A multiscale approach for composite materials as multifield continua

Size: px
Start display at page:

Download "A multiscale approach for composite materials as multifield continua"

Transcription

1 Materials Science Forum Vols (27) pp online at (27) Trans Tech Publications, Switzerland A multiscale approach for composite materials as multifield continua Patrizia Trovalusci 1,a, Vittorio Sansalone 2,b and Fabrizio Cleri 2,c 1 Dipartimento di Ingegneria Strutturale e Geotecnica, Università "La Sapienza, via Gramsci 53, I-197 Roma (Italy) 2 Ente Nuove Tecnologie, Energia e Ambiente, Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia, C.P. 24, I-1 Roma A. D. (Italy) a patrizia.trovalusci@uniroma1.it, b vittorio.sansalone@casaccia.enea.it, c cleri@casaccia.enea.it Keywords: fibre-reinforced composites, micro-mechanical modelling, constitutive models. Abstract. A continuum model for composite materials made of short, stiff and tough fibres embedded in a more deformable matrix with distributed microflaws is proposed. Based on the kinematics of a lattice system made of fibres, perceived as rigid inclusions, and of microflaws, represented by slit microcracks, the stress-strain relations of an equivalent multifield continuum is obtained. These relations account for the shape and the orientation of the internal phases and include internal scale parameters, which allow taking into account size effects. Some numerical analyses effected on a sample fibre-reinforced composite pointed out the influence of the size and orientation of the fibres on the gross behaviour of the material. Introduction The growing demand for high-performance structural materials in several domains of engineering and technology has spurred the research in the field of complex, composite materials, such as: polyphase metallic alloy systems, polymer blends, polycrystalline, porous or textured media, fibrematrix composites, up to masonry-like materials and biomaterials. The ability to design such materials, and to derive their macroscopic properties relies, in turn, on the ability to take into account the (possibly evolving) internal structure, size, shape, spatial distribution of the microstructural constituents by multi-scale and multi-level computational methods [1]. Various approaches have been used to describe the mechanical behaviour of complex materials, most of them based on the homogenization theory [2]. The conventional homogenized models are based on the standard Cauchy continuum and present two major disadvantages. First, they cannot predict the effect of the size and orientation of the heterogeneities, since they deal with only the volume fraction and, in some cases, the morphology of the internal phases distribution. Second, they intrinsically assume the macroscopic uniformity of the stress-strain fields in each representative volume, which is likely to be unappropriate in critical regions of high gradients, e.g. in the vicinity of a macroscopic discontinuity such as a joint or a hole, or close to the point of application of a localized load. A way to retain memory of the fine organization of a material, without renouncing to the advantages of the continuum modelling and avoiding the above mentioned drawbacks, is to resort to the multifield theory [3]. The models developed in this framework have to be understood as continua with different material levels: the macro-structural level of the matrix and one or more micro-structural levels, characterized by the presence of descriptors additional to the standard ones. Therefore, non-standard strain and stress measures can be defined in a rational way, and suitable scale parameters naturally surface, which allow distinguishing the behaviour of media with heterogeneities of different size and orientation. The applicability of such models relies on the possibility to define constitutive functions for all the stress measures introduced. In this work a multiscale approach to derive these functions is proposed starting from the description of the material at the scale of the internal phases (micro-model), the fibres and the All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the publisher: Trans Tech Publications Ltd, Switzerland, (ID: /1/7,2:44:16)

2 2552 THERMEC 26 microcracks [4, 5]. Using an integral equivalence criterion, the expression for the strain energy of the multifield continuum (macro-model) is given and the constitutive functions for all the stress measures are derived. The numerical solution of the multifield problem has been obtained using a specific object-oriented code [6] allowing for Finite Element analysis of plane elasticity problems (both in linear and non-linear regime) in the presence of additional scalar or vectorial fields with respect to the standard ones. As sample test a fibre-reinforced material without microcracks has been examined. The various numerical analyses effected pointed out the influence of the size and the orientation of the fibres on the gross behaviour of the material. Multiscale-multifield material description The gross description of the particle composite as multifield continuum (macro-model) is obtained using a multiscale strategy based on an integral equivalence principle linking the stored energy functions defined for different material scales [4]. At the level of the heterogeneities, the fine description of the material is made of two interacting lattice systems: a lattice made of rigid particles of given shape connected in pairs by linear elastic beams, representing the matrix with the fibres, and another lattice made of interacting slits of arbitrary shape with a predominant dimension, representing the microcracks. Considering materials with periodic (at least centro-symmetric) microstructure, a representative volume element (module) with appropriate geometry can be defined describing various internal material textures. The procedure governing the scale transition between the micromodel and the macromodel is based on two key assumptions: (a) the admissible deformations for the module are considered homogeneous (in a non-standard sense); (b) the volume average of the strain energy of the module is equated to the strain energy density of the macromodel. These assumptions are standard in the classical molecular theory of elasticity (e.g. [7]). In particular, the latter corresponds to the energy-averaging theorem known in the literature as the Hill-Mandel condition [8]. Briefly, the linearised strain measures of the module are: the relative displacement between two fibres, A and B, centred at the positions a and b, represented by the vector u ab u a u b + W a ( p a a) W b ( p b b), where u a (u b ) is the displacement vector of A (B), W a (W b ) is the skew-symmetric tensor of the fibre rotation, and p a and p b are the points on A and B connected by the elastic beam; the crack opening displacement of a slit H, represented by the vector d h ; the displacement jump difference between two interacting slits, H and K, represented by the hk h k vector d d d ; a displacement vector field, ω ah, depending on the position of A and H. Considering the interaction force and couple between the particles, A and B, represented by the vector t ab and the skew-symmetric tensor C ab respectively; the force due to the displacement jump on a slit H, represented by the vector z h ; the interaction force between two slits H and K, represented by the vector z hk ; and the particle-slit interaction force, represented by the vector q ah, the mean strain energy over the module of volume V reads: V 2 { } ab ab a a b ab ab h h hk hk ah ah { t u W ( p p ) C W } z d z d q ab h hk ah ε ω. (1) Homogeneous deformations for the module are such that [ ] u a u( x) + u( x) a x

3 Materials Science Forum Vols [ ] [ ] W a W( x) + W( x) a x (2) d h d( x) + d( x) h x, where u, W, and d are regular fields defined on a continuum neighbourhood centred at x. These fields correspond, respectively, to the standard displacement vector field, the microrotation tensor field (skew-symmetric), and a microdisplacement vector field. The additional microscopic fields respectively account for the rotations of the individual fibres and the distributed displacement jump due to the presence of microflaws in the matrix. After defining linear elastic laws for the particle-particle interactions, t ab and C ab, and for the h opening force on a microcrack, z ; non-linear elastic laws for the microcrack-microcrack force, z hk, and the particle-microcrack force, q ah [5]; and tacking into account Eqs. 2, the mean strain energy of the module can be written in terms of the continuum deformation fields u, W, and d. Finally, considering the energy equivalence (b), the strain energy density for the continuum can be derived 1 1 e { S ( u- W) + S W+ z d+ Z d}. (3) 2 2 The quantities {S, S, z, Z} depend on the constants of the matrix and the fabric vectors of the microstructure. They have the meaning of generalized stress fields: S is a generalization of the standard Cauchy stress tensor; S is the couple-stress tensor; z is the internal volume force related to the presence of the microcraks, and Z is the micro-stress tensor. More generally, z is an auto-force that plays the role of a configurational force responsible of the internal changes of the system configuration [1]. The explicit functions for {S, S, z, Z} can be expressed as S S z Z A E I O W) W) W) + B W + C d + D d + F W + G d + H d + L W + M d 2 2 W) + P W + Q d + R d + Ψ ( d, d d, d ) + N d (4) The elastic tensors A-R depend on the geometry of the microstructure and the orientation of the internal phases, other than on the elastic constants of the matrix. Moreover, the tensors B, C, E, F, H, I, M, N, P and Q have components depending on the size of the heterogeneities, allowing to take properly into account size effects. Finally, Ψ is a constitutive function accounting for the microcracks interactions. Fibre-reinforced materials, numerical simulations In order to show the effectiveness of the multifield model in capturing the main features of heterogeneous materials, for the sake of simplicity and without loss of generality, we consider undamaged fibre-reinforced materials. We particularly refer to a specific class of polymer-matrix fibre composites, such as epoxy/glass representing a wide class of composite materials, to show that the model is able to evaluate the macroscopic elastic energy and stress distribution as functions of fibre size and orientation. At the microscopic scale, we assume infinitely rigid fibres embedded in a deformable matrix and a perfect adhesion between matrix and fibres, Fig. 1. (See [9] for a more detailed discussion about this assumption). The matrix is assumed to be linear-elastic and isotropic, i.e., characterized by the Young modulus E and the shear modulus G. In this case, tacking into account the central symmetry, characteristic of each periodic assembly, Eqs. (4) become

4 2554 THERMEC 26 S A W) S D W (5) The non-null components of the constitutive tensors A and D are [9]: A 1111 Eμρ, A E, A Eμ, A 2121 Eμρ /2, and D E (μ /2 + αρ 2 ) w 2, D E (1/4 + 2 μ /ρ 3 ) w 2, where μ G/E, ρ w/t is the aspect ratio of the fibre, and α a constant depending on the fibres arrangement. This model has been implemented in a FE computer code [6]. Some numerical simulations have been performed, in order to investigate the capabilities of this approach. As a reference material we will adopt the experimental values of E3.5 GPa and G/E.4, common to epoxy and polyester. Both such thermosets have an experimental value of Poisson s ratio of ν.25, i.e., identical to the value ν iso E/2G-1.25 corresponding to an ideally isotropic material. Fig. 1. Schematic of the module. The fibre is represented by the shaded area. The matrix is the embedding volume. Fig. 2. Schematic of the geometry of the system and of the loading modes: (a) traction test, (b) shear test, (c) 4-point bending test. Our 2-dimensional reference system, shown in Fig. 2, is a beam of length L (parallel to the x Cartesian axis) and height HL/1 (parallel to the y Cartesian axis), in plane-strain, constant-force loading condition. Three types of simulated loading tests will be considered: (1) traction, represented by a symmetric tensile loading at both ends of the beam, (Fig. 2a); (2) shear, represented by two equal and opposite loadings at the two ends of the beam (Fig. 2b); (3) four-point bending, represented by two point loads applied on the top side, at a distance L/3 and 2L/3 along the beam, while the two ends are held fixed at the bottom side (Fig. 2c). In all cases, the applied force is such that the maximum displacement is within 2-3% of L. All the results will be presented as a function of the scale parameter λw/l, representing the size of the module compared with the system size, and of the initial fibre orientation ϕ, with ϕ indicating fibres parallel to the x-axis of the system. In Fig. 3 and 4 the strain energy of the system E (i.e., the strain energy density, Eq. 3, integrated over the volume of the beam) is plotted as a function of the initial fibre orientation ϕ and of the scale parameter λ, respectively. In the same figures, dashed curves represent the corresponding anisotropic Cauchy (a-c) model, obtained by setting the microrotation equal to the skew-symmetric part of the displacement gradient, Wskw( u), and D in Eq.(5) [4]. The E values are scaled by the corresponding isotropic-elasticity value, E C (matrix without fibres).

5 Materials Science Forum Vols λ4x1-3 4-point bending shear traction.25.2 λ E/E C.15.1 multifield.15.1 E/E C.12 ϕπ/4 multifield 4-point bending Shear Traction.12 anisotropic Cauchy.8 anisotropic Cauchy.8 π/4 π/2 Fig. 3. Plot of the integrated energy density E as a function of the fibre orientation ϕ. ϕ /λ.4 Fig. 4. Plot of the integrated energy density E as a function of the scale factor λ. With reference to Fig. 3, it can be observed that in each loading test the behaviour of the multifield solution is close, or even equal, to the a-c solution, at ϕ and ϕπ/2. On the other hand, very large differences are seen at any intermediate value, the maximum discrepancy always occurring around ϕπ/4. In all cases, the multifield model appears to describe a less rigid composite than a corresponding a-c model, since the stored elastic energy is always higher under fixed forces. All the plots refer to a scale factor λ4.e-3. Fig. 4 shows the main difference between the multifield and the a-c model. The latter cannot describe local rotations of the fibres inside the module, and therefore it is unable to describe size effects in the material response. On the contrary, the multifield model can represent different rotations of the fibres inside the module, and explicitly takes into account their size in the constitutive relation, Eqs. 5, thus being able to catch the dependency of the material response on the scale parameter. All the plots refer to an initial fibre orientation ϕπ/4. In Fig. 5 we show a detailed picture of the fibre rotation depicted by both the multifield (λ4.e-3) and the a-c model. The suitable descriptor in the multifield model is the value attained by the additional microrotation field, W, actually representing the rotation of the fibres (Eq. 2), or more precisely by its unique independent component, namely W 21. In the a-c model the fibres are constrained to follow the rotation of the matrix, so the appropriate kinematical descriptor is the unique independent out-of-diagonal component of the skew-symmetric part of the displacement gradient, namely skw( u) 21. Once again, the a-c model comes out to be much stiffer than the multifield one. In fact, it is unable to describe high microrotation gradients, as in the regions close to the points where loads are applied: in fact, the fibre rotation realized in the multifield model is always much higher than in the a-c model (+2% near the loading points, +5% near the ends). It must be pointed out that such results hold for the chosen value of λ, since the multifield response strongly depends on it.

6 THERMEC Fig. 5. Contour map of the fibre rotation (initial fibre orientation: ϕ); darker colours indicate higher values of the fibre rotation. On the left: multifield model (λ4.e-3), map of the microrotation field. On the right: a-c model, map of the skew-symmetric part of the displacement gradient (macrorotation). Acknowledgements Financial support from the Italian Ministry of Instruction, University and Research (MIUR) is gratefully acknowledged. References [1] R. Phillips R. (21): Crystals, Defects and Microstructures: Modeling Across Scales, (Cambridge University Press, Cambridge 21) [2] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam 1993) [3] G. Capriz, Continua with Microstructure (Springer-Verlag, Berlin 1989) [4] P. Trovalusci and R. Masiani, Int. J. Solids & Struct., Vol. 42, 5578 (25) [5] P. Trovalusci, A multiscale continuum for damaged fibre composites, Mater. Sci. Forum, Vol (23), p [6] V. Sansalone, P. Trovalusci an F. Cleri, Int. J. Multiscale Meth. Engn. (in press) [7] J. L. Ericksen, Advances in Applied Mechanics, Vol. 17, Yih C. S., Ed. (Academic Press, London, 1977), 189 [8] R. Hill, J. Mech. Phys. Solids, Vol. 11 (1963), 357 [9] V. Sansalone, P. Trovalusci and F. Cleri, Acta Mater. (in press) [1] G. Maugin, Material Inhomogeneities in Elasticity (Chapman & Hall, London, 1993).

Heterogeneous structures studied by interphase elasto-damaging model.

Heterogeneous structures studied by interphase elasto-damaging model. Heterogeneous structures studied by interphase elasto-damaging model. Giuseppe Fileccia Scimemi 1, Giuseppe Giambanco 1, Antonino Spada 1 1 Department of Civil, Environmental and Aerospace Engineering,

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

ASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS

ASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS ASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS Dieter H. Pahr and Helmut J. Böhm Institute of Lightweight Design and Structural

More information

An Atomistic-based Cohesive Zone Model for Quasi-continua

An Atomistic-based Cohesive Zone Model for Quasi-continua An Atomistic-based Cohesive Zone Model for Quasi-continua By Xiaowei Zeng and Shaofan Li Department of Civil and Environmental Engineering, University of California, Berkeley, CA94720, USA Extended Abstract

More information

Authors: Correspondence: ABSTRACT:

Authors: Correspondence: ABSTRACT: Multi-Scale Modeling of the Impact and Failure of Fiber Reinforced Polymer Structures using DIGIMAT to LS-DYNA Interface Authors: L. Adam, R. Assaker & R. Ramaya e-xstream engineering S.A. 7, Rue du Bosquet.

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering

More information

A direct evaluation of the Fabric Tensor in anisotropic porous media

A direct evaluation of the Fabric Tensor in anisotropic porous media A direct evaluation of the Fabric Tensor in anisotropic porous media Maria Cristina Pernice 1, Luciano Nunziante 1, Massimiliano Fraldi 1,2 1 Department of Structural Engineering, University of Naples

More information

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

Multiscale modeling of failure in ABS materials

Multiscale modeling of failure in ABS materials Institute of Mechanics Multiscale modeling of failure in ABS materials Martin Helbig, Thomas Seelig 15. International Conference on Deformation, Yield and Fracture of Polymers Kerkrade, April 2012 Institute

More information

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation Mark Hardiman Materials and Surface Science Institute (MSSI), Department of Mechanical and Aeronautical

More information

Finite Element Modeling of Residual Thermal Stresses in Fiber-Reinforced Composites Using Different Representative Volume Elements

Finite Element Modeling of Residual Thermal Stresses in Fiber-Reinforced Composites Using Different Representative Volume Elements Proceedings o the World Congress on Engineering 21 Vol II WCE 21, June 3 - July 2, 21, London, U.K. Finite Element Modeling o Residual Thermal Stresses in Fiber-Reinorced Composites Using Dierent Representative

More information

Estimating the overall properties of heterogeneous Cosserat materials

Estimating the overall properties of heterogeneous Cosserat materials Modelling Simul. Mater. Sci. Eng. 7 (1999) 829 840. Printed in the UK PII: S0965-0393(99)03041-7 Estimating the overall properties of heterogeneous Cosserat materials S Forest, R Dendievel and G R Canova

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

Soufiane Belhouideg. Keywords Composite materials, homogenization method, Eshelby s inclusion problem.

Soufiane Belhouideg. Keywords Composite materials, homogenization method, Eshelby s inclusion problem. Prediction of effective mechanical properties of composite materials using homogenization approach: Application to tungsten fiber reinforced bulk metallic glass matrix composite Soufiane Belhouideg Abstract

More information

Most of the material in this package is based on a recently published book. This is:

Most of the material in this package is based on a recently published book. This is: Mechanics of Composite Materials Version 2.1 Bill Clyne, University of Cambridge Boban Tanovic, MATTER Assumed Pre-knowledge It is assumed that the student is familiar with simple concepts of mechanical

More information

An orthotropic damage model for crash simulation of composites

An orthotropic damage model for crash simulation of composites High Performance Structures and Materials III 511 An orthotropic damage model for crash simulation of composites W. Wang 1, F. H. M. Swartjes 1 & M. D. Gan 1 BU Automotive Centre of Lightweight Structures

More information

Hysteretic equivalent continuum model of nanocomposites with interfacial stick-slip

Hysteretic equivalent continuum model of nanocomposites with interfacial stick-slip Hysteretic equivalent continuum model of nanocomposites with interfacial stick-slip Giovanni Formica 1, Michela Talò, Walter Lacarbonara 1 Dipartimento di Architettura, Università degli Studi Roma Tre

More information

Linear Cosserat elasticity, conformal curvature and bounded stiffness

Linear Cosserat elasticity, conformal curvature and bounded stiffness 1 Linear Cosserat elasticity, conformal curvature and bounded stiffness Patrizio Neff, Jena Jeong Chair of Nonlinear Analysis & Modelling, Uni Dui.-Essen Ecole Speciale des Travaux Publics, Cachan, Paris

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

EVALUATION OF EFFECTIVE MECHANICAL PROPERTIES OF COMPLEX MULTIPHASE MATERIALS WITH FINITE ELEMENT METHOD

EVALUATION OF EFFECTIVE MECHANICAL PROPERTIES OF COMPLEX MULTIPHASE MATERIALS WITH FINITE ELEMENT METHOD U.P.B. Sci. Bull., Series D, Vol. 79, Iss. 3, 2017 ISSN 1454-2358 EVALUATION OF EFFECTIVE MECHANICAL PROPERTIES OF COMPLEX MULTIPHASE MATERIALS WITH FINITE ELEMENT METHOD Mohamed said BOUTAANI 1, Salah

More information

Archetype-Blending Multiscale Continuum Method

Archetype-Blending Multiscale Continuum Method Archetype-Blending Multiscale Continuum Method John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering 3/27/2014 1 1 Outline Background and Motivation Archetype-Blending Continuum

More information

Viscoelastic Damping Characteristics of Indium-Tin/SiC Particulate Composites

Viscoelastic Damping Characteristics of Indium-Tin/SiC Particulate Composites Viscoelastic Damping Characteristics of Indium-Tin/SiC Particulate Composites HyungJoo Kim, Colby C. Swan Ctr. for Computer-Aided Design, Univ. of Iowa Roderic Lakes Engineering Physics, Univ. of Wisconsin

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

A FULLY COUPLED MULTISCALE SHELL FORMULATION FOR THE MODELLING OF FIBRE REINFORCED LAMINATES

A FULLY COUPLED MULTISCALE SHELL FORMULATION FOR THE MODELLING OF FIBRE REINFORCED LAMINATES ECCM-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 24 A FULLY COUPLED MULTISCALE SHELL FORMULATION FOR THE MODELLING OF FIBRE REINFORCED LAMINATES J. Främby, J. Brouzoulis,

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

ELASTOPLASTICITY THEORY by V. A. Lubarda

ELASTOPLASTICITY THEORY by V. A. Lubarda ELASTOPLASTICITY THEORY by V. A. Lubarda Contents Preface xiii Part 1. ELEMENTS OF CONTINUUM MECHANICS 1 Chapter 1. TENSOR PRELIMINARIES 3 1.1. Vectors 3 1.2. Second-Order Tensors 4 1.3. Eigenvalues and

More information

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

Analysis of high loss viscoelastic composites

Analysis of high loss viscoelastic composites Analysis of high loss viscoelastic composites by C. P. Chen, Ph.D. and R. S. Lakes, Ph.D. Department of Engineering Physics Engineering Mechanics Program; Biomedical Engineering Department Materials Science

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Constitutive Equations

Constitutive Equations Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module

More information

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

ICM11. Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model

ICM11. Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 1760 1765 ICM11 Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model Marco Alfano a,, Franco

More information

A TIME-DEPENDENT DAMAGE LAW IN DEFORMABLE SOLID: A HOMOGENIZATION APPROACH

A TIME-DEPENDENT DAMAGE LAW IN DEFORMABLE SOLID: A HOMOGENIZATION APPROACH 9th HSTAM International Congress on Mechanics Limassol, Cyprus, - July, A TIME-DEPENDENT DAMAGE LAW IN DEFORMABLE SOLID: A HOMOGENIZATION APPROACH Cristian Dascalu, Bertrand François, Laboratoire Sols

More information

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION Chapter 1 DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION A. Berezovski Institute of Cybernetics at Tallinn Technical University, Centre for Nonlinear Studies, Akadeemia tee 21, 12618

More information

A New Approach in Material Modeling Towards Shear Cutting of Carbon Fiber Reinforced Plastics

A New Approach in Material Modeling Towards Shear Cutting of Carbon Fiber Reinforced Plastics DOI: 1.24352/UB.OVGU-218-8 TECHNISCHE MECHANIK, 38, 1, (218), 91 96 submitted: July 31, 217 A New Approach in Material Modeling Towards Shear Cutting of Carbon Fiber Reinforced Plastics L. Poggenpohl,

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

Mixed-Mode Crack Propagation in Functionally Graded Materials

Mixed-Mode Crack Propagation in Functionally Graded Materials Materials Science Forum Vols. 492-493 (25) pp. 49-414 online at http://www.scientific.net 25 Trans Tech Publications, Switzerland Mixed-Mode Crack Propagation in Functionally Graded Materials Jeong-Ho

More information

A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites

A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites Materials Science and Engineering A 412 (2005) 53 60 A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites Harald Berger a,,

More information

CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement

CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement Mark Hughes 19 th September 2016 Outline Fibre architecture Volume fraction and the rule of mixtures Principle

More information

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign Microstructural Randomness and Scaling in Mechanics of Materials Martin Ostoja-Starzewski University of Illinois at Urbana-Champaign Contents Preface ix 1. Randomness versus determinism ix 2. Randomness

More information

Numerical homogenisation of micromorphic media

Numerical homogenisation of micromorphic media TECHNISCHE MECHANIK, 30, 4, (2010), 364 373 submitted: November 02, 2009 Numerical homogenisation of micromorphic media R. Jänicke, S. Diebels Due to their underlying microtopology, cellular materials

More information

ENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material

ENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material ENGN 2340 Final Project Report Optimization of Mechanical Isotropy of Soft Network Material Enrui Zhang 12/15/2017 1. Introduction of the Problem This project deals with the stress-strain response of a

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown

More information

International Journal of Pure and Applied Mathematics Volume 58 No ,

International Journal of Pure and Applied Mathematics Volume 58 No , International Journal of Pure and Applied Mathematics Volume 58 No. 2 2010, 195-208 A NOTE ON THE LINEARIZED FINITE THEORY OF ELASTICITY Maria Luisa Tonon Department of Mathematics University of Turin

More information

Multiscale analyses of the behaviour and damage of composite materials

Multiscale analyses of the behaviour and damage of composite materials Multiscale analyses of the behaviour and damage of composite materials Presented by Didier BAPTISTE ENSAM, LIM, UMR CNRS 8006 151 boulevard de l hôpital l 75013 PARIS, France Research works from: K.Derrien,

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

Multiscale Approach to Damage Analysis of Laminated Composite Structures

Multiscale Approach to Damage Analysis of Laminated Composite Structures Multiscale Approach to Damage Analysis of Laminated Composite Structures D. Ivančević and I. Smojver Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University

More information

Fracture Mechanics of Composites with Residual Thermal Stresses

Fracture Mechanics of Composites with Residual Thermal Stresses J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate

More information

The concept of Representative Volume for elastic, hardening and softening materials

The concept of Representative Volume for elastic, hardening and softening materials The concept of Representative Volume for elastic, hardening and softening materials Inna M. Gitman Harm Askes Lambertus J. Sluys Oriol Lloberas Valls i.gitman@citg.tudelft.nl Abstract The concept of the

More information

A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites.

A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. P.F.Giddings, C.R.Bowen, H.A.Kim University of Bath, UK Dept. Mech. ng, University

More information

International Journal of Engineering Science

International Journal of Engineering Science International Journal of Engineering Science 63 (2013) 1 9 Contents lists available at SciVerse ScienceDirect International Journal of Engineering Science journal homepage: www.elsevier.com/locate/ijengsci

More information

FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES

FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES Proc. 2 nd ESIS TC4 Conference on Polymers and Composites, in press, 1999 Author prepared reprint FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

Computational homogenization of material layers with micromorphic mesostructure

Computational homogenization of material layers with micromorphic mesostructure Computational homogenization of material layers with micromorphic mesostructure C. B. Hirschberger, N. Sukumar, P. Steinmann Manuscript as accepted for publication in Philosophical Magazine, 21 September

More information

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996). 1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients

More information

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS Mohsen Safaei, Wim De Waele Ghent University, Laboratory Soete, Belgium Abstract The present work relates to the

More information

Effects of geometry and properties of fibre and matrix on overall. composite parameters

Effects of geometry and properties of fibre and matrix on overall. composite parameters Int. Journal of Applied Sciences and ngineering Research, ol. 3, Issue 4, 2014 www.ijaser.com 2014 by the authors Licensee IJASR- Under Creative Commons License 3.0 editorial@ijaser.com Research article

More information

FOAM TOPOLOGY BENDING VERSUS STRETCHING DOMINATED ARCHITECTURES

FOAM TOPOLOGY BENDING VERSUS STRETCHING DOMINATED ARCHITECTURES Acta mater. 49 (001) 1035 1040 www.elsevier.com/locate/actamat FOAM TOPOLOGY BENDING VERSUS STRETCHING DOMINATED ARCHITECTURES V. S. DESHPANDE, M. F. ASHBY and N. A. FLECK Cambridge University, Department

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

U.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L.

U.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L. Computational Modeling of Composite and Functionally Graded Materials U.S. South America Workshop Mechanics and Advanced Materials Research and Education Rio de Janeiro, Brazil August 2 6, 2002 Steven

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

NUMERICAL MODELLING AND DETERMINATION OF FRACTURE MECHANICS PARAMETERS FOR CONCRETE AND ROCK: PROBABILISTIC ASPECTS

NUMERICAL MODELLING AND DETERMINATION OF FRACTURE MECHANICS PARAMETERS FOR CONCRETE AND ROCK: PROBABILISTIC ASPECTS NUMERICAL MODELLING AND DETERMINATION OF FRACTURE MECHANICS PARAMETERS FOR CONCRETE AND ROCK: PROBABILISTIC ASPECTS J. Carmeliet Catholic University of Leuven, Department of Civil Engineering, Belgium

More information

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale Angelos Mintzas 1, Steve Hatton 1, Sarinova Simandjuntak 2, Andrew Little 2, Zhongyi

More information

A multiscale framework for lubrication analysis of bearings with textured surface

A multiscale framework for lubrication analysis of bearings with textured surface A multiscale framework for lubrication analysis of bearings with textured surface *Leiming Gao 1), Gregory de Boer 2) and Rob Hewson 3) 1), 3) Aeronautics Department, Imperial College London, London, SW7

More information

MICROSTRUCTURAL AND ELASTIC PROPERTIES OF SHORT FIBER REINFORCED COMPOSITES

MICROSTRUCTURAL AND ELASTIC PROPERTIES OF SHORT FIBER REINFORCED COMPOSITES MICROTRUCTURAL AND ELATIC PROPERTIE OF HORT FIBER REINFORCED COMPOITE V. Müller 1, T. Böhlke 1 1 Institute of Engineering Mechanics, Chair for Continuum Mechanics, Karlsruhe Institute of Technology (KIT)

More information

Toward a novel approach for damage identification and health monitoring of bridge structures

Toward a novel approach for damage identification and health monitoring of bridge structures Toward a novel approach for damage identification and health monitoring of bridge structures Paolo Martino Calvi 1, Paolo Venini 1 1 Department of Structural Mechanics, University of Pavia, Italy E-mail:

More information

SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION

SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION Theodore V. Gortsas

More information

Finite Element of Composite Materials with Partial Debonding along Boundary. Kohei HIGUCHI, Tetsuo IWAKUMA

Finite Element of Composite Materials with Partial Debonding along Boundary. Kohei HIGUCHI, Tetsuo IWAKUMA Vol. 8 (2005 8 ) Finite Element of Composite aterials with Partial Debonding along Boundary Kohei HIGUCHI, Tetsuo IWAKUA JFE PhD 980-8579 6-6-06 Damages in composite materials are mostly governed by interfacial

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

Numerical analysis of the mechanical response of wood glulam beams reinforced through the thickness by FRP rods.

Numerical analysis of the mechanical response of wood glulam beams reinforced through the thickness by FRP rods. Numerical analysis of the mechanical response of wood glulam beams reinforced through the thickness by FRP rods. Giuseppe Giambanco 1, Tiziana Turetta 1, Alessia Cottone 1 1 Department of Structural, Aerospace

More information

MESOSCOPIC MODELLING OF MASONRY USING GFEM: A COMPARISON OF STRONG AND WEAK DISCONTINUITY MODELS B. Vandoren 1,2, K. De Proft 2

MESOSCOPIC MODELLING OF MASONRY USING GFEM: A COMPARISON OF STRONG AND WEAK DISCONTINUITY MODELS B. Vandoren 1,2, K. De Proft 2 Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm MESOSCOPIC MODELLING OF MASONRY USING GFEM: A COMPARISON OF STRONG AND WEAK DISCONTINUITY

More information

Load Cell Design Using COMSOL Multiphysics

Load Cell Design Using COMSOL Multiphysics Load Cell Design Using COMSOL Multiphysics Andrei Marchidan, Tarah N. Sullivan and Joseph L. Palladino Department of Engineering, Trinity College, Hartford, CT 06106, USA joseph.palladino@trincoll.edu

More information

Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks

Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks TECHNISCHE MECHANIK, 3, 4, (), 374 386 submitted: October 6, 9 Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks B. Klusemann, B. Svendsen Usually homogenization methods

More information

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation

More information

Modelling of multi-axial ultimate elastic wall stress (UEWS) test for glass fibre reinforced epoxy (GRE) composite pipes

Modelling of multi-axial ultimate elastic wall stress (UEWS) test for glass fibre reinforced epoxy (GRE) composite pipes pplied Mechanics and Materials Vol. 367 (013) pp 113-117 Online available since 013/ug/16 at www.scientific.net (013) Trans Tech Publications, Switzerland doi:10.408/www.scientific.net/mm.367.113 Modelling

More information

Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets

Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets Study of xes Rotation during Simple Shear ests on luminum Sheets L. Duchêne 1, B. Diouf 1,. Lelotte 1, P. Flores 1, S. Bouvier 2,.M. Habraken 1 1. rgenco Dept., University of Liège, Chemin des Chevreuils

More information

Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria

Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria Michael Brünig, Steffen Gerke and Daniel Brenner Abstract The paper deals with a series of new experiments and

More information

Cracked concrete structures under cyclic load

Cracked concrete structures under cyclic load Cracked concrete structures under cyclic load Fabrizio Barpi & Silvio Valente Department of Structural and Geotechnical Engineering, Politecnico di Torino, Torino, Italy ABSTRACT: The safety of cracked

More information

AN ANISOTROPIC PSEUDO-ELASTIC MODEL FOR THE MULLINS EFFECT IN ARTERIAL TISSUE

AN ANISOTROPIC PSEUDO-ELASTIC MODEL FOR THE MULLINS EFFECT IN ARTERIAL TISSUE XI International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XI E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) AN ANISOTROPIC PSEUDO-ELASTIC MODEL FOR THE MULLINS

More information

MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK

MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK J. Pina-Henriques and Paulo B. Lourenço School of Engineering, University of Minho, Guimarães, Portugal Abstract Several continuous and discontinuous

More information

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion Van Paepegem, W. and Degrieck, J. (3. alculation of Damage-dependent Directional Failure Indices from the sai-wu Static Failure riterion. omposites Science and echnology, 63(, 35-3. alculation of Damage-dependent

More information

Back Analysis of Measured Displacements of Tunnels

Back Analysis of Measured Displacements of Tunnels Rock Mechanics and Rock Engineering 16, 173--180 (1983) Rock Mechanics and Rock Engineering 9 by Springer-Verlag 1983 Back Analysis of Measured Displacements of Tunnels By S. Sakurai and K. Takeuchi Kobe

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov*

Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov* Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov* University of Perugia, Italy Email: mic@unipg.it ^Wessex Institute of Technology, Ashurst Lodge,

More information

1 Durability assessment of composite structures

1 Durability assessment of composite structures 1 Durability assessment of composite structures 1.1 Introduction Composite structures for mechanical and aerospace applications are designed to retain structural integrity and remain durable for the intended

More information

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites Module 4: Behaviour of a Laminae-II Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties

More information

A Higher Order Synergistic Damage Model for Prediction of Stiffness Changes due to Ply Cracking in Composite Laminates

A Higher Order Synergistic Damage Model for Prediction of Stiffness Changes due to Ply Cracking in Composite Laminates Copyright 23 Tech Science Press CMC, vol.34, no.3, pp.227-249, 23 A Higher Order Synergistic Damage Model for Prediction of Stiffness Changes due to Ply Cracking in Composite Laminates Chandra Veer Singh,2

More information

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY Mohsen Safaei 1, a, Wim De Waele 1,b 1 Laboratorium Soete, Department of Mechanical Construction and Production, Ghent University, Technologiepark

More information

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Dynamic and buckling analysis of FRP portal frames using a locking-free finite element F.

More information

On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity

On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity 63 Advances in 63 On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity I. Karsaj, C. Sansour and J. Soric Summary A constitutive model for orthotropic yield function at large strain

More information

Numerical simulation of sheet metal forming processes using a new yield criterion

Numerical simulation of sheet metal forming processes using a new yield criterion Key Engineering Materials Vol. 344 (007) pp. 833-840 online at http://www.scientific.net (007) Trans Tech Publications, Switzerland Numerical simulation of sheet metal forming processes using a new yield

More information

The response of an idealized granular material to an incremental shear strain

The response of an idealized granular material to an incremental shear strain The response of an idealized granular material to an incremental shear strain Luigi La Ragione and Vanessa Magnanimo Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Bari, Italy E-mail: l.laragione@poliba.it;

More information

Inelastic constitutive equation of plasma-sprayed ceramic thermal barrier coatings

Inelastic constitutive equation of plasma-sprayed ceramic thermal barrier coatings Available online at www.amse.org.cn Acta Metall. Sin.(Engl. Lett.Vol.4 No. pp161-168 April 011 Inelastic constitutive equation of plasma-sprayed ceramic thermal barrier coatings Masayuki ARAI Materials

More information

Masonry strength domain by homogenization in generalized plane state

Masonry strength domain by homogenization in generalized plane state Masonry strength domain by homogenization in generalized plane state Enrica Bernardini, Nicola Cavalagli, Federico Cluni, Vittorio Gusella Department of Civil and Environmental Engineering, University

More information

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1. IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.978 PDF) http://web.mit.edu/mbuehler/www/teaching/iap2006/intro.htm

More information

Application of rheological model of material with microdefects and nanodefects with hydrogen in the case of cyclic loading

Application of rheological model of material with microdefects and nanodefects with hydrogen in the case of cyclic loading Key Engineering Materials Submitted: 2014-12-15 ISSN: 1662-9795, Vols. 651-653, pp 592-597 Revised: 2015-02-13 doi:10.4028/www.scientific.net/kem.651-653.592 Accepted: 2015-02-16 2015 Trans Tech Publications,

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information