tensors so that the balance of moment of momentum (2) is identically satis ed. Following braham et al. (see [23], Eqn.3.6,22,23) we take r E ˆ P ^E s ^E ^E 1 2 ^E 2 1; 15 where a b s ˆ a b b a =2; 16 ^E is the magnitude of ^E and 1 is the identity tensor. We assume that the prismatic body is made of a transversely isotropic second-order piezoelectric material. For such a material, Yang and Batra [22] have derived constitutive relations for the second Piola-Kirchho stress tensor S and the referential polarization P. We use those to obtain expressions for T and D and retain terms upto second-order in H and W. These rather long expressions are omitted. However, the expressions used herein to obtain a solution of the problem by the method of Signorini's series expansion are given in ppendix. 3. Signorini's expansion We write the displacement eld u and the electric eld W as u ˆ we v; W ˆ w 0 e gradw : 17 That is, w and v are the axial and in-plane components of the displacement u of a point and w 0 and gradw equal the axial and in-plane components of W. The operators grad and div signify, respectively, the two-dimensional gradient and divergence operators with respect to referential coordinates in the cross-section. The displacement u, the electric potential w, surface tractions f and surface charge q are assumed to have a series expansion u ˆ g_u g 2 u ; w ˆ g w _ g 2 w ; f ˆ g f _ g 2 f ; q ˆ g _q g 2 q ; 18 where g is a small, yet to be identi ed, parameter in the problem. Substitutions for u and w in the expressions for the constitutive relations for T and D give T ˆ g _ T g 2 T ; D ˆ g _D g 2 D ; T E ˆ g 2 T E 19

5 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 25 Expressions for T; _ E T; T ; _D and D are given in the ppendix. Substituting from Eqs. (18) and (19) into the balance laws (1)±(3), the boundary conditions (4)±(6) and integrability conditions (9) and equating like powers of g on both sides of these equations, we arrive at the following equations for the rst and second-order problems: Div T _ ˆ 0; Div _D ˆ 0 in X; _TN ˆ 0; _D N ˆ 0 0; `Š; _Te ˆ _f; _D e ˆ _q on 0 and `; 0 0 _Ted ˆ 0; _D ed ˆ 0; 0 X ^ _Ted Xj 0 rˆ0 ^ _Ted ˆ 0; 20 Div T T E ˆ 0; Div D J _ W _ 2 H _ s _W ˆ 0 in X; T T E N ˆ 0; D J _ W _ 2 H _ s _W N ˆ 0 0; `Š; T T E e ˆ f; D J _ W _ 2 H _ s _W e ˆ q on 0 and `; 0 0 T T ed E ˆ 0; D J _ W _ 2 H _ s _W ed ˆ 0; _TeŠd 0 X ^ T T E e _u ^ e ^ T T E ed _uj 0 rˆ0 ^ We decompose T and D as _Ted ˆ 0: 21 T ˆ T T s ; D ˆ D D s ; where T and D are related to u and w in the same way as _ T and _D to _u and _ w. Expressions for T and D in terms of u and w are 22 2 T ˆ ~l gradv s c 3 k w 0 0 kdivv e 2w Š^I n ~l v 0 grad w e 3 gradwš o e 2 c 1 k=2 c 3 c 4 l w 0 c 3 k divv e 1 e 2 2e 3 w 0 Še e; D ˆ gradw e 3 v 0 grad w s w 0 e 1 e 2 2e 3 w 0 e 2 divvše: Here ^I is the two-dimensional identity tensor and c 1 ; c 3 ; c 4 ; e 1 ; e 2 ; e 3 ; 1 and 2 are material parameters and ~l ˆ c 4 2l =2 is the shear modulus in the direction of transverse isotropy. Eq. (23) with two superimposed dots replaced by a superimposed dot are constitutive relations for a linear transversely isotropic piezoelectric material. We assume that k; l; c 1 ; c 3 ;

6 26 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 c 4 ; e 1 ; e 2 ; e 3 ; 1 and 2 are such that the strain energy density is positive de nite so that the solution of a traction boundary value problem for a linear piezoelectric body is unique to within a trivial solution. Substituting from Eq. (12) into Eq. (21) and rewriting equations in the same form as Eq. (20), we obtain Div T ˆ b s ; Div D ˆ c s in X; TN ˆ f ms ; D N ˆ q ms 0; `Š; Ted ˆ f d R fs ; D ed ˆ qd R qs ; X ^ Te d ˆ X ^ f d R ms ; T 0 ed ˆ h s ; D 0 ed ˆ i s ; X ^ Te 0 d e ^ Ted ˆ g s ; 24 where b s ˆ DivT se ; c s ˆ Div D sp ; f ms ˆ T se N; q ms ˆ D sp N; R fs ˆ T se ed; R ms ˆ X ^ T se e d; R qs ˆ D sp ed; h s ˆ T se 0 ed; g s ˆ i s ˆ T se ˆ T s T E ; X ^ T se e _u ^ _Te 0 d e ^ D sp 0 ed; D sp ˆ D s _ J _ W 2 _ H s _W: T se ed _uj 0 rˆ0 ^ _Te d; 25 We assume that the rst-order deformation corresponds to the in nitesimal bending, extension and polarization of the bar. That is, where _w ˆ z x b ; _u ˆ ~m r r s b z2 2 b m ax r z ax b r e; 26 a ˆ e 2 =c 3 ; m ˆ k=2 k l ; r ˆ e r; b ˆ c 3 =e 2 ; ~m ˆ c 3 k =2 k l ; 27

7 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 27 ; x and b characterize the in nitesimal extension, polarization and bending of the prismatic body. Note that vector b is in the cross-section. Relations between x; and b in terms of loads and electric charge applied at the end faces are given below as Eqs. (46) and (47). In order for the deformations caused by the bending, extension and the electric eld to be of the same order of magnitude, ax ˆ ˆ jbjr where 2R is the diameter of the cross-section, i.e., the diameter of the smallest circle enclosing the cross-section and jbj is the magnitude of b. The small parameter g in Eq. (18) can be identi ed with ax; or jbjr. The terms on the right-hand sides of Eq. (25) are quadratic forms in x; and b and their expressions given below were obtained by performing the symbolic operations in Mathematica: c s ˆ v 1 b bz; q ms ˆ v 2 x b v 3 b b r v 4 b b r v 5 b Š Nz; b s ˆ v 6 b bze v 7 x b v 8 b b r v 9 b b r v 10 b ; f ms ˆ z v 11 x b v 12 b b r v 13 b b r v 14 b Š Ne z2 2 v 15 b b N v 16 b b NŠ v 17 x v 18 x 2 v 19 2 v 20 x b r v 21 b r v 22 b r b r v 23 b r 2 ŠN; i s ˆ v 25 b b z; h s ˆ v 26 b b v 27 b b Šr v 28 z b b e v 29 b v 30 x b ; g s ˆ z v 31 b b v 32 b b r v 33 v 34 x b Š v 35 b r v 36 v 37 xš b r e; R qs ˆ z2 2 v 38 b b v 39 2 v 40 x 2 v 41 x v 42 J b b v 43 J b b ; R fs ˆ z2 2 v 44 b b v 47 2 v 48 x 2 v 49 x v 50 J b b v 51 J b b e z v 45 v 46 x b ; 28 R ms ˆ z2 2 v 52 v 53 x b v 55 v 56 x J b zv 54 J b b e: Here v 1 ; v 2 ;... ; v 56 are material constants; their expressions in terms of the elastic constants used in the constitutive relation are given in ppendix. equals the area of the cross-section, J ˆ r r d is the inertia tensor, vectors g s and R ms are equivalent to the skew symmetric tensors g s and R ms, respectively.

8 28 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 Substitution for T and D from Eq. (23) into Eq. (24) 1 -Eq. (24) 4 and recalling Eq. (17), we arrive at the following eld equations for the determination of u and w: F v c 3 k ~l grad w 0 e 2 e 3 gradw 0 ~lv 0 ˆ b s in ; D R ~w c 3 k ~l divv 0 2 c 1 k 2 c 3 c 4 l w 00 e 1 e 2 2e 3 w 00 ˆ b se ; in ; D Rw ~ e2 e 3 divv =2 w 00 e 1 e 2 2e 3 w 00 ˆ c s ; in ; 29 G v N c 3 k w 0 0 e 2w ŠN ˆ f ms ; grad ~w N ~lv 0 N ˆ f mse ; grad w ~ N e3 v 0 N ˆ q ms ; where 30 F v ˆ ld R v k l graddivv; G v ˆ 2l gradv s k divv ^I; ~w ˆ ~l w e 3w; w ~ ˆ e3 w w; b s ˆ b s b se e; f ms ˆ f ms f mse e; 31 D R is the Laplacian operator and F ˆ divg is the Navier operator in the cross-section. 4. Saint-Venant/lmansi solution We seek a solution of Eq. (29) of the form w ˆ Xm iˆ0 z i i! w i r ; v ˆ Xm iˆ0 z i i! v X i r ; w m ˆ iˆ0 z i i! w i r : 32 Substituting from Eq. (32) into Eq. (29), recalling Eq. (28) and equating like powers of z i =i! on both sides, we obtain partial di erential equations, boundary conditions and integrability conditions to determine terms in Eq. (32). For i > 3, these boundary value problems have null solutions. Henceforth we denote various constants by a superscript zero. For i ˆ 3, the solution is v 3 ˆ v 0 3 h0 3 r ; w 3 ˆ w 0 3 ; w3 ˆ w 0 3 : 33 The integrability conditions for the torque, axial force and the charge require that

9 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 29 h 0 3 ˆ 0; w0 3 ˆ n 3b b; w 0 3 ˆ n 4b b; 34 where n 3 ; n 4 and other n's introduced below are de ned in terms of other elastic constants in ppendix. With Eqs. (32) and (33), equations for the determination of v 2 ; w 2 and w 2 are F v 2 ˆ 0; D R ~w 2 ˆ 0; D Rw2 ~ ˆ 0; in ; G v 2 ˆ v 15 b b N v 16 e 3 n 4 c 3 k n 3 b b N; 35 grad ~w 2 N ˆ ~lv 0 3 N; grad w2 ~ N ˆ e 3 v 0 3 N; and their solution is v 2 ˆ v 0 2 h0 2 r B vr; w 2 ˆ w 0 2 v0 3 r; w2 ˆ w 0 2 ; 36 where B v ˆ n 5 b b r n 1 b b r n 2 b b r: 37 The integrability conditions for the torque, axial force and the electric charge require that h 0 2 ˆ v 12 v 13 v 35 J b b ~l w 0 2 ˆ 0; w0 2 ˆ 0: r 2 grad/ r d ; 38 Field equations and boundary conditions for the determination of v 1 ; w 1 and w 1 are F v 1 ˆ c 3 k v 0 3 ; D R ~w 1 ˆ n 6 b b; D R ~ w1 ˆ n 7 b b; G v 1 N ˆ c 3 k v 0 3 r N; grad ~w 1 N ˆ ~l v 0 2 N h0 2 r N v 11x v 14 b N ~ln 5 b b r N v 13 ~ln 1 b b r N v 12 ~ln 2 b b r N; 39 gradw 1 N ˆ e 3 v 0 2 N e 3h 0 2 r N v 2x v 5 b N e 3 n 5 b b r N v 4 e 3 n 1 b b r N v 3 e 3 n 2 b b r N: The solution of the boundary-value problem (39) is v 1 ˆ v 0 1 h0 1 r ~m r r s v0 3 ; w 1 ˆ w 0 1 v0 2 r h0 2 / r n 8x n 9 b r B w r r; 40 w 1 ˆ w 0 1 n 13x n 14 b r B w r r;

10 30 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 where B w ˆ n 10 b b n 11 b b n 12 b b ^IŠ; B w ˆ n 15 b b n 16 b b n 17 b b ^IŠ; 41 and ~m ˆ c 3 k =2 k l is the Poisson's ratio in the direction of transverse isotropy. Equations for nding elds v 0 ; w 0 and w 0 can be written as F v 0 ˆ c 3 k v 0 2 h0 2 c 3 k ~l grad/ ~l r Š n 18 x n 19 b Br; D R ~w 0 ˆ n 22 v 0 3 r; D R ~ w0 ˆ n 23 v 0 3 r; G v 0 N ˆ c 3 k v 0 2 r h0 2 / v 17x v 18 x 2 v 19 2 c 3 k w 0 1 e 2w 0 1 n 20 x n 21 b r Br r=2šn v 24 b r b r N ; grad ~w 0 N ˆ ~l v 0 1 h0 1 r ~m r r s v0 3 Š N; 42 grad w0 ~ N ˆ e 3 v 0 1 h0 1 r ~m r r s v0 3 Š N; where B ˆ v 8 b b v 9 b b 2 c 3 k ~l B w 2 e 2 e 3 B w ~lb v : 43 Note that B is a bilinear form in b and its eigenvectors are b and b. The solution of Eq. (42) is v 0 ˆ v 0 0 h0 0 r ~m r r s v0 2 v 17x v 18 x 2 v 19 2 c 3 k w 0 1 e 2w 0 1 r 2 k l n 18x n 19 r r r r b H r ; 4 k l w 0 ˆ w 0 0 v0 1 r h0 1 / r n 26U r n 27 W r ; w 0 ˆ w 0 0 n 27U r n 28 W r ; 44 where functions H; U and W are solutions of F H ˆ h 0 2 c 3 k ~l grad/ ~l r Š Br; G H N ˆ h 0 2 /N 1 Br rn; 2 D R U ˆ n 22 v 0 3 r; gradu N ˆ n 24 r r s v 0 3 ; D R W ˆ n 23 v 0 3 r; gradw N ˆ n 25 r r s v 0 3 : 45 The clamping conditions (6) require that v 0 0 ˆ 0; w0 0 ˆ 0; h0 0 ˆ 0; w0 0 ˆ 0; v0 1 ˆ 0: 46

11 The second-order solution is speci ed by seven constants v 0 3 ; v0 2 ; h0 1 ; w0 1 and w0 1 representing second-order exure, bending, torsion, elongation and electric potential, respectively. We now consider the case when the resultant loads are R F ˆ f d ˆ Ne; R Q ˆ qd ˆ Q; R M ˆ x ^ f d ˆ Me ^ k; 47 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 31 where k is a unit vector in the cross-section. For these loads, ˆ n 29 N n 30 Q; x ˆ n 30 N n 31 Q; b ˆ ~EMJ 1 k ; 48 where ~E is the Young's modulus in the direction of transverse isotropy; an expression for ~E in terms of other material constants is given in the ppendix (see the line between expressions for n 31 and n 32 ). For loads given by Eq. (47) v r; z ˆ ~m 1 n 32 n 33 x r r s b m ax n 34 x n 35 2 n 36 x 2 J= n 38 b b n 39 b b r z2 2 1 ~m n 32 n 33 x b n 18x n 19 r r r r b H r z2 4 k l 2 h0 2 r B vr ; w r; z ˆ z ax m n 35 2 n 34 x n 36 x 2 ~m J n 38b b n 39 b b 49 z b r 1 ~mn 32 ~mn 33 x z h 0 2 / r B wr rš z3 6 n 3b b; h w r; z ˆ z x b m b 2 n 35 2 n 34 x n 36 a 2 x 2 ~m bj= n 38 b b i n 39 b b B w r r z3 6 n 4b b: 5. Discussion of results We now observe a few interesting features of the solution. When N ˆ Q ˆ 0 and M 6ˆ 0, i.e., the end faces of the bar are subjected to a pure bending moment, we conclude from Eq. (48) that ˆ x ˆ 0 and from Eq. (49) we get a second-order Poisson's e ect proportional to kbk 2 and a torsional e ect proportional to the square of the axial distance from the end face whose centroid is clamped. The term z 2 =2 B v r implies that a circular cross-section will be deformed into an ellipse and this distortion of the cross-section is proportional to the square of the distance from the `clamped' end face. In addition to the classical axial strain in the linear theory, there is an axial strain which depends quadratically upon b and also on z 2. For an isotropic material n 3 ˆ 1 and our results reduce to those of dell'isola et al. [19]. The term zh 0 2 / r in Eq. (49) 2 is associated with the torsional e ect mentioned above. The potential di erence

12 32 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 between the end faces is proportional to the cube of the length and is quadratic in b. The term multiplying z in Eq. (49) 3 can vanish for some cross-sections but that multiplying z 3 is always non-zero. Even if the magnitude of n 4 is small, one can enhance the potential di erence by increasing the length of the bar. One can determine the direction of bending because of the term zb w r r and the eigenvectors of B w are b and b. For an arbitrary choice of the values of material parameters and a circular cross-section, Fig. 1 depicts the electric potential generated by the term zb w r r for z ˆ 1. When M ˆ 0, b ˆ 0 but x and need not vanish. In this case we get second-order Poisson's e ect, axial strain and potential di erence between the end faces which are the same for every cross-section. Even for a second-order piezoelectric material, the electric eld does not induce any bending of the bar. The loadings M 6ˆ 0 and Q 6ˆ 0 result in interesting coupling e ects between bending and electric polarization. The curvature of the centroidal axis is given by v 00 j rˆ0 ˆ b 1 ~m n 32 n 33 x : 50 Thus the electric eld in uences the curvature of a prebent bar. The Poisson e ect and the axial strain associated with this are represented by the terms ~m r r s n 32 n 33 x b, ~m n 32 n 33 x b r in Eq. (49) 1 and Eq. (49) 2, respectively. Fig. 1. The electric potential generated by b w r r in a circular bar bent about the horizontal axis.

13 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 33 For a prismatic bar of circular cross-section J is a spherical tensor, J b b ˆ 0 and from Eq. (38) 1 we obtain h 0 2 ˆ 0. The boundary-value problem (45) 1 and (45) 2 for the determination of H simpli es to ld R H k l graddivh ˆ Br in ; 2l gradh s k divh ^IŠN ˆ R2 2 BN N N; on : 51 For the bending vector b directed along a principal axis of inertia of a rectangular cross-section, the boundary-value problem (45) 1 and (45) 2 for H can also be somewhat simpli ed. 6. Conclusions We have found a second-order solution for the Saint-Venant problem for a straight, prismatic, homogeneous and transversely isotropic body made of a second-order piezoelectric material. The bar is stress and polarization free in the reference con guration. It is initially bent, stretched and electrically polarized by an in nitesimal amount and then deformed by loads and electric potential applied to its end faces. The displacements, in nitesimal rotations and the electric potential are assumed to vanish at the centroid of one end face to eliminate trivial solutions of the problem. It is found that there is a second-order e ect, not of the Saint-Venant type, which is quadratic in the bending vector b, electric eld x and the axial elongation and varies as r 2 where r is the distance of the point from the centroidal axis. The in-plane displacements represented by H in Eq. (49) 1 can not be characterized unless the plane elliptic problem de ned by Eq. (45) 1 and Eq. (45) 2 has been solved. For a prismatic circular bar subjected to bending moments only at the end faces, in addition to the second-order Poisson's e ect proportional to kbk 2, there is also a torsional e ect proportional to the square of the distance from the `clamped' face. The circular cross-section is deformed into an ellipse and the distortion of the cross-section is proportional to the square of the distance from the `clamped' end. The potential di erence between the end faces of a prebent bar is proportional to the cube of its length and is quadratic in b. When a bending moment and an electric charge are simultaneously applied to the end faces of a prismatic bar, then the curvature of its centroidal axis is altered by the electric eld. cknowledgements R.C. Batra's and S. Vidoli's work was partially supported by the NSF grant CMS and the RO grant DG to Virginia Polytechnic Institute and State University. F. dell'isola thanks Prof. N. Rizzi for having secured nancial support for his visit to Virginia Tech. Many of the algebraic operations were performed by using Mathematica.

14 34 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 ppendix Using the notations _E ˆ _ H _ H T =2; E ˆ _H T _H=2; _I 1 ˆ e _ Ee ; I 1 ˆ e Ee ; _I 2 ˆ tr _ H; I 2 ˆ tr E; _I 3 ˆ _W e; P 1 ˆ e _ E 2 e ; P 2 ˆ tr _ E 2 ; P 3 ˆ _W _W; P 4 ˆ e _ E _ W _ W _ Ee ; constitutive relations for second-order transversely isotropic material with the axis of transverse isotropy along the unit vector e are as follows: _T ˆ 2c 1 _I 1 c 3 _I 2 e 1 _I 3 e e 2c 2 _I 2 c 3 _I 1 e 2 _I 3 1 c 4 e Ee _ s 2c 5 E _ e3 e W ; _ T ˆ 2c 1 I 1 c 3 I 2 3k 1 _I 2 1 2k _ 3 I 1 _I 2 k 4 _I 2 2 k 5P 1 k 7 P 2 2m 1 _I 1 _I 3 m 2 _I 2 3 m 7 P 3 m 9 P 4 m 14 _I 2 _I 3 Še e 2c 2 I 2 c 3 I 1 3k 2 _I 2 2 k 3 _ I 2 1 2k 4 _ I 1 _I 2 k 6 P 1 k 8 P 2 2m 3 _I 2 _I 3 m 4 _I 2 3 m 8P 3 m 10 P 4 m 14 _I 1 _I 3 Š1 2c 4 e Ee _ s 2 k 5 _I 1 k 6 _I 2 m 5 _I 3 e Ee _ s 2c 5 E 2 k7 _I 1 k 8 _I 2 m 6 _I 3 _ E 2 m 9 _I 1 m 10 _I 2 m 11 _I 3 e _ W s 3k 9 _ E 2 m 12 _W _ W 2m 13 e _ E _ W _ W _ Ee s Hf 2c _ 1 _I 1 c 3 _I 2 e 1 _I 3 e e 2c 2 _I 2 c 3 _I 1 e 2 _I 3 1 c 4 e Ee _ s 2c 5 E _ e3 e W _ s g; _D ˆ 2 1 _I 3 e 1 _I 1 e 2 _I 2 e W _ 2e 3 Ee; _ D ˆ W _I 2 _H 2 E _ W _ 2 1 I 3 e 1 I 1 e 2 I 2 3l 1 _I 2 3 l 2P 3 m 1 _I 2 1 2m _ 2 I 3 _I 1 m 3 _I 2 2 2m 4 _I 3 _I 2 m 5 P 1 m 6 P 2 m 11 P 4 m 14 _I 1 _I 2 Še 2 l 2 _I 3 m 7 _I 1 m 8 _I 2 Š _ W 2e 3 Ee 2 m9 _I 1 m 10 _I 2 m 11 _I 3 _ Ee 2m 12 _ E _W 2m 13 E 2 e: Here c 1 ; c 2 ; :::; e 1 ; e 2 ; :::; k 1 ; k 2 ; :::; m 1 ; m 2 ; :::; 1 ; 2 ; :::; and l 1 ; l 2 ; ::: are material parameters. Expressions for v 1 ; v 2... and n 1 ; n 2 ;... in terms of these material parameteres are given below, and b^c equals b raised to the power c. v 1 ˆ e 1 2e 2 3e 3 ; v 2 ˆ 3k 2l e 2 e 3 = 2 k l c 3 ; v 3 ˆ 3k 2l e 3 = 2 k l ; v 4 ˆ ke 3 = 2 k l ; v 5 ˆ 3k 2l e 3 = 2 k l ;

15 v 6 ˆ 2k 3l 2c 1 4c 3 5c 4 =2; v 7 ˆ 1= 4 k l ^ 2c 3 e 2 6k ^ 3 4k ^ 2l 6kl ^ 2 4l ^ 3 8 k l ^ 2c 1 5k ^ c 4 11klc 4 6l ^ 2c 4 24l ^ 2k 2 8k ^ 2k 3 16klk 3 8l ^ 2k 3 16klk 4 16l ^ 2k 4 8k ^ 2k 6 16klk 6 8l ^ 2k 6 8k ^ 2k 7 8klk 7 12k ^ 2k 8 8klk 8 8l ^ 2k 8 6k ^ 2k 9 2 k l c 3 2 k l e 1 ke 2 4ke 3 4le 3 4lm 3 2km 6 4km 10 4lm 10 2km 14 2km 14 ; v 8 ˆ 1= 4 k l ^ 2 6k ^ 3 4k ^ 2l 6kl ^ 2 4l ^ 3 8 k l ^ 2c 1 2 k ^ 2 3kl 2l ^ 2 c 3 5k ^ 2c 4 11klc 4 6l ^ 2c 4 24l ^ 2k 2 8k ^ 2k 3 16klk 3 8l ^ 2k 3 16klk 4 16l ^ 2k 4 8k ^ 2k 6 16klk 6 8l ^ 2k 6 8k ^ 2k 7 8klk 7 12k ^ 2k 8 8klk 8 8l ^ 2k 8 6k ^ 2k 9 ; v 9 ˆ k 2k 2l 2c 3 ˆ c 4 = 4 k l ; v 10 ˆ 1= 4 k l ^ 2e 2 e 2 6k ^ 3 4k ^ 2l 6kl ^ 2 4l ^ 3 8 k l ^ 2c 1 5k ^ 2c 4 11klc 4 6l ^ 2c 4 24l ^ 2k 2 8k ^ 2k 3 16klk 3 8l ^ 2k 3 16klk 4 16l ^ 2k 4 8k ^ 2k 6 16klk 6 8l ^ 2k 6 8k ^ 2k 7 8klk 7 12k ^ 2k 8 8l ^ 2k 8 6k ^ 2k 9 ke 2 4ke 3 4le 3 4lm 3 2km 6 4km 10 4lm 10 2km 14 2lm 14 ; v 11 ˆ 3k 2l 2l c 4 e 2 = 4 k l c 3 ; v 12 ˆ 4 k l c 3 3k 2l 2l c 4 = 4 k l ; v 13 ˆ k 2l c 4 = 4 k l ; v 14 ˆ 3k 2l 2l c 4 = 4 k l ; v 15 ˆ 2l; v 16 ˆ 2k 2l c 3 ; S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 35 v 17 ˆ 1= 2 k l ^ 2c 3 e 2 e 2 2 3k ^ 3 5k ^ 2l 2kl ^ 2 12l ^ 2k 2 4k ^ 2k 3 8klk 3 4l ^ 2k 3 8klk 4 8l ^ 2k 4 4k ^ 2k 6 8klk 6 4l ^ 2k 6 4k ^ 2k 7 4klk 7 6k ^ 2k 8 4klk 8 4l ^ 2k 8 3k ^ 2k 9 2 k l ^ 2c m 4 2m 8 2 k l c 3 e 2 k l e 2 2 2lm 3 km 6 2km 10 2lm 10 km 14 lm 14 ;

16 36 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 v 18 ˆ 1= 4 k l ^ 2c 2 3 e2 2 3k ^ 3 5k ^ 2l 2kl ^ 2 12l ^ 2k 2 4k ^ 2k 3 8klk 3 4l ^ 2k 3 8klk 4 8l ^ 2k 4 4k ^ 2k 6 8klk 6 4l ^ 2k 6 4klk 7 4klk 7 6k ^ 2k 8 4klk 8 4l ^ 2k 8 3k ^ 2k 9 2 k l ^ 2c m 4 2m 8 2 k l c 3 e 2 k l e 2 2 2lm 3 km 6 2km 10 2lm 10 km 14 lm 14 ; v 19 ˆ 1= 4 k l ^ 2e 2 2 e2 2 3k ^ 3 5k ^ 2l 2kl ^ 2 12l ^ 2k 2 4k ^ 2k 3 8klk 3 4l ^ 2k 3 8klk 4 8l ^ 2k 4 4k ^ 2k 6 8klk 6 4l ^ 2k 6 4k ^ 2k 7 4klk 7 6k ^ 2k 8 4klk 8 4l ^ 2k 8 3k ^ 2k 9 2 k l ^ 2c m 4 2m 8 2 k l c 3 e 2 k l e 2 2 2lm 3 km 6 2km 10 2lm 10 km 14 lm 14 ; v 20 ˆ 1= 2 k l ^ 2c 3 e 2 3k ^ 3 5k ^ 2l 2kl ^ 2 k ^ 2 3kl 2l ^ 2 c 3 12l ^ 2k 2 4 ^ 2k 3 8klk 3 4l ^ 2k 3 8klk 4 8l ^ 2k 4 4k ^ 2k 6 8klk 6 4l ^ 2k 6 4k ^ 2k 7 4klk 7 6k ^ 2k 8 4klk 8 4l ^ 2k 8 3k ^ 2k 9 2 k l c 3 2lm 3 km 6 2km 10 2lm 10 km 14 lm 14 ; v 21 ˆ 1= 2 k l ^ 2e 2 e 2 3k ^ 3 5k ^ 2l 2kl ^ 2 k ^ 2 3kl 2l ^ 2 c 3 12l ^ 2k 2 4 ^ 2k 3 8klk 3 4l ^ 2k 3 8klk 4 8l ^ 2k 4 4k ^ 2k 6 8klk 6 4l ^ 2k 6 4k ^ 2k 7 4klk 7 6k ^ 2k 8 4klk 8 4l ^ 2k 8 3k ^ 2k 9 2 k l c 3 2lm 3 km 6 2km 10 2lm 10 km 14 lm 14 ; v 22 ˆ 1= 4 k l ^ 2 3k ^ 3 5k ^ 2l 2kl ^ 2 2l k l c 3 12l ^ 2k 2 4k ^ 2k 3 8klk 3 4l ^ 2k 3 8klk 4 8l ^ 2k 4 4k ^ 2k 6 8klk 6 4l ^ 2k 6 4k ^ 2k 7 4klk 7 6k ^ 2k 8 4klk 8 4l ^ 2k 8 3k ^ 2k 9 ; v 23 ˆ k ^ 2= 4 k l ; v 25 ˆ e 1 2 e 2 e 3 ; v 26 ˆ k 2l c 4 = 4 k l ; v 27 ˆ 6kl 4l ^ 2 8 k l c 1 4 k 2l c 3 5kc 4 6lc 4 = 4 k l ; v 28 ˆ 2c 1 3c 3 2 k l c 4 ; v 29 ˆ 1= 4 k l e 2 6kl 4l ^ 2 8 k l c 1 5kc 4 6lc 4 e 2 4c 3 k l e 1 le 2 2ke 3 2le 3 ;

17 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 37 v 30 ˆ 1= 4 k l c 3 6kl 4l ^ 2 8 k l c 1 5kc 4 6lc 4 e 2 4c 3 k l e 1 le 2 2ke 3 2le 3 ; v 31 ˆ 1=4 4k 4l 3kl = k l 4c 1 6c 3 4c 4 3kc 4 = 2 k l ; v 32 ˆ 1= 8 k l 8k ^ 2 10kl 4l ^ 2 16 k l c 1 4 4k 5l c 3 7kc 4 10lc 4 ; v 33 ˆ 1= 8 k l e 2 6kl 4l ^ 2 8 k l c 1 kc 4 2lc 4 e 2 4c 3 k l e 1 le 2 2ke 3 2le 3 ; v 34 ˆ 1= 8 k l c 3 6kl 4l ^ 2 8 kl c 1 kc 4 2lc 4 e 2 4c 3 k l e 1 le 2 2ke 3 2le 3 ; v 35 ˆ 2kl 2l ^ 2 4 k l c 1 2 k 2l c 3 2kc 4 3lc 4 = 4 k l ; v 36 ˆ 1= 8 k l e 2 6kl 4l ^ 2 8 k l c 1 5kc 4 6lc 4 e 2 4c 3 k l e 1 le 2 2ke 3 2le 3 ; v 37 ˆ 1= 8 k l c 3 6kl 4l ^ 2 8 k l c 1 5kc 4 6lc 4 e 2 4c 3 k l e 1 le 2 2ke 3 2le 3 ; v 38 ˆ e 1 2 e 2 e 3 ; v 39 ˆ 1= 4e 2 2 k l ^ 2 12c2 3 k l ^ 2 l 1 l 2 4c 3 e 2 k l k 2 3m 11 2m 12 2m 2 2m 7 l 1 3m 11 2m 12 2m 2 2m 4 2m 7 2m 8 e 2 2 3e 2k ^ 2 4e 3 k ^ 2 4e 2 kl 8e 3 kl 2e 2 l ^ 2 4e 3 l ^ 2 2e 1 k l ^ 2 4k ^ 2m 1 8kmm 1 4l ^ 2m 1 4klm 10 4l ^ 2m 10 8k ^ 2m 13 16klm 13 8l ^ 2m 13 4klm 14 4l ^ 2m 14 4l ^ 2m 3 4k ^ 2m 5 8klm 5 4l ^ 2m 5 6k ^ 2m 6 8klm 6 4l ^ 2m 6 4k ^ 2m 9 8kxlm 9 4l ^ 2m 9 ; v 40 ˆ 1= 4c 2 3 k l ^ 2 12c2 3 k l ^ 2 l 1 l 2 4c 3 e 2 k l k 2 3m 11 2m 12 2m 2 2m 7 l 1 3m 11 2m 12 2m 2 2m 4 2m 7 2m 8 e 2 2 3e 2k ^ 2 4e 3 k ^ 2 4e 2 kl 8e 3 kl 2e 2 l ^ 2 4e 3 l ^ 2 2e 1 k l ^ 2 4k ^ 2m 1 8kmm 1 4l ^ 2m 1 4klm 10 4l ^ 2m 10 8k ^ 2m 13 16klm 13 8l ^ 2m 13 4klm 14 4l ^ 2m 14 4l ^ 2m 3 4k ^ 2m 5 8klm 5 4l ^ 2m 5 6k ^ 2m 6 8klm 6 4l ^ 2m 6 4k ^ 2m 9 8klm 9 4l ^ 2m 9 ; v 41 ˆ 1= 2c 3 e 2 k l ^ 2 12c 2 3 k l ^ 2 l 1 l 2 4c 3 e 2 k l k 2 3m 11 2m 12 2m 2 2m 7 l 1 3m 11 2m 12 2m 2 2m 4 2m 7 2m 8 4l ^ 2k 8 3k ^ 2k 9 e 2 2 3e 2k ^ 2 4e 3 k ^ 2 4e 2 kl 8e 3 kl 2e 2 l ^ 2 4e 3 l ^ 2 2e 1 k l ^ 2 4k ^ 2m 1 8kmm 1 4l ^ 2m 1 4klm 10 4l ^ 2m 10 8k ^ 2m 13 16klm 13 8l ^ 2m 13 4klm 14 4l ^ 2m 14 4l ^ 2m 3 4k ^ 2m 5 8klm 5 4l ^ 2m 5 6k ^ 2m 6 8klm 6 4l ^ 2m 6 4k ^ 2m 9 8klm 9 4l ^ 2m 9 ; v 42 ˆ e 2 k ^ 2 = 4 k l ^ 2 ;

18 38 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 v 43 ˆ e 1 =2 e 3 1=4e 2 2 k ^ 2= k l ^ 2 m 1 m 10 km 10 = k l 2m 13 m 14 km 14 = k l m 3 k ^ 2m3 = k l ^ 2 2km 3 = k l m 5 m 6 k ^ 2m 6 = 2 k l ^ 2 m 9 ; v 44 ˆ 2c 1 3c 3 2 c 4 k l ; v 45 ˆ 1= 4e 2 k l e 2 5c 4 k 6c 4 l 6kl 4l ^ 2 8c 1 k l 4c 3 2e 3 k e 2 l 2e 3 l e 1 k l ; v 46 ˆ 1= 4c 3 k l e 2 5c 4 k 6c 4 l 6kl 4l ^ 2 8c 1 k l 4c 3 2e 3 k e 2 l 2e 3 l e 1 k l ; v 47 ˆ 1= 4e 2 2 k l ^ 2 e2 2 12c 4k ^ 2 3k ^ 3 12k ^ 2k 1 4k ^ 2k 3 12k ^ 2k 5 4k ^ 2k 6 14k ^ 2k 7 6k ^ 2k 8 12k ^ 2k 9 24c 4 kl 20k ^ 2l 24kk 1 l 16kk 3 l 8kk 4 l 24kk 5 l 16kk 6 l 24kk 7 l 16kk 8 l 24kk 9 l 12c 4 l ^ 2 30kl ^ 2 12k 1 l ^ 2 12k 2 l ^ 2 12k 3 l ^ 2 12k 4 l ^ 2 12k 5 l ^ 2 12k 6 l ^ 2 12k 7 l ^ 2 12k 8 l ^ 2 12k 9 l ^ 2 12l ^ 3 12c 1 k l ^ 2 2c 2 3 k l ^ 1 4e 1 4e 2 4m 11 2m 12 2m 2 2m 4 2m 7 2m 8 c 3 e 2 e 2 5k ^ 2 16kl 12l ^ 2 4 k l 2km 1 2lm 1 2km 10 4lm 10 4km 13 4lm 13 km 14 2lm 14 2lm 3 2km 5 2lm 5 2km 6 2lm 6 4km 9 4lm 9 ; v 48 ˆ 1= 4c 2 3 k l ^ 2 e2 2 12c 4k ^ 2 3k ^ 3 12k ^ 2k 1 4k ^ 2k 3 12k ^ 2k 5 4k ^ 2k 6 14k ^ 2k 7 6k ^ 2k 8 12k ^ 2k 9 24c 4 kl 20k ^ 2l 24kk 1 l 16kk 3 l 8kk 4 l 24kk 5 l 16kk 6 l 24kk 7 l 16kk 8 l 24kk 9 l 12c 4 l ^ 2 30kl ^ 2 12k 1 l ^ 2 12k 2 l ^ 2 12k 3 l ^ 2 12k 4 l ^ 2 12k 5 l ^ 2 12k 6 l ^ 2 12k 7 l ^ 2 12k 8 l ^ 2 12k 9 l ^ 2 12l ^ 3 12c 1 k l ^ 2 2c 2 3 k l ^ 1 4e 1 4e 2 4m 11 2m 12 2m 2 2m 4 2m 7 2m 8 c 3 e 2 e 2 5k ^ 2 16kl 12l ^ 2 4 k l 2km 1 2lm 1 2km 10 4lm 10 4km 13 4lm 13 km 14 2lm 14 2lm 3 2km 5 2lm 5 2km 6 2lm 6 4km 9 4lm 9 ; v 49 ˆ 1= 2c 3 e 2 k l ^ 2 e c 4k ^ 2 3k ^ 3 12k ^ 2k 1 4k ^ 2k 3 12k ^ 2k 5 4k ^ 2k 6 14k ^ 2k 7 6k ^ 2k 8 12k ^ 2k 9 24c 4 kl 20k ^ 2l 24kk 1 l 16kk 3 l 8kk 4 l 24kk 5 l 16kk 6 l 24kk 7 l 16kk 8 l 24kk 9 l 12c 4 l ^ 2 30kl ^ 2 12k 1 l ^ 2 12k 2 l ^ 2 12k 3 l ^ 2 12k 4 l ^ 2 12k 5 l ^ 2 12k 6 l ^ 2 12k 7 l ^ 2 12k 8 l ^ 2 12k 9 l ^ 2 12l ^ 3 12c 1 k l ^ 2 2c 2 3 k l ^ 1 4e 1 4e 2 4m 11 2m 12 2m 2 2m 4 2m 7 2m 8 c 3 e 2 e 2 5k ^ 2 16kl 12l ^ 2 4 k l 2km 1 2lm 1 2km 10 4lm 10 4km 13 4lm 13 km 14 2lm 14 2lm 3 2km 5 2lm 5 2km 6 2lm 6 4km 9 4lm 9 ; v 50 ˆ k ^ 2 c 3 k = 4 k l ^ 2 ;

19 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 39 v 51 ˆ 1= 4 k l ^ 2 12c 4 k ^ 2 3k ^ 3 12k ^ 2k 1 4k ^ 2k 3 12k ^ 2k 5 4k ^ 2k 6 14k ^ 2k 7 6k ^ 2k 8 12k ^ 2k 9 24c 4 kl 20k ^ 2l 24kk 1 l 16kk 3 l 8kk 4 l 24kk 5 l 16kk 6 l 24kk 7 l 16kk 8 24kk 9 l 12c 4 l ^ 2 30kl ^ 2 12k 1 l ^ 2 12k 2 l ^ 2 12k 3 l ^ 2 12k 4 l ^ 2 12k 5 l ^ 2 12k 6 l ^ 2 12k 7 l ^ 2 12k 8 l ^ 2 12k 9 l ^ 2 12l ^ 3 12c 1 k l ^ 2 c 3 9k ^ 2 20kl 12l ^ 2 ; v 52 ˆ1= 4e 2 k l e 2 5c 4 k 6c 4 l 6kl 4l ^ 2 8c 1 k l 4c 3 2e 3 k e 2 l 2e 3 l e 1 k l ; v 53 ˆ1= 4c 3 k l e 2 5c 4 k 6c 4 l 6kl 4l ^ 2 8c 1 k l 4c 3 2e 3 k e 2 l 2e 3 l e 1 k l ; v 54 ˆ 2c 4 k 3c 4 l 2kl 2l ^ 2 4c 1 k l 2c 3 k 2l = 4 k l ; v 55 ˆ 1= 4e 2 k l ^ 2 12c 1 e 2 k l ^ 2 e 2 12c 4 k ^ 2 3k ^ 3 12k ^ 2k 1 4k ^ 2k 3 12k ^ 2k 5 4k ^ 2k 6 14k ^ 2k 7 6k ^ 2k 8 12k ^ 2k 9 24c 4 kl 20k ^ 2l 24kk 1 l 16kk 3 l 8kk 4 24kk 5 l 16kk 6 l 24kk 7 l 16kk 8 l 24kk 9 l 12c 4 l ^ 2 30kl ^ 2 12k 1 l ^ 2 12k 2 l ^ 2 12k 3 l ^ 2 12k 4 l ^ 2 12k 5 l ^ 2 12k 6 l ^ 2 12k 7 l ^ 2 12k 8 l ^ 2 12k 9 l ^ 2 12l ^ 3 c 3 7e 2 k ^ 2 18e 2 kl 12e 2 l ^ 2 4k ^ 2m 1 8klm 1 4l ^ 2m 1 4k ^ 2m 10 12klm 10 8l ^ 2m 10 8k ^ 2m 13 16klm 13 8l ^ 2m 13 2l ^ 2m 14 6klm 14 4l ^ 2m 14 4klm 3 4l ^ 2m 3 4k ^ 2m 5 8klm 5 4l ^ 2m 5 4k ^ 2m 6 8klm 6 4l ^ 2m 6 8k ^ 2m 9 16klm 9 8l ^ 2m 9 ; v 56 ˆ 1= 4c 3 k l ^ 2 12c 1 e 2 k l ^ 2 e 2 12c 4 k ^ 2 3k ^ 3 12k ^ 2k 1 4k ^ 2k 3 12k ^ 2k 5 4k ^ 2k 6 14k ^ 2k 7 6k ^ 2k 8 12k ^ 2k 9 24c 4 kl 20k ^ 2l 24kk 1 l 16kk 3 l 8kk 4 24kk 5 l 16kk 6 l 24kk 7 l 16kk 8 l 24kk 9 l 12c 4 l ^ 2 30kl ^ 2 12k 1 l ^ 22 12k 2 l ^ 2 12k 3 l ^ 12k 4 l ^ 2 12k 5 l ^ 2 12k 6 l ^ 2 12k 7 l ^ 2 12k 8 l ^ 2 12k 9 l ^ 2 12l ^ 3 c 3 7e 2 k ^ 2 18e 2 kl 12e 2 l ^ 2 4k ^ 2m 1 8klm 1 4l ^ 2m 1 4k ^ 2m 10 12klm 10 8l ^ 2m 10 8k ^ 2m 13 16klm 13 8l ^ 2m 13 2l ^ 2m 14 6klm 14 4l ^ 2m 14 4klm 3 4l ^ 2m 3 4k ^ 2m 5 8klm 5 4l ^ 2m 5 4k ^ 2m 6 8klm 6 4l ^ 2m 6 8k ^ 2m 9 16klm 9 8l ^ 2m 9 ; n 1 ˆ c 3 k 2 k l ; n 2 ˆ c 3 3k 2l ; 2 k l n 3 ˆ c 2 3 c 4 e 1 e 2 5e 2 2 2e 2e 3 5k 10 1 k 10 2 k 4l 8 1 l 8 2 l

20 40 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1e 3 k 6e 2 3 k 2c 1l 4 1 c 1 l 4 2 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 1 e 3 l 4e 2 e 3 l 4e 2 3 l 4kl 8 1l 8 2 kl 2l l l 2 c c 4 2 2e 1 e 2 e 2 2 e 1e 3 4e 2 e 3 2e 2 3 k 2 1k 2 2 k 2l 4 1 l 4 2 l = c 2 3 c 3 c c c 4 4e 1 e 2 2e 1 e 3 10e 2 e 3 4e 2 3 6l 12 1l 12 2 l c 4 e 1 e 2 5e 2 2 2e 2e 3 5k 10 1 k 10 2 k 4l 8 1 l 8 2 l 2 c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1e 3 k 6e 2 3 2c 1l 4 1 c 1 l 4 2 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 1e 3 l 4e 2 e 3 l 4e 2 3 l 4kl 8 1 kl 8 2 kl 2l l l 2 ; n 4 ˆ 2c 3 c 3 e 2 e 3 3e 3 k e 2 l 2e 3 l e 1 k l = c 2 3 c 3 c c c 4 4e 1 e 2 2e 1 e 3 10e 2 e 3 4e 2 3 6l 12 1l 12 2 l c 4 e 1 e 2 5e 2 2 2e 2e 3 5k±10 1 k 10 2 k 4l 8 1 l 8 2 l 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1e 3 k 6e 2 3 k 2c 1l 4 1 c 1 l 4 2 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 1e 3 l 4e 2 e 3 l 4e 2 3 l 4kl 8 1kl 8 2 kl 2l l l 2 ; n 5 ˆ c 3 3 c c 4 2 2e 1 e 2 e 1 e 3 5e 2 e 3 2e 2 3 2k 4 1k 4 2 k 2l 4 1 l 4 2 l c 3 c 4 e 1 e 2 5e 2 2 2e 2e 3 6k 12 1 k 12 2 k 4l 8 1 l 8 2 l 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 3e 1e 2 k e 2 2 k 6e 1e 3 k 7e 2 e 3 k 8e 2 3 k k2 2 2 k 2 2c 1 l 4 1 c 1 l 4 2 c 1 l e 2 1 l 2e 1e 2 l 3e 2 2 l 4e 1 e 3 l 2e 2 e 3 l 4e 2 3 l 6kl 12 1kl 12 2 kl 2l l l 2 k c 4 e 1 e 2 5e 2 2 2e 2e 3 5k 10 1 k 10 2 k 4l 8 1 l 8 2 l 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1e 3 l 6e 2 3 k 2c 1l 4 1 c 1 l 4 2 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 1 e 3 l 4e 2 e 3 l 4e 2 3 l 4kl 8 1kl 2 kl 2l l l 2 = 2 k l c 2 3 c 4 e 1 e 2 5e 2 2 2e 2e 3 5k 10 1 k 10 2 k 4l 8 1 l 8 2 l 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1e 3 k 6e 2 3 k 2c 1l 4 1 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 1e 3 l 4e 2 e 3 l 4kl 8 1 kl 8 2 kl 2l l l 2 c c 4 2 2e 1 e 2 e 1 e 3 5e 2 e 3 2e 2 3 3l 6 1l 6 2 l ;

21 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 41 n 6 ˆ 4c c 2 3 2c 4e 2 3 2c 4e 2 e 3 2c 4 k 4 1 c 4 k 4 2 c 4 k e 2 1 k 5e 1e 3 k 6e 2 3 k 2c 4l 4 1 c 4 l 4 2 c 4 l e 2 1 l 2e 1e 2 l 3e 2 2 l 4e 1e 3 l 2e 2 e 3 l 4e 2 3 l 3kl 6 1kl 6 2 kl 2l l l 2 c 3 5e 2 e 3 2e 2 3 e 1 2e 2 e 3 2l 4 1 l 4 2 l 2c 1 e 2 2 e 2e 3 k 2 1 k 2 2 k l 2 1 l 2 2 l = c 2 3 c 3 c 4 c 3 c c c 4 4e 1 e 2 2e 1 e 3 10e 2 e 3 4e 2 3 6l 12 1 l 12 2 l c 4 e 1 e 2 5e 2 2 2e 2e 3 5k 10 1 k 10 2 k 4l 8 1 l 8 2 l 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1 e 3 k 6e 2 3 k 2c 1l 4 1 c 1 l 4 2 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 1 e 3 l 4e 2 e 3 l 4e 2 3 l 4kl 8 1kl 8 2 kl 2l l l 2 ; n 7 ˆ 4c 3 e c 3 e 1 e 2 e 2 2 2e 2e 3 k 2 1 k 2 2 k = c 2 3 c 3 c c c 4 4e 1 e 2 2e 1 e 3 10e 2 e 3 4e 2 3 6l 12 1l 12 2 l c 4 e 1 e 2 5e 2 2 2e 2e 3 5k 10 1 k 10 2 k 4l 8 1 l 8 2 l 2 2c 1 e 2 2 2c 1e 2 e 3 2c 1 k 4 1 c 1 k 4 2 c 1 k e 2 1 k 5e 1e 3 k 6e 2 3 2c 1l 4 1 c 1 l 4 2 c 1 l e 2 1 l 3e 1e 2 l 4e 2 2 l 4e 3 1 l 4e 2e 3 l 4e 2 3 l 4kl 8 1kl 8 2 kl 2l l l 2 ; n 8 ˆ e 2 3k 2l 1 2 c 4 2 e l 2c 3 k l 1 2 c 4 2 e 2 3 l ; 2l n 9 ˆ 3k 2l 1 2 c 4 2 e l 2 k l 1 2 c 4 2 e 2 3 l ; 2l n 10 ˆ c 3 2k 1 2 c 4 2 e l 4 k l 1 2 c 4 2 e 2 3 l ; 2l n 11 ˆ c3 1 2 c 4 2 e k l 4 k l 1 2 c 4 2 e 2 3 l ; 2l n 12 ˆ 2l c 4 2 2l c 4 2e l c 4 2 c 4 2 l e 2 3 n 5; e 2 e 3 c 4 2l 3k 2l n 13 ˆ c 3 k l c 4 2 c 4 2 e 2 3 l 2l ;

22 42 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 e 3 c 4 2l 3k 2l n 14 ˆ k l c 4 2 c 4 2 e 2 3 l 2l ; e 3 c 3 2k c 4 2l n 15 ˆ 2 k l 1 2 c 4 2 e 2 3 l 2l ; c 3 e 3 c 4 2k n 16 ˆ 2 k l 1 2 c 4 2 e 2 3 l 2l ; 2l c 4 e 3 n 17 ˆ c 4 2 2l c 4 2 l e 2 3 n 5; 1 k l 3k 2l 2 k l 2c 3 c 4 e 2 2l c 4 2 2l c 4 2e 2 3 n 18 ˆ 4k l 2 c 3 c 4 2 2l c 4 2 l e k l 3k 2l 2l c 4 e 2 e 3 e 2 e 3 c 4 2 2l c 4 2 l e 2 3 e 2 8 k l 2 c 1 5k 2 11kl 6l 2 c 4 2 3k 3 2k 2 l 3kl 2 2l 3 12l 2 k 2 4k 2 k 3 8klk 3 4l 2 k 3 8klk 4 8l 2 k 4 4k 2 k 6 8klk 6 4l 2 k 6 4k 2 k 7 4klk 7 6k 2 k 8 4klk 8 4l 2 k 8 3k 2 k 9 2 k l c 3 2 k l e 1 ke 2 4ke 3 4le 3 4lm 3 2km 6 4km 10 4lm 10 2km 14 lm 14 ; 1 k l 3k 2l 2 k l 2c 3 c 4 2l c 4 2 2l c 4 2e 2 3 n 19 ˆ 4k l 2 c 3 c 4 2 2l c 4 2 l e k l 3k 2l 2l c 4 e 2 e 3 e 2 e 3 c 4 2 2l c 4 2 l e e 2 e 2 6k 3 4k 2 l 6kl 2 4l 3 8 k l 2 c 1 5k 2 c 4 11klc 4 6l 2 c 4 24l 2 k 2 8k 2 k 3 16klk 3 8l 2 k 3 16klk 4 16l 2 k 4 8l 2 k 4 8k 2 k 6 16klk 6 8l 2 k 6 8k 2 k 7 8klk 7 12k 2 k 8 8klk 8 8l 2 k 8 6k 2 k 9 2 k l c 3 2 k l e 1 ke 2 4ke 3 4le 3 4lm 3 2km 6 4km 10 4lm 10 2km 14 lm 14 ; 1 2 k l 3k 2l 2l c 4 e 2 2 n 20 ˆ e 3 2 k l 2 c 3 c 4 e 2 2l c 4 2 l e 2 3 k l 3k 2l k c 3 e 2 1 e 2 c 4 2 l 1 2 e 2 3 c 4 2 2l c 4 2 l e 2 3 e 2 3k 3 5k 2 l 2kl 2 k 2 3kl 2l 2 c 3 12l 2 k 2 4k 2 k 3 8klk 3 4l 2 k 3 8klk 4 8l 2 k 4 4k 2 k 6 8klk 6 4l 2 k 6 4k 2 k 7 4klk 7 6k 2 k 8 4klk 8 4l 2 k 8 3k 2 k 9 2 k l c 3 2lm 3 km 6 k l 2m 10 m 14 ;

23 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21± k l 3k 2l 2l c 4 e 2 e 3 n 21 ˆ 2 k l 2 c 4 2 2l c 4 2 l e 2 3 k l 3k 2l k c c 4 2 l 1 2 e 2 3 c 4 2 2l c 4 2 l e e 2 e 2 3k 3 5k 2 l 2kl 2 k 2 3kl 2l 2 c 3 12l 2 k 2 4k 2 k 3 8klk 3 4l 2 k 3 8klk 4 8l 2 k 4 4k 2 k 6 8klk 6 4l 2 k 6 4k 2 k 7 4klk 7 6k 2 k 8 4klk 8 4l 2 k 8! 3k 2 k 9 2 k l c 3 2lm 3 km 6 2km 10 2lm 10 km 14 lm 14 ; n 22 ˆ2 c 1 k=2 c 3 c 4 l c 3 k c 4 =2 l c 3 k = k l ; n 23 ˆ e 2 e 3 c 3 k = k l e 1 e 2 2e 3 ; n 24 ˆ k c 3 2l c 4 ; 2 k l n 25 ˆ k c 3 e 3 k l ; n 26 ˆ c 4 2 2l c 4 2 l e 2 3 ; 2e 3 n 27 ˆ c 4 2 2l c 4 2 l e 2 3 ; 2l c 4 n 28 ˆ c 4 2 2l c 4 2 l e 2 3 ; n 29 ˆ k l 2 k l 1 2 k l 2 e 2 2 = 3kl 2l2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc kl 2l 2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc kl 2l 2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc 4 ke 2 1 le2 1 2le 1e 2 c 3 e 1 e 2 3le 2 2 2c 1e 2 2 c 3e 2 2 2c 4e 2 2 4ke 1e 3 4le 1 e 3 4le 2 e 3 2c 3 e 2 e 3 4ke 2 3 4le2 3 ; n 30 ˆ k l e 1 le 2 2 k l e 3 = 3kl 2l 2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc kl 2l 2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc kl 2l 2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc 4 ke 2 1 le2 1 2le 1e 2 c 3 e 1 e 2 3le 2 2 2c 1e 2 2 c 3e 2 2 2c 4e 2 2 4ke 1e 3 4le 1 e 3 4le 2 e 3 2c 3 e 2 e 3 4ke 2 3 4le2 3 ;

24 44 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 n 31 ˆ 3kl 2l 2 2 k l c 1 k 2l c 3 2kc 4 2lc 4 = 3kl 2l 2 2kc 1 2lc 1 kc 3 2lc 3 2kc 4 2lc kl 2l 2 2 k l c 1 k 2l c 3 2kc 4 2lc kl 2l 2 2 k l c 1 k 2l c 3 2kc 4 2lc 4 ke 2 1 le2 1 2le 1e 2 c 3 e 1 e 2 3le 2 2 2c 1e 2 2 c 3e 2 2 2c 4e 2 2 4ke 1e 3 4le 1 e 3 4le 2 e 3 2c 3 e 2 e 3 4ke 2 3 4le2 3 ; ~E ˆ 3kl 2l2 2 k l c 1 k 2l c 3 2kc 4 2lc 4 ; 2 k l n 32 ˆ 2 kn 19 c 3 n 19 2kv 55 2lv 55 k 3k 2l 2c 1 4c 3 2c 4 ; n 33 ˆ 2 kn 18 c 3 n 18 2kv 56 2lv 56 k 3k 2l 2c 1 4c 3 2c 4 ; 2 k l v n 34 ˆ 41 ; k 2k 1 2k 2 ke 1 3ke 2 4le 2 2ke 3 2 k l e 2 2 n 35 ˆ v 39 kc 2 3 2k 1c 2 3 2k 2c 2 3 ke 1e 2 2 3ke3 2 4le3 2 2ke2 2 e ; 3 2 k l c 2 3 n 36 ˆ v 40 kc 2 3 e 1 3kc 2 3 e 2 4lc 2 3 e 2 ke 2 2 2k 1e 2 2 2k 2e 2 2 2kc2 3 e ; 3 n 38 ˆ 2 k l e 2 e 1 n 11 e 2 n 11 2e 3 n 11 e 1 n 12 e 2 n 12 2e 3 n 12 n n n 16 n n n 17 v 42 = kc 3 2k 1 c 3 2k 2 c 3 ke 1 e 2 3ke 2 2 4le2 2 2ke 2e 3 ; n 39 ˆ 2 k l e 2 e 1 n 10 e 2 n 11 2e 3 n 10 e 1 n 12 e 2 n 12 2e 3 n 12 n n n 15 n n n 17 v 43 = kc 3 2k 1 c 3 2k 2 c 3 ke 1 e 2 3ke 2 2 4le2 2 2ke 2e 3 : References [1].J.C.B Saint-Venant, Memoire sur la torsion des prismes, Memoires des Savants etrangers 14 (1856) 233. [2].J.C.B. Saint-Venant, Memoire sur la exion des prismes, J. de Mathematiques de Liouville, Ser. II 1 (1956) 89. [3] D. Iesan, Saint-Venant's problem for inhomogeneous and anisotropic elastic bodies, J. Elasticity 6 (1976) 277±294. [4] D. Iesan, On Saint-Venant's problem for elastic dielectrics, J. Elasticity 21 (1989) 101. [5] D. Iesan, Saint-Venant's problem, Springer, New York, [6] D. Iesan, L. Nappa, Saint-Venant's problem for microstretch elastic solids, Int. J. Engng.Sci. 32 (1994) 229±236. [7] F. dell'isola, L. Rosa, Saint-Venant problem in Linear Piezoelectricity. In: V.V. Varadhan (ed.), Mathematics and Control in Smart Structures, SPIE, vol. 2715, pp. 399±409, [8] F. dell'isola, L. Rosa, lmansi-type boundary conditions for electric potential inducing exure in linear piezoelectric beams, Cont. Mechs. and Thermodynamics 9 (1997) 115±125. [9] F. Davi, Saint-Venant's problem for linear piezoelectric bodies, J. Elasticity 43 (1996) 227±245. [10] F. dell'isola, R.C. Batra, Saint-Venant's problem for porous linear elastic materials, J. Elasticity 47 (1997) 73±81. [11] R.C. Batra, J.S. Yang, Saint-Venant's principle in linear piezoelectricity, J. Elasticity 38 (1995) 209±218. [12] R.. Toupin, Saint-Venant's principle, rch. Rational Mechanics nal 18 (1965) 83±96. [13] R.S. Rivlin, The solution of problems in second order elasticity theory, J. Rational Mechs. nalysis 2 (1953) 53±81.

25 S. Vidoli et al. / International Journal of Engineering Science 38 (2000) 21±45 45 [14] J.H. Poynting, On pressure perpendicular to the shear-planes in nite pure shears and on the lengthening of loaded wires when twisted, Proc. Roy. Soc. London 82 (1909) 546±549. [15]. Signorini, Sulle deformazioni termoelastiche nite, Proc. 3rd Int. Congr. ppl. Mechs. 2 (1930) 80±89. [16] C.. Truesdell, W. Noll, S. Flugge (Ed.), The nonlinear eld theories of mechanics, Handbuch der Physik, vol. III/ 3, Springer, Berlin, [17].E. Green, J.E. dkins, Large Elastic Deformations and Nonlinear Continuum Mechanics, Claredon Press, Oxford, [18].E. Green, R.T. Shield, Finite extension and torsion of cylinder, Proc. Roy. Soc. London 244 (1951) 47±86. [19] F. dell'isola, G.C. Ruta, R.C. Batra, second-order solution of Saint-Venant's problem for an elastic pretwisted bar using Signorini's perturbation method, J. Elasticity 49 (1998) 113±127. [20] F. dell'isola, G.C. Ruta, R.C. Batra, Generalized poynting e ects in predeformed-prismatic bars, J. Elasticity 50 (1998) 181±196. [21] R.C. Batra, F. dell'isola, S. Vidoli, second-order solution of Saint-Venant's problem for a piezoelectric circular bar using Signorini's perturbation method, J. Elasticity (in press). [22] J.S. Yang, R.C. Batra, second-order theory of piezoelectric materials, J. coustic Soc. merica 97 (1995) 280± 288. [23].C. Eringen, G.. Maugin, Electrodynamics of Continua, Springer, New York, 1989.

A Second-Order Solution of Saint-Venant s Problem for an Elastic Pretwisted Bar Using Signorini s Perturbation Method

A Second-Order Solution of Saint-Venant s Problem for an Elastic Pretwisted Bar Using Signorini s Perturbation Method Journal of Elasticity 9: 113 127, 1998. 1998 Kluwer cademic Publishers. Printed in the Netherlands. 113 Second-Order Solution of Saint-Venant s Problem for an Elastic Pretwisted Bar Using Signorini s Perturbation

More information

Linear Constitutive Relations in Isotropic Finite Viscoelasticity

Linear Constitutive Relations in Isotropic Finite Viscoelasticity Journal of Elasticity 55: 73 77, 1999. 1999 Kluwer Academic Publishers. Printed in the Netherlands. 73 Linear Constitutive Relations in Isotropic Finite Viscoelasticity R.C. BATRA and JANG-HORNG YU Department

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu

Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu 2011. 11. 25 Contents: 1. Introduction 1.1 Basic Concepts of Continuum Mechanics 1.2 The Need

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

International Journal of Pure and Applied Mathematics Volume 58 No ,

International Journal of Pure and Applied Mathematics Volume 58 No , International Journal of Pure and Applied Mathematics Volume 58 No. 2 2010, 195-208 A NOTE ON THE LINEARIZED FINITE THEORY OF ELASTICITY Maria Luisa Tonon Department of Mathematics University of Turin

More information

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60. 162 3. The linear 3-D elasticity mathematical model The 3-D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

The Non-Linear Field Theories of Mechanics

The Non-Linear Field Theories of Mechanics С. Truesdell-W.Noll The Non-Linear Field Theories of Mechanics Second Edition with 28 Figures Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Contents. The Non-Linear

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e

(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e EN10: Continuum Mechanics Homework : Kinetics Due 1:00 noon Friday February 4th School of Engineering Brown University 1. For the Cauchy stress tensor with components 100 5 50 0 00 (MPa) compute (a) The

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

On the Ballooning Motion of Hyperelastic Strings

On the Ballooning Motion of Hyperelastic Strings On the Ballooning Motion of Hyperelastic Strings S. Sarangi 1, R. Bhattacharyya, A. K. Samantaray Indian Institute of Technology, 7130 Kharagpur, India. Abstract The e ect of material nonlinearity on the

More information

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly .3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

More information

CRACK-TIP DRIVING FORCE The model evaluates the eect of inhomogeneities by nding the dierence between the J-integral on two contours - one close to th

CRACK-TIP DRIVING FORCE The model evaluates the eect of inhomogeneities by nding the dierence between the J-integral on two contours - one close to th ICF 100244OR Inhomogeneity eects on crack growth N. K. Simha 1,F.D.Fischer 2 &O.Kolednik 3 1 Department ofmechanical Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL 33124-0624, USA

More information

Decomposition of Waveguides Propagating in Piezoelectric Crystals subject to Initial Fields

Decomposition of Waveguides Propagating in Piezoelectric Crystals subject to Initial Fields Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Constanţa, Romania, September, 006, pp. 191 00 Decomposition of Waveguides Propagating in Piezoelectric

More information

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226 INDEX 363 A Absolute differentiation 120 Absolute scalar field 43 Absolute tensor 45,46,47,48 Acceleration 121, 190, 192 Action integral 198 Addition of systems 6, 51 Addition of tensors 6, 51 Adherence

More information

Accepted Manuscript. R.C. Batra, J. Xiao S (12) Reference: COST Composite Structures. To appear in:

Accepted Manuscript. R.C. Batra, J. Xiao S (12) Reference: COST Composite Structures. To appear in: Accepted Manuscript Finite deformations of curved laminated St. Venant-Kirchhoff beam using layerwise third order shear and normal deformable beam theory (TSNDT) R.C. Batra, J. Xiao PII: S0263-8223(12)00486-2

More information

On the torsion of functionally graded anisotropic linearly elastic bars

On the torsion of functionally graded anisotropic linearly elastic bars IMA Journal of Applied Mathematics (2007) 72, 556 562 doi:10.1093/imamat/hxm027 Advance Access publication on September 25, 2007 edicated with admiration to Robin Knops On the torsion of functionally graded

More information

UNIT-I Introduction & Plane Stress and Plane Strain Analysis

UNIT-I Introduction & Plane Stress and Plane Strain Analysis SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Advanced Solid Mechanics (18CE1002) Year

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Calculation of Shear Areas and Torsional Constant using the Boundary Element Method with Scada Pro Software

Calculation of Shear Areas and Torsional Constant using the Boundary Element Method with Scada Pro Software NATIONAL TECHNICAL UNIVERSITY OF ATHENS School of Civil Engineering Institute of Structural Analysis & Antiseismic Research Dr. Sapountakis J. Evangelos Dr. Civil Engineer NTUA Professor NTUA Calculation

More information

Material instability criterion near a notch-tip under locally adiabatic deformations of thermoviscoplastic materials

Material instability criterion near a notch-tip under locally adiabatic deformations of thermoviscoplastic materials Theoretical and Applied Fracture Mechanics 30 (1998) 153±158 Material instability criterion near a notch-tip under locally adiabatic deformations of thermoviscoplastic materials L. Chen, R.C. Batra * Department

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

More information

ON THE COINCIDENCE OF THE PRINCIPAL AXES OF STRESS AND STRAIN IN ISOTROPIC ELASTIC BODIES

ON THE COINCIDENCE OF THE PRINCIPAL AXES OF STRESS AND STRAIN IN ISOTROPIC ELASTIC BODIES LETTERS IN APPLIED AND ENGINEERING SCIENCE, Vol. 3, pp. 435-439. Pergamon Press, Inc. Printed in the United States. ON THE COINCIDENCE OF THE PRINCIPAL AXES OF STRESS AND STRAIN IN ISOTROPIC ELASTIC BODIES

More information

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February. Engineering Sciences 241 Advanced Elasticity, Spring 2001 J. R. Rice Homework Problems / Class Notes Mechanics of finite deformation (list of references at end) Distributed Thursday 8 February. Problems

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Theory of Elasticity

Theory of Elasticity Theory of Elasticity Aldo Maceri Theory of Elasticity 123 Prof. Dr.-Ing. Aldo Maceri Universitá Roma Tre Departimento di Ingegneria Meccanica e Industriale Via della Vasca Navale, 79 00146 Roma Italy

More information

A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem

A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem E Hanukah Faculty of Mechanical Engineering, Technion Israel Institute of Technology, Haifa

More information

Linear Cosserat elasticity, conformal curvature and bounded stiffness

Linear Cosserat elasticity, conformal curvature and bounded stiffness 1 Linear Cosserat elasticity, conformal curvature and bounded stiffness Patrizio Neff, Jena Jeong Chair of Nonlinear Analysis & Modelling, Uni Dui.-Essen Ecole Speciale des Travaux Publics, Cachan, Paris

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Exact and Numerical Solution of Pure Torsional Shaft

Exact and Numerical Solution of Pure Torsional Shaft Australian Journal of Basic and Applied Sciences, 4(8): 3043-3052, 2010 ISSN 1991-8178 Exact and Numerical Solution of Pure Torsional Shaft 1 Irsyadi Yani, 2 M.A Hannan, 1 Hassan Basri, and 2 E. Scavino

More information

circular voids On the interaction between two in a nonlinear elastic solid ACTA MECHANICA J. P. Zhang and R. C. Batra, Rolla, Missouri

circular voids On the interaction between two in a nonlinear elastic solid ACTA MECHANICA J. P. Zhang and R. C. Batra, Rolla, Missouri Acta Mechanica 105, 161-171 (1994) ACTA MECHANICA 9 Springer-Verlag 1994 On the interaction between two in a nonlinear elastic solid circular voids J. P. Zhang and R. C. Batra, Rolla, Missouri (Received

More information

A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes

A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes International Journal of Plasticity 15 (1999) 1359±1378 return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes F. uricchio a, *, R.L. Taylor b a Dipartimento

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

Theory of Plasticity. Lecture Notes

Theory of Plasticity. Lecture Notes Theory of Plasticity Lecture Notes Spring 2012 Contents I Theory of Plasticity 1 1 Mechanical Theory of Plasticity 2 1.1 Field Equations for A Mechanical Theory.................... 2 1.1.1 Strain-displacement

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

Three-dimensional thermoelastic deformations of a functionally graded elliptic plate

Three-dimensional thermoelastic deformations of a functionally graded elliptic plate JCOMB Composites: Part B () 9 6 www.elsevier.com/locate/compositesb Three-dimensional thermoelastic deformations of a functionally graded elliptic plate Z.-Q. Cheng a, R.C. Batra b, * a Department of Modern

More information

Other state variables include the temperature, θ, and the entropy, S, which are defined below.

Other state variables include the temperature, θ, and the entropy, S, which are defined below. Chapter 3 Thermodynamics In order to complete the formulation we need to express the stress tensor T and the heat-flux vector q in terms of other variables. These expressions are known as constitutive

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

CHAPTER 5. Beam Theory

CHAPTER 5. Beam Theory CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The Euler-Bernoulli assumptions One of its dimensions

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Material tailoring and moduli homogenization for finite twisting deformations of functionally graded Mooney-Rivlin hollow cylinders

Material tailoring and moduli homogenization for finite twisting deformations of functionally graded Mooney-Rivlin hollow cylinders Acta Mech 224, 811 818 (2013) DOI 10.1007/s00707-012-0784-z J. R. Dryden R. C. Batra Material tailoring and moduli homogenization for finite twisting deformations of functionally graded Mooney-Rivlin hollow

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

COMPUTATIONAL ELASTICITY

COMPUTATIONAL ELASTICITY COMPUTATIONAL ELASTICITY Theory of Elasticity and Finite and Boundary Element Methods Mohammed Ameen Alpha Science International Ltd. Harrow, U.K. Contents Preface Notation vii xi PART A: THEORETICAL ELASTICITY

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference.

This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference. Chapter 1 Introduction to Elasticity This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference. 1.1 Kinematics of finite deformations We

More information

Optimal piezo-electro-mechanical coupling to control plate vibrations

Optimal piezo-electro-mechanical coupling to control plate vibrations 1 Optimal piezo-electro-mechanical coupling to control plate vibrations Silvio Alessandroni 1, Francesco dell'isola 2, and Fabrizio Frezza 3 1 Dott. in Meccanica Teorica ed Applicata, Università di Roma

More information

a x Questions on Classical Solutions 1. Consider an infinite linear elastic plate with a hole as shown. Uniform shear stress

a x Questions on Classical Solutions 1. Consider an infinite linear elastic plate with a hole as shown. Uniform shear stress Questions on Classical Solutions. Consider an infinite linear elastic plate with a hole as shown. Uniform shear stress σ xy = T is applied at infinity. Determine the value of the stress σ θθ on the edge

More information

A multiscale approach for composite materials as multifield continua

A multiscale approach for composite materials as multifield continua Materials Science Forum Vols. 539-543 (27) pp. 2551-2556 online at http://www.scientific.net (27) Trans Tech Publications, Switzerland A multiscale approach for composite materials as multifield continua

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Iranian Journal of Mathematical Sciences and Informatics Vol.2, No.2 (2007), pp 1-16

Iranian Journal of Mathematical Sciences and Informatics Vol.2, No.2 (2007), pp 1-16 Iranian Journal of Mathematical Sciences and Informatics Vol.2, No.2 (2007), pp 1-16 THE EFFECT OF PURE SHEAR ON THE REFLECTION OF PLANE WAVES AT THE BOUNDARY OF AN ELASTIC HALF-SPACE W. HUSSAIN DEPARTMENT

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs Chapter 3 Higher Order Linear ODEs Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 3.1 Homogeneous Linear ODEs 3 Homogeneous Linear ODEs An ODE is of

More information

4.5 The framework element stiffness matrix

4.5 The framework element stiffness matrix 45 The framework element stiffness matri Consider a 1 degree-of-freedom element that is straight prismatic and symmetric about both principal cross-sectional aes For such a section the shear center coincides

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

INTRODUCTION TO CONTINUUM MECHANICS ME 36003

INTRODUCTION TO CONTINUUM MECHANICS ME 36003 INTRODUCTION TO CONTINUUM MECHANICS ME 36003 Prof. M. B. Rubin Faculty of Mechanical Engineering Technion - Israel Institute of Technology Winter 1991 Latest revision Spring 2015 These lecture notes are

More information

Conservation of mass. Continuum Mechanics. Conservation of Momentum. Cauchy s Fundamental Postulate. # f body

Conservation of mass. Continuum Mechanics. Conservation of Momentum. Cauchy s Fundamental Postulate. # f body Continuum Mechanics We ll stick with the Lagrangian viewpoint for now Let s look at a deformable object World space: points x in the object as we see it Object space (or rest pose): points p in some reference

More information

Basic concepts to start Mechanics of Materials

Basic concepts to start Mechanics of Materials Basic concepts to start Mechanics of Materials Georges Cailletaud Centre des Matériaux Ecole des Mines de Paris/CNRS Notations Notations (maths) (1/2) A vector v (element of a vectorial space) can be seen

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Continuum Mechanics Fundamentals

Continuum Mechanics Fundamentals Continuum Mechanics Fundamentals James R. Rice, notes for ES 220, 12 November 2009; corrections 9 December 2009 Conserved Quantities Let a conseved quantity have amount F per unit volume. Examples are

More information

HANDBUCH DER PHYSIK HERAUSGEGEBEN VON S. FLÜGGE. BAND VIa/2 FESTKÖRPERMECHANIK II BANDHERAUSGEBER C.TRUESDELL MIT 25 FIGUREN

HANDBUCH DER PHYSIK HERAUSGEGEBEN VON S. FLÜGGE. BAND VIa/2 FESTKÖRPERMECHANIK II BANDHERAUSGEBER C.TRUESDELL MIT 25 FIGUREN HANDBUCH DER PHYSIK HERAUSGEGEBEN VON S. FLÜGGE BAND VIa/2 FESTKÖRPERMECHANIK II BANDHERAUSGEBER C.TRUESDELL MIT 25 FIGUREN SPRINGER-VERLAG BERLIN HEIDELBERG NEWYORK 1972 Contents. The Linear Theory of

More information

Beam Models. Wenbin Yu Utah State University, Logan, Utah April 13, 2012

Beam Models. Wenbin Yu Utah State University, Logan, Utah April 13, 2012 Beam Models Wenbin Yu Utah State University, Logan, Utah 843-4130 April 13, 01 1 Introduction If a structure has one of its dimensions much larger than the other two, such as slender wings, rotor blades,

More information

Mechanics Research Communications

Mechanics Research Communications Mechanics Research Communications 85 (27) 5 Contents lists available at ScienceDirect Mechanics Research Communications journal h om epa ge: www.elsevier.com/locate/mechrescom Load s temporal characteristics

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

1. Background. is usually significantly lower than it is in uniaxial tension

1. Background. is usually significantly lower than it is in uniaxial tension NOTES ON QUANTIFYING MODES OF A SECOND- ORDER TENSOR. The mechanical behavior of rocks and rock-like materials (concrete, ceramics, etc.) strongly depends on the loading mode, defined by the values and

More information

Interfacial partial debonding and its in uence on the elasticity of a two-phase composite

Interfacial partial debonding and its in uence on the elasticity of a two-phase composite Mechanics of Materials 32 (2000) 695±709 www.elsevier.com/locate/mechmat Interfacial partial debonding and its in uence on the elasticity of a two-phase composite S.F. Zheng, M. Denda, G.J. Weng * Department

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

VIBRATION PROBLEMS IN ENGINEERING

VIBRATION PROBLEMS IN ENGINEERING VIBRATION PROBLEMS IN ENGINEERING FIFTH EDITION W. WEAVER, JR. Professor Emeritus of Structural Engineering The Late S. P. TIMOSHENKO Professor Emeritus of Engineering Mechanics The Late D. H. YOUNG Professor

More information

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam. ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

More information

Unit I Stress and Strain

Unit I Stress and Strain Unit I Stress and Strain Stress and strain at a point Tension, Compression, Shear Stress Hooke s Law Relationship among elastic constants Stress Strain Diagram for Mild Steel, TOR steel, Concrete Ultimate

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

14. *14.8 CASTIGLIANO S THEOREM

14. *14.8 CASTIGLIANO S THEOREM *14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

More information

Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk

Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk Journal of Solid Mechanics Vol. 2, No. 2 (2010) pp. 144-155 Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk A.

More information

Stresses in Curved Beam

Stresses in Curved Beam Stresses in Curved Beam Consider a curved beam subjected to bending moment M b as shown in the figure. The distribution of stress in curved flexural member is determined by using the following assumptions:

More information

Boundary layer realization in thin elastic three-dimensional domains and two-dimensional Hierarchic plate models

Boundary layer realization in thin elastic three-dimensional domains and two-dimensional Hierarchic plate models International Journal of Solids and Structures 37 (2000) 2443±2471 www.elsevier.com/locate/ijsolstr Boundary layer realization in thin elastic three-dimensional domains and two-dimensional Hierarchic plate

More information

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation

More information

In this section, thermoelasticity is considered. By definition, the constitutive relations for Gradθ. This general case

In this section, thermoelasticity is considered. By definition, the constitutive relations for Gradθ. This general case Section.. Thermoelasticity In this section, thermoelasticity is considered. By definition, the constitutive relations for F, θ, Gradθ. This general case such a material depend only on the set of field

More information

4.3 Momentum Balance Principles

4.3 Momentum Balance Principles 4.3 Momentum Balance Principles 4.3.1 Balance of linear angular momentum in spatial material description Consider a continuum body B with a set of particles occupying an arbitrary region Ω with boundary

More information

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol-7

More information

Samantha Ramirez, MSE

Samantha Ramirez, MSE Samantha Ramirez, MSE Centroids The centroid of an area refers to the point that defines the geometric center for the area. In cases where the area has an axis of symmetry, the centroid will lie along

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Solutions for Fundamentals of Continuum Mechanics. John W. Rudnicki

Solutions for Fundamentals of Continuum Mechanics. John W. Rudnicki Solutions for Fundamentals of Continuum Mechanics John W. Rudnicki December, 015 ii Contents I Mathematical Preliminaries 1 1 Vectors 3 Tensors 7 3 Cartesian Coordinates 9 4 Vector (Cross) Product 13 5

More information

6.1 Formulation of the basic equations of torsion of prismatic bars (St. Venant) Figure 6.1: Torsion of a prismatic bar

6.1 Formulation of the basic equations of torsion of prismatic bars (St. Venant) Figure 6.1: Torsion of a prismatic bar Module 6 Torsion Learning Objectives 6.1 Formulation of the basic equations of torsion of prismatic bars (St. Venant) Readings: Sadd 9.3, Timoshenko Chapter 11 e e 1 e 3 Figure 6.1: Torsion of a prismatic

More information