Bristol Machine Learning Reading Group

Size: px
Start display at page:

Download "Bristol Machine Learning Reading Group"

Transcription

1 Bristol Machine Learning Reading Group Introduction to Variational Inference Carl Henrik Ek - carlhenrik.ek@bristol.ac.uk November 25,

2 Introduction

3 Ronald Aylmer Fisher 1

4 TODAY p(y ) = p(y, X )dx p(x Y ) = p(y, X ) p(y ) "Being Bayesian" implies not making a point estimate, only deductively impossible scenarios should be given zero probability Learning: maximise evidence of data Decision/Reasoning: posterior distribution The evidence is the key-quantity in machine learning as it includes all possible knowledge 2

5 In practice p(y ) = In practice p(y, X )dx p(x Y ) = p(y X ) p(x ) p(y ) We can usually formulate joint distribution most commonly as likelihood times prior reaching posterior is hard as evidence is challenging to compute 3

6 Laplace quote "Nature laughs at the difficulties of integration" Simon Laplace 4

7 Pachinko YouTube 5

8 Two paths p(y ) i p(y, X i ) p(y ) = L(q(X )) + D(q(X )) X i p(x ) q(x ) p(x Y ) Stochastic Deterministic + correct in limit - now evidence of approximation + know how good approximation is - will never be correct 6

9 Variational Inference

10 Formalise log p(y) = log p(y, X)dX = log p(x Y)p(Y)dX q(x) log q(x) p(x Y)p(Y)dX 7

11 Jensen Inequality Convex Function λf (x 0 ) + (1 λ)f (x 1 ) f (λx 0 + (1 λ)x 1 ) x [x min, x max ] λ [0, 1]] 8

12 Jensen Inequality E[f (x)] f (E[x]) ( ) f (x)p(x)dx f xp(x)dx 9

13 Jensen Inequality in Variational Bayes ( log(x)p(x)dx log ) xp(x)dx moving the log inside the the integral is a lower-bound on the integral 10

14 Variational Bayes cont. q(x) logp(y) = log q(x) p(x Y)p(Y)dX = q(x)log p(x Y)p(Y) dx q(x) = q(x)log p(x Y) q(x) dx + dxp(y) = KL (q(x) p(x Y)) + log p(y) 11

15 Variational Bayes cont. q(x) logp(y) = log q(x) p(x Y)p(Y)dX = q(x)log p(x Y)p(Y) dx q(x) = q(x)log p(x Y) q(x) dx + dxp(y) = KL (q(x) p(x Y)) + log p(y) if q(x) is the true posterior we have an equality, therefore match the distributions i.e. argmin q KL (q(x) p(x Y)) variational distributions are approximations to intractable posteriors 11

16 ELBO KL(q(X) p(x Y)) = = q(x)log q(x) p(x Y) dx q(x)log q(x) dx + log p(y) p(x, Y) = H(q(X)) E q(x) [log p(x, Y)] + log p(y) 12

17 ELBO log p(y) = KL(q(X) p(x Y)) + E q(x) [log p(x, Y)] H(q(X)) }{{} ELBO E q(x) [log p(x, Y)] H(q(X)) = L(q(X)) Evidence Lower BOund if we maximise the ELBO we, find an approximate posterior get an approximation to the marginal likelihood maximising p(y) is learning finding p(x Y) q(x) is prediction 12

18 ELBO % Define block styles \usetikzlibrary{shapes,arrows} \tikzstyle{astate} = [circle, draw, text centered, font=\foo \tikzstyle{rstate} = [circle, draw, text centered, font=\foo \tikzstyle{bstate} = [circle, draw, text centered, font=\foo \begin{tikzpicture}[->,>=stealth, shorten >=1pt, auto, node \node [astate] (X) at (0,1.5) {X}; \node [rstate] (Y) at (0,0) {Y}; \node [astate] (X2) at (1.5,1.5) {X}; \node [rstate] (Y2) at (1.5,0) {Y}; \node [bstate] (T) at (2.3,1.5) {$\theta$}; \path (X) edge (Y); \end{tikzpicture} 12

19 Why is this useful? Why is this a sensible thing to do? Taking the expectation of a log is usually easier than the expectation We are allowed to choose the distribution to take the expectation over Ryan Adams in Talking Machines 1 1 Talking Machines - Season Two Episode Five 13

20 Approximate Distribution Mean Field Approximation q(x) = i q i (X i ) Introduced in statistical physics 2 Approximates the marginals of the posterior 2 Peterson, C., and Anderson, J. R. (1987) A mean field theory learning algorithm for neural networks 14

21 Examples

22 Ising Model 15

23 Gaussian Process Why? Not directly applicable to variational bayes Introduces variational compression by augumentation Exemplifies well what VB is in practice 16

24 Gaussian Process Gaussian Process 101 [ f f ] N ([ 0 0 ], [ k(x, X) k(x, x ) k(x, X) k(x, x ) ]) p(f x, X, f, θ) = N (k(x, X) T K(X, X) 1 f, k(x, x ) k(x, X) T K(X, X) 1 K(X, x )) 16

25 Gaussian Process Joint Distribution p(y, F, X) =p(y F)(F X)p(X) d =p(x) p(y f)p(f X) j=1 Learning Task p(y) = p(y F)(F X)p(X)dXdF we can analytically integrate out F but X appears non-linearly w.r.t. Y rendering this intractable 16

26 Gaussian Process L A,B = = X,F F,X ( ) p(y F)p(F X))p(X) q(x) log q(x) q(x)(y F)p(F X) q(x) log q(x) p(x) = L KL (q(x) p(x)) X 16

27 Gaussian Process L = F,X q(x) log p(y F)p(F X) d f GP(y, k(, )) p(f X) = N (f :,j 0, K) k (x :,i, x :,j ) = σe 1 2 j=1 Q q=1 wq(x q,i x q,j) 2 16

28 Gaussian Process Add another set of samples from the same prior d p(u Z) = N (u :,j 0, K)yy j=1 Conditional distribution p(f :,j, u :,j X, Z) = p(f :,j u :,j, X, Z)p(u :,j Z) = N ( f :,j K fu (K uu ) 1 u :,j, K ff K fu (K uu ) 1 K uf ) N (u:,j 0, K uu ), 16

29 Gaussian Process New Augmented Model d p(y, F, U, X Z) = p(x) p(y :,j f :,j )p(f :,j u :,j, X)p(u :,j Z) j=1 we have done nothing to the model, just added halucinated observations however, U and X u are not random but variational parameters 16

30 Gaussian Process Variational distributions are approximations to intractable posteriors, q(u) p(u Y, X, Z, F) q(f) p(f U, X, Z, Y) q(x) p(x Y) If U is sufficient statistics of F this means, p(f U, X, Z, Y) = p(f U, X, Z) 16

31 Gaussian Process L = = X,F,U X,F,U p(y, F, U X, Z) q(f)q(u)q(x) log q(f)q(u) d j=1 q(f)q(u)q(x) log p(y :,j f :,j )p(f :,j u :,j, X, Z)p(u :,j Z) q(f)q(u)q(x) 16

32 Gaussian Process L = = X,F,U X,F,U p(y, F, U X, Z) q(f)q(u)q(x) log q(f)q(u) d j=1 q(f)q(u)q(x) log p(y :,j f :,j )p(f :,j u :,j, X, Z)p(u :,j Z) q(f)q(u)q(x) Assume that U is sufficient statistics for F q(f)q(u)q(x) = p(f U, X, Z)q(U)q(X) 16

33 Gaussian Process = X,F,U j=1 d L = p(f :,j u :,j, X, Z)q(u :,j )q(x) X,F,U j=1 d j=1 log p(y :,j f :,j ) p(f :,j u :,j, X, Z)p(u :,j Z) d = j=1 p(f :,j u :,j, X, Z)q(u :,j ) p p(f :,j u :,j, X, Z)q(u :,j )q(x) log p j=1 p(y :,j f :,j )p(u :,j Z) p j=1 q(u :,j) = E q(f),q(x),q(u) [p(y F)] KL (q(u) p(u Z)) 16

34 Gaussian Process Summary E q(f),q(x),q(u) [p(y F)] KL (q(u) p(u Z)) KL (q(x) p(x)) Expectation tractable Can be computed for certain priors Reduces to expectations over co-variance functions know as Ψ statistics 16

35 Conclusion

36 Variational Inference Summary Often efficient Not stochastic Provides you with posterior and a bound on marginal likelihood its fun a lot of the work relates to multi-variate calculus tricks and substitutions 17

37 Bristol Machine Learning Reading Group 18

38 Bristol Machine Learning Reading Group Berkeley Tea Talk Style everyone reads paper someone introduces paper and leads discussion + constant workload on everyone - requires everyone to take this serious 18

39 Bristol Machine Learning Reading Group Seminar Style everyone skims paper someone is responsible for presenting paper + will work - very uneven workload 18

40 Bristol Machine Learning Reading Group Choosing the paper Presenter picks freely Presenter picks from agreed pool Currator chooses papers Topics several papers on one topic cover lots of single topics 18

41 eof 19

42 Source blocks

43 import numpy as np import matplotlib.pyplot as plt plt.xkcd() plt.savefig(path) return path 19

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics School of Computing & Communication, UTS January, 207 Random variables Pre-university: A number is just a fixed value. When we talk about probabilities: When X is a continuous random variable, it has a

More information

DD Advanced Machine Learning

DD Advanced Machine Learning Modelling Carl Henrik {chek}@csc.kth.se Royal Institute of Technology November 4, 2015 Who do I think you are? Mathematically competent linear algebra multivariate calculus Ok programmers Able to extend

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Variational Inference. Sargur Srihari

Variational Inference. Sargur Srihari Variational Inference Sargur srihari@cedar.buffalo.edu 1 Plan of discussion We first describe inference with PGMs and the intractability of exact inference Then give a taxonomy of inference algorithms

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

Variational Dependent Multi-output Gaussian Process Dynamical Systems

Variational Dependent Multi-output Gaussian Process Dynamical Systems Variational Dependent Multi-output Gaussian Process Dynamical Systems Jing Zhao and Shiliang Sun Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2017 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun Y. LeCun: Machine Learning and Pattern Recognition p. 1/? MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun The Courant Institute, New York University http://yann.lecun.com

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Non-Gaussian likelihoods for Gaussian Processes

Non-Gaussian likelihoods for Gaussian Processes Non-Gaussian likelihoods for Gaussian Processes Alan Saul University of Sheffield Outline Motivation Laplace approximation KL method Expectation Propagation Comparing approximations GP regression Model

More information

Tree-structured Gaussian Process Approximations

Tree-structured Gaussian Process Approximations Tree-structured Gaussian Process Approximations Thang Bui joint work with Richard Turner MLG, Cambridge July 1st, 2014 1 / 27 Outline 1 Introduction 2 Tree-structured GP approximation 3 Experiments 4 Summary

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Introduction. Basic Probability and Bayes Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 26/9/2011 (EPFL) Graphical Models 26/9/2011 1 / 28 Outline

More information

Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes

Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes Journal of Machine Learning Research 17 (2016) 1-62 Submitted 9/14; Revised 7/15; Published 4/16 Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes Andreas C. Damianou

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Week 3: The EM algorithm

Week 3: The EM algorithm Week 3: The EM algorithm Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2005 Mixtures of Gaussians Data: Y = {y 1... y N } Latent

More information

Statistical Machine Learning Lectures 4: Variational Bayes

Statistical Machine Learning Lectures 4: Variational Bayes 1 / 29 Statistical Machine Learning Lectures 4: Variational Bayes Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 29 Synonyms Variational Bayes Variational Inference Variational Bayesian Inference

More information

Lecture 1a: Basic Concepts and Recaps

Lecture 1a: Basic Concepts and Recaps Lecture 1a: Basic Concepts and Recaps Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University Another Walkthrough of Variational Bayes Bevan Jones Machine Learning Reading Group Macquarie University 2 Variational Bayes? Bayes Bayes Theorem But the integral is intractable! Sampling Gibbs, Metropolis

More information

Variational Bayesian Logistic Regression

Variational Bayesian Logistic Regression Variational Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

14 : Mean Field Assumption

14 : Mean Field Assumption 10-708: Probabilistic Graphical Models 10-708, Spring 2018 14 : Mean Field Assumption Lecturer: Kayhan Batmanghelich Scribes: Yao-Hung Hubert Tsai 1 Inferential Problems Can be categorized into three aspects:

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

The Expectation Maximization or EM algorithm

The Expectation Maximization or EM algorithm The Expectation Maximization or EM algorithm Carl Edward Rasmussen November 15th, 2017 Carl Edward Rasmussen The EM algorithm November 15th, 2017 1 / 11 Contents notation, objective the lower bound functional,

More information

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) September 26 & October 3, 2017 Section 1 Preliminaries Kullback-Leibler divergence KL divergence (continuous case) p(x) andq(x) are two density distributions. Then the KL-divergence is defined as Z KL(p

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

Quantitative Biology II Lecture 4: Variational Methods

Quantitative Biology II Lecture 4: Variational Methods 10 th March 2015 Quantitative Biology II Lecture 4: Variational Methods Gurinder Singh Mickey Atwal Center for Quantitative Biology Cold Spring Harbor Laboratory Image credit: Mike West Summary Approximate

More information

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray School of Informatics, University of Edinburgh The problem Learn scalar function of vector values f(x).5.5 f(x) y i.5.2.4.6.8 x f 5 5.5 x x 2.5 We have (possibly

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Today. Probability and Statistics. Linear Algebra. Calculus. Naïve Bayes Classification. Matrix Multiplication Matrix Inversion

Today. Probability and Statistics. Linear Algebra. Calculus. Naïve Bayes Classification. Matrix Multiplication Matrix Inversion Today Probability and Statistics Naïve Bayes Classification Linear Algebra Matrix Multiplication Matrix Inversion Calculus Vector Calculus Optimization Lagrange Multipliers 1 Classical Artificial Intelligence

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/8 General Chain Rules Definition Conditional mutual information

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

Variational Learning : From exponential families to multilinear systems

Variational Learning : From exponential families to multilinear systems Variational Learning : From exponential families to multilinear systems Ananth Ranganathan th February 005 Abstract This note aims to give a general overview of variational inference on graphical models.

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression

Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression Michalis K. Titsias Department of Informatics Athens University of Economics and Business mtitsias@aueb.gr Miguel Lázaro-Gredilla

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

arxiv: v1 [stat.ml] 8 Sep 2014

arxiv: v1 [stat.ml] 8 Sep 2014 VARIATIONAL GP-LVM Variational Inference for Uncertainty on the Inputs of Gaussian Process Models arxiv:1409.2287v1 [stat.ml] 8 Sep 2014 Andreas C. Damianou Dept. of Computer Science and Sheffield Institute

More information

Two Useful Bounds for Variational Inference

Two Useful Bounds for Variational Inference Two Useful Bounds for Variational Inference John Paisley Department of Computer Science Princeton University, Princeton, NJ jpaisley@princeton.edu Abstract We review and derive two lower bounds on the

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Gaussian Process Regression Networks

Gaussian Process Regression Networks Gaussian Process Regression Networks Andrew Gordon Wilson agw38@camacuk mlgengcamacuk/andrew University of Cambridge Joint work with David A Knowles and Zoubin Ghahramani June 27, 2012 ICML, Edinburgh

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Parameter estimation Conditional risk

Parameter estimation Conditional risk Parameter estimation Conditional risk Formalizing the problem Specify random variables we care about e.g., Commute Time e.g., Heights of buildings in a city We might then pick a particular distribution

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Variational Bayes and Variational Message Passing

Variational Bayes and Variational Message Passing Variational Bayes and Variational Message Passing Mohammad Emtiyaz Khan CS,UBC Variational Bayes and Variational Message Passing p.1/16 Variational Inference Find a tractable distribution Q(H) that closely

More information

Variational Gaussian Process Dynamical Systems

Variational Gaussian Process Dynamical Systems Variational Gaussian Process Dynamical Systems Andreas C. Damianou Department of Computer Science University of Sheffield, UK andreas.damianou@sheffield.ac.uk Michalis K. Titsias School of Computer Science

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Variational Inference and Learning. Sargur N. Srihari

Variational Inference and Learning. Sargur N. Srihari Variational Inference and Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics in Approximate Inference Task of Inference Intractability in Inference 1. Inference as Optimization 2. Expectation Maximization

More information