Deadlock Avoidance for Free Choice Multi- Reentrant Flow lines: Critical Siphons & Critical Subsystems 1

Size: px
Start display at page:

Download "Deadlock Avoidance for Free Choice Multi- Reentrant Flow lines: Critical Siphons & Critical Subsystems 1"

Transcription

1 Deadlo Avodane fo Fee Choe Mul- Reenan Flow lnes: Cal Shons & Cal Subsysems P. Ballal, F. Lews, Fellow IEEE, J. Meles, Membe IEEE, J., K. Seenah Auomaon & Robos Reseah Insue, Unvesy of exas a Alngon, 73 Ja Newell Blvd. S., Fo Woh, X , USA. Insuo de Ingeneía y enología de la Unvesdad Auónoma de Cudad Juáez, Ave. del Chao 6 Ne. Juáez, Mexo. Absa hs ae has wo onbuons. Fs, we esen an analyss of deadlo avodane fo a genealzed ase of Mul Reenan Flow Lne sysems (MRF) alled he Fee Choe Mul Reenan Flow Lne sysems (FMRF). In FMRF, some ass have mulle esoue hoes; hene oung desons have o be made and uen esuls n deadlo avodane do no hold. hs analyss s based on he so-alled Cula Was (CW) of he esoues n he sysem. Fo FMRF, he well nown noons of Cal Shons and Cal Subsysems mus be genealzed and we edefne hese obes fo suh sysems. Ou seond onbuon ovdes a max fomulaon ha effenly omues he obes equed fo deadlo avodane. A MAXWIP dsahng oly s fomulaed fo deadlo avodane n FMRF sysems. Aodng o hs oly, deadlo n FMRF s avoded by lmng he wo n ogess (WIP) n he al subsysems of eah CW. A man onbuon of hs ae s a max fomulaon fo de and effen omuaon of Pe Ne obes. Index ems Deadlo Avodane, Pe nes, Dsee Even Sysems, MRF, FMRF, Inellgen Conol. Noaons DES dsee even sysems MRF mul-eenan flow lnes FMRF fee hoe mul-eenan flow lnes CW ula wa CB ula blong PN Pe Nes WIP wo n ogess I. INRODUCION R esoue assgnmen and as sequenng lay moan oles n alaons nvolvng moble weless senso newos, manufaung sysems, and ohe deson esoue sysems. Bu, he use of shaed esoues n hese dsee even sysems (DES) eaes mao oblems whle sequenng ass. If he assgnmen of he esoues s no oely made, seous oblems mgh ase. Suh oblems Suoed by ARO gan DAAD ; ARO gan ARO W9NF-5--34; NSF gan IIS-32655; NSF gan CNS-42282, Sngaoe SERC SRP gan 42228, NI Lead Use gan, exas ARP gan nlude blong and sysem deadlo [3, 9,, 7], whh ae dangeous suaons ha evenually so all he avy n he flow lne nvolved. Seveal exsng aoahes n he leaue ae desgned fo he ase of Mul Reenan Flow Lne sysems (MRF) [3, 7,, 7], whee esoues ae shaed and an efom moe han one as. Analyss of deadlo avodane s well undesood fo MRF. An moan ase n deadlo avodane saeges n MRF s he one of a Cula Wa (CW) [6] among he esoues. I has been shown n [3,, 6, 7] ha deadlo ous n MRF when blong develos n a CW. he analyss of shaed esoues beomes even hade when hee ae mulle hoes of esoues fo a gven as. hs means oung desons have o be made [4]. hese sysems ae a genealzed ase of MRF sysems alled he Fee Choe Mul-Reenan Flow Lnes (FMRF). In FMRF, moe han one esoue an efom same as n he sysem. In ohe wods, some ass n FMRF may no have edeemned esoues assgned. hs s he ase, fo nsane, n weless senso newos []. In he ase of FMRF, he nown mehods of deadlo avodane ovded fo MRF do no wo. Fo analyss, modelng and onol of DES, Pe Nes (PN) [3, 5] have been exensvely used. hough he PN famewo offes goous gound fo heoeal analyss, s vey nonvenen fo aual omuaonal analyss of he aal DES, ausng oblems of omuaonal omlexy n shedulng and deadlo avodane. PN heoy does no ovde effen omuaonal means fo omung obes suh as ula was, shons, e. Max ehnques ha exlo he PN suue an be used o allevae hs. Reenly, a max-based dsee even onolle has been oosed, ovng o be vey effen n omung PN obes and n sequenng ass n manufaung envonmens as well as senso newos [, 4, 5, 6,,, 2]. PN obes suh as Cula Was, Cal Shons, and Cal Subsysems have o be omued o avod deadlo n MRF. Due o he exsene n FMRF of deson laes, whh ae followed by wo o moe deson banhes, hese obes anno be used fo deadlo avodane hee whou edefnon, In hs ae we show how hese obes an be omued fo FMRF. he ey ssue s ha s neessay o edefne, o genealze he defnon of, al subsysems fo FMRF.

2 2 Also, we ovde a max fomulaon whh an effenly omue hese obes. hs max fomulaon allows fas and effen numeal omuaon ehnques o be aled o PN analyss. We show how a MAXWIP dsahng oly an be fomulaed fo FMRF o avod blong henomena. Unde hs oly, deadlo n FMRF an be avoded by lmng he wo n ogess (WIP) n he Cal Subsysems of eah CW. he es of he ae s oganzed as follows. In Seon II we desbe he oees ha haaeze FMRF sysems usng Pe Nes. In Seon III we show he oelaon beween ula was and suues efeed o as Cal Shons and Cal Subsysems. We genealze he noon of al shon o he ase of FMRF. Seon IV esens a max fomulaon ove an o/and algeba ha maes effen and de o omue he Pe Ne obes needed fo deadlo avodane. In Seon V we llusae he new noons by omung hem fo wo FMRF examles, one of whh adms deadlo, and one of whh does no. II. PERI NE ANALYSIS A. Pe Nes A Pe ne (PN) a bae dgah (P,, I, O), whee P s he se of laes, s a se of ansons, I s he se of nu as fom laes o ansons, and O s he se of ouus as fom ansons o laes. One an eesen I as an nu ndene max whh has I(,) f hee s an nu a fom lae o anson and O as an ouu ndene max whh has O(,) f hee s an ouu a fom anson o lae. he ndene max s defned as WO-I () Gven a node v (ehe anson o lae), we defne v as he e-se of v (se of nodes wh as o v) and v as he os-se of v (se of nodes wh as fom v). Smlaly, fo a se of nodes S {v }, defne S { v } and S { v }. he followng assumons allow one o eesen a dsee even sysem by a Pe Ne:. hee ae no mahne falues. 2. No e-emon. A esoue anno be emoved fom a ob unl s omlee. 3. Muual exluson. A sngle esoue an be used fo only one ob a a me. 4. Hold whle wang. A oess holds he esoues aleady alloaed o unl has all he esoues equed o efom a ob. B. Reenan Flow Lnes A seal ase of PN s he mulle eenan flow-lne sysem (MRF), see Fgue. Fo MRF sysems, we aon he se of laes, P J R PI PO, wh he laes n J, R, PI, PO eesenng esevely, he obs efomed, he avalably of esoues, nu of as, and ouu of odus. Eah a ah sas wh a PI-lae and emnaes wh a POlae. We denoe he se of ob laes J fo a ye as J so ha J J. Le he se of ansons along a ah be x, x 2,,x L, wh x and x L beng he nal and emnal ansons esevely. R() s he se of esoues needed by ob. Fo any esoue R defne he obs efomed by as J (). We aon he esoue se R as R s and R ns, wh R s beng he se of shaed esoues,.e. hose needed fo moe han one ob, and R ns beng he se of non-shaed esoues. hen, J ( ) f Rns and J ( ) > f Rs, wh S denong he adnaly of a se S (.e. he numbe of elemens). Moe geneal han MRF ae he fee-hoe mulleeenan flow-lne sysems (FMRF), whh have no edeemned esoue alloaon fo he obs. ha s, seveal dffeen esoues may be aable and avalable o efom a sef ob. hen, oung desons may be equed along he a ah abou whh esoues o use fo he nex ob, see Fgue 2. We fomally defne FMRF sysems as a lass of sysems sasfyng he followng oees (φ beng he emy se): Poees of FMRF. P, φ 2. on a ah, x P \ J φ and x L P \ J φ 3. J, R R : R( ) wh R ( ) 4. J, 5., J,, 6. J, J, l, φ l 7. R s φ hs means ha hee ae: () no self loos, (2) eah a ah has a well-defned begnnng and an, (3) evey ob eques only one esoue wh no wo onseuve obs usng he same esoue, (4) hee may be some obs ha an be done by dffeen esoues (.e. oung desons may have o be made), (5) hee ae no a ah loos, (6) fo any wo dsn obs on dffeen a ahs hee s no assembly,.e. wo a ahs anno mege no one, (7) hee ae shaed esoues. Aodng o oey 3, R( ) R R, wh he adnaly R ( ) ; Unde he foegong assumon, one has J ( ) J J. Poey 4 dsngushes MRF fom FMRF sysems. A FMRF sysem an have > fo some J, so ha oung desons ae needed. We all suh ob laes deson laes. In MRF, one has J. ha s, MRF ae a seal lass of FMRF. A anson x s sad o be a oseo anson of. A deson lae has mulle oseo ansons,.e. >. he esoues used by deson laes ae alled deson esoues. Fgue shows a samle MRF, whle Fgue 2 shows a samle FMRF. In Fgue he a ahs ae ndeen and nehe sl no eombne. R s a shaed esoue along a sngle a ah, and R2 s a shaed esoue beween wo a l

3 3 ahs. In Fgue 2 he a ahs sl a deson laes. he deson laes ae B and B2, eah followed by wo ansons. A hoe s equed hee o dede whh esoue (R o R2, esevely R3 o R4) o use fo he nex ob. P RA 2 R2A 3 RB 4 R3A 5 Po R4 R2 R R6 R3 P2 6 R4A 7 R2B 8 R6A 9 Po2 Fgue. MRF sysem B R B2 R3 B3 P B 2 RA 4 B2 6 R3A 8 B3 R5A Po gah n he dgah G w and an be obaned by ang unons of non-dson smle CW. Gven a CW C { }, one an aon he se of ansons as o +, whee o { x x C φ}, he se of nu ansons of wh nu as fom some ohe C, and + { x x C φ}, he se of nu ansons of wh no nu as fom any ohe C. We loosely say ha he ansons o ae n he CW C. he ob se of CW C { } s gven by J(C) U J ( ). n Paon hs as J(C) J ( C) + J ( C), whee J ( C) { J ( C), C} and o + { J ( C) +, }. J ( C) C Noe ha fo FMRF, one may have J ( C) J ( C) φ. In fa, f J (C) + s a deson lae wh C a smle CW,.e. > so ha has moe han one oseo anson, hen, J (C) + and J (C). hs s esely wha dsngushes deadlo avodane n MRF fom deadlo avodane n FMRF sysems. 3 R2A 5 7 R4A 9 R R2 R4 R5 Fgue 2. FMRF sysem M B B2 B3 a m b C. Cula Wa (CW) he followng bagound s aen fom [3,, 6]. We say esoue was fo esoue (denoed ) f he avalably of s an mmedae eequse fo he elease of,.e., φ. A wa elaon dgah s defned as G w (R, A) whee R s he se of nodes and A {a } s he se of edges wh a dawn f (.e. eah a eesens a anson n ). In G w, defne an R-ah beween and as a se of R-laes suh ha. hen s sad o wa ove an R-ah fo, denoed a, f hee s an R-ah beween and. A ula wa (CW) s a se of esoues C R, wh C >, suh ha fo any odeed a{, } C, a. A CW always onans a leas one shaed esoue. he smles CW s a se of esoues C R, suh ha fo some aoae e-labelng, one has 2... q, wh fo,, q. hs wll be efeed o as a smle ula wa. A smle ula wa s a smle u n he gah and s a CW no onanng any ohe CW. Consde a wa elaon gah G w and a CW C Gw. hen fo evey C, hee exss a leas one smle ula wa σ C suh ha σ. A CW s a songly onneed sub Pn Fgue 3. FMRF sysem Fgue 3 shows a FMRF sysem. Hee, R-B2-M-B3 s a CW C. Hee, a, m, b2 and b3 ae n J(C) and b s n J(C) +. b2 and b3 ae deson laes and B2 and B3 ae he eseve deson esoues. In FMRF sysems, due o he onsuon, he deson laes (b2 and b3 n hs examle) ae also a a of J(C) +. D. Mang, Plae Veo A lae P J R PI PO s sad o be maed when onans a oen, whh deng on he lae onanng ndaes an ongong ob, he exsene of an avalable esoue, a a n, o a odu ou. In a FMRF, he nal mang veo denoed as m assgns oens only o R and PI-laes. I s assumed ha he PO-laes ae always emy. Gven b b b3 3 2a 5 7 P, m() denoes he mang of,.e. he numbe of oens n. Gven a se of laes S, m(s) denoes he m2 M2 R2 9 2b 2 3 Pou

4 4 numbe of oens n S. A se of laes s sad o be unmaed o emy f none of s laes has any oens. Gven he se of laes P, he PN lae veo, o -veo, has dmenson of P, and one elemen oesondng o eah lae. Le he se of all laes be P,,..., }. { 2 Q hen he lae veo has Q elemens. Any se of m laes { P,2,..., m} an be eesened as a P -veo havng m enes and zeo enes ohewse. he P PN mang veo m( ) [ m( ) m( 2 ) L] N, wh he naual numbes N {,, 2...}, gves he numbe of oens n eah lae. Defne he PN anson veo, o x-veo, x o have dmenson of, and one elemen x oesondng o eah anson. Le he se of all ansons be { x, x2,... xl}. hen he anson veo has L elemens. A se of m ansons {,2,..., m} an be eesened as an x L-veo x havng m enes x and zeo enes ohewse. he well-nown PN mang anson equaon [5], m + ( ) m( ) + W x (2) + ( gves he new mang veo m ) n ems of he evous mang veo m ( ) and he ansons ha have fed aeang as s n x. A -nvaan s defned as a se of esoues and laes ha s n he null sae of W..e. W. (3) Noe ha f s a -nvaan, hen + m ( ) m( ) + W x m( ) so ha he numbe of oens n a -nvaan s onsan. One ye of -nvaan s gven by any esoue lus all of s obs, J (). E. Cula Blong A ula blong CB s a ula wa ha s emy and wll always eman so [3,, 6]. ha s, fo a CW C { }:. m(c), and 2. no oens wll eve be added o C. In hs suaon, one s sad o have deadlo, whee he esoues n he CW ae wang fo eah ohe and wll neve agan beome avalable. If a esoue on a gven a ah s nvolved n a CB, hen all downseam avy along ha a ah wll evenually. ha s, afe some me, he downseam obs on ha a ah wll neve agan be efomed. Le C {C } be a se of dson CW. hen, C s sad o be n CB f eah CW C s n CB. F. Shons he analyss of CB and deadlo an be aed ou fomally usng he noon of shon. A shon s a se of laes havng he oey ha s nu anson se s onaned n s ouu anson se.e. S S (4) A shon has he ey oey ha, one s unmaed, emans so. A mnmal shon of a CW C s he smalles shon onanng he CW. Defne a al shon fo a CW C as a smalles shon whh has he oey ha a CW s a CB f and only f he al shon s emy. I s shown n [, 2] ha a mnmal shon n MRF s a al shon. Fo MRF sysems, fo evey CW C, he se of laes S defned by S C J (C) (5) + s a mnmal shon as well as a al shon, whee J(C) + was defned eale [, 6]. In he ase of FMRF sysems, hs obe s sll a mnmal shon, bu anno be used n deadlo analyss due o deson laes. Hene s no a al shon as s now shown. Lemma : Fo FMRF sysems, S s a mnmal shon fo he CW C. Poof: o ove ha show S n S S s a shon, we need o,.e., evey anson havng an ouu lae S has an nu lae n S. I s nown ha, fo evey C, hee exss C,, suh ha φ. So, f, C R ns _ B wh B beng he deson esoues, hen, and hee exss some C,, suh ha { }. On he ohe hand, C R B ), hen fo ( s evey x }, ehe x { }, fo some C,, o { x, fo some J (C) +. Moeove, J C), { } fo some C by Poey 3. hs ( + oves ha shon. he mnmaly of Sˆ Sˆ, heefoe by onsuon, S s a S s obvous fom he way s onsued n FMRF sysems. If any J (C) + s lef ou, hen hee wll be some C Rs wh { } S. Smlaly f one of he esoues n C s no onsdeed, C s lef ou, hen hee wll be a leas one C wh { }. Boh he ases volae he defnon of shon. S Lemma 2: Le C be a smle CW and S onan a deson lae whose assoaed deson esoue s no a shaed esoue, hen emy. S onans a -nvaan and an neve be

5 5 Poof: Le C be a smle CW and S be defned by (5). Suose S onans a deson lae wh an assoaed esoue lae ha s no shaed,.e. J( ). hen C and >, so ha J(C) and J (C) +. heefoe, S. Moeove, S so ha he -nvaan J ( ) s n S. III. CRIICAL SIPHONS AND DEADLOCK ANALYSIS FOR FMRF SYSEMS Lemma shows ha S gven by (5) s ndeed a mnmal shon, even fo FMRF, bu Lemma 2 shows ha n some suaons fo FMRF, S an neve be emy. Sne deadlo an sll ou n suh suaons, s neessay o ovde an alenave fomula fo al shons fo FMRF. A. FMRF Cal Shons Le C s be he se of all smle CWs n a FMRF sysem. Le be a deson lae wh esoue lae R(). Defne he se of all he smle CWs n C s onanng he deson esoue as C { C C C} (6) s Gven a CW C, le he se of s deson laes be J de ( C) { J ( C) > } (7) Defne, C ( C) { C J ( C)} (8) de whh s he ey o deadlo analyss n FMRF sysems. We need o eusvely omue C (C), as eah ndvdual smle CW n C (C) defned n (8) may onan moe deson esoues, and so on as shown n Fgue 4. Hene we need an algohm o alulae C (C). Algohm shows a modfed veson of he bnay ee algohm [2]. C C2 C3 Fgue 4. ee eesenaon of smle CW deene hough deson laes C5 C6 Algohm : Comue C (C) fo a CW C Gven a CW C,. Calulae C (C) usng Equaon 8 2. x 3. y C (C) C4 4. If x y If any ( C C ( C)) C ( C) \ C x C (C) [ C (C) C (C x ) ] x x + y C (C) Go o 4 else x x + Go o 4 else 5. Reun C (C) Noe ha hs algohm omues he se C (C) fo a sngle CW. Also, when hs algohm emnaes, C (C)C (C (C)). hs algohm emnaes n one of he wo ways: a) J ( C ( C)) J ( C ( C)) φ o + b) φ +. In he dsussons ahead, we wll ove ha n ase (b), C (C) an neve be n CB and hene no CW n C (C) an be n CB. Defne a elaon C C, f hee exss a esoue C C. Noe ha sasfes he followng oees:. C C (Reflexvy) 2. If C C hen C C ( Symmey) 3. If C C and _ C C (No ansve) _ C C hen s no guaaneed ha heefoe, " " s no an equvalene elaon. Defne a seond elaon C C f hee exss a se of CW C suh ha C2... C C C n C. Noe ha,. C C (Reflexvy) 2. If C C hen C C 3. If C C hen (Symmey) C C (ansve) heefoe he elaon " " s an equvalene elaon [8] and aons he se of all he CW no dson equvalene _ lasses K(C) { C : C C },.e. K(C)K( C ). Coollay : Fo any smle CW C C (C), C (C) C ( C) _. Poof: he algohm meely omues he se C (C)K(C). heefoe, C (C) C ( C _ ). Lemma 3: C (C) s a CB f and only f:. φ + 2. m(c (C)) and 3. fo eah C ( C), J ( ) wh m ( ), x

6 6 J ( C ( C)) Poof: Neessy: Le C (C) be n CB.e s emy. hs means ha m(c (C)). Le and suose J ( C ( C)) +. hen ehe φ o hee exss a esoue C (C) suh ha φ. hs means ha a anson may fe and u a oen n R() so ha C (C) does no eman emy. heefoe, all he maed obs ae n J(C (C)) and no n J(C (C)) + and ondons and 3 hold. Suffeny: Condons and 3 of Lemma 3 mly ha any C (C) an ge a oen f and only f some C (C) wh, an ge a oen. Howeve by ondon 2 of Lemma 3, all he R-laes n C (C) ae emy, and hene none of hem an eve ge any oen. In ohe wods, C (C) s n CB. Lemma 4: Fo MRF, C s n CB f and only f: Suose S s no emy. hen hee s a lae suh ha. m(c (C)) and ' J ( C ( C)) + and m ( ' ). hs s a onadon. 2. fo eah C ( C), J ( ) wh m ( ), J ( C ( C)) Suffeny: S s a shon and by defnon, one s emy, wll eman so. hus, when m(c Poof: In MRF, C (C) C and ondon of Lemma 3 always (C)), wh all he oens los o some J ( holds. ), wh m() means ha Gven a CW C defne he obe, J( C ( C)) + and hene,. Sne S ( ) ( ( C)) C C J C + (9) he nex esuls show ha S s a al shon fo C fo FMRF sysems unde a ean ondon. Lemma 5: Fo any CW C, S shon fo C (C). Poof: One needs o show ha defned n (9) s a mnmal S S,.e., evey anson havng an ouu lae n S has an nu lae n S. By onsuon, S C (C),.e., he ouu laes fo hese ansons ae esoues n C (C). I s nown ha, fo evey C (C), hee exss C ( C),, suh ha φ. So, f C ( C) Rns, hee exss some C ( C),, suh ha { }. On he ohe hand, s C ( C) R, hen fo evey x }, ehe x { }, { fo some C ( C),, o x, fo some J ( C ( C)) +. Moeove, J C ( C)), { } fo ( + some C (C) by Poey 3. hs oves ha S S, Now, le hee be lae suh ha ' J ( C) and heefoe by onsuon, S s a shon. Mnmaly follows ' J ( C ( C)). In hs ase, ( ' ) C φ and by he way S s onsued. ( ' ) C ( C) φ. hs means ha C C (C), whh s a Noe, fo MRF, C (C) C, eoveed. Lemma 6: If ^ S and Lemma s S + a -nvaan and an neve be emy. φ, hen S onans Poof: If + φ, means ha hee exss a deson lae suh ha J ( C ( C)) + and J ( C ( C)). Also, by defnon of S, S. If s he oesondng esoue of, S, so he -nvaan J ( ) s also n S. Hene an neve be emy. he nex esul shows ha S s a al shon fo C (C). heoem : Gven C (C) and le φ. hen C (C) s n CB f and + only f S s emy. Poof. Neessy: If C (C) s n CB, Lemma 3 shows ha m(c (C)) and m() only fo. heoem 2: Le + φ, by Lemma 3 C (C) s n CB. + φ. hen C (C) an neve be n CB. Poof: Fo C (C) o be n CB, m(c (C)) and m() only wh J ( C ( C)). Suose also J( C ( C)) +. hs mles ( ) R C ( C). hus, hs oen an be fed. Hene, deadlo does no ou. hee exss a elaonsh beween Lemma 6 and heoem 2. When J ( C ( C)) + J ( C ( C)) φ, means S has a - nvaan and hene, C (C) an neve be n CB. Lemma 7: Gven a CW C{ }. hen () J ( C) ()If + ( C) + \ J ( C) + J φ,hen Poof: () Gven C{ }. hen by defnon C C (C). onadon. Hene, J ( C) { J ( C), C} o { J ( C ( C), C ( C)} J ( C ( C)) () In FMRF, f C s a CW wh deson lae hen, >, J (C) and also ossbly J (C) + as saed eale. Hene he se J ( C) + \ J ( C) } sly onsss of ob {

7 7 laes belongng o J(C) + whou deson laes. Le J ( C) + \ J ( C) } be denoed by J(C) s+. Now by defnon, { J(C) J ( C) + J ( C) and J(C (C))J(C (C)) + J(C (C)). By (), J ( C) J ( C ( C)). Sne C C (C), J(C) J(C (C)). heefoe, J(C)\J(C) J(C (C))\J(C (C)). he em J(C)\J(C) s equal o J(C) + \J(C).e. J(C) s+. Also, he em J(C (C))\J(C (C)) s J(C (C)) + as J ( C ( C)) + J ( C ( C)) φ. hus, J ( C) + \ J ( C) J ( C ( C)) +. he nex esuls show ha S s a al shon fo C. heoem 3: If J ( C ( C)) + J ( C ( C)) φ hen CW C s n CB f and only f C (C) s n CB. Poof: Neessy: Suose C be n CB and C (C) s no n CB. Case : If C does no onan deson laes hen CC (C) and he esul follows. Case 2: If C s n CB, hen m(c). Consde a esoue C and s ob lae suh ha s dead.e. m() fo all fuue fngs. Sne s dead, and hene, ( ) R R mus all be dead fo C o be n CB. C (C) and C ae elaed o eah ohe by he deson esoues. So, eang hs oess n a PN fom bawads o a ah of ansons and R-laes whh nlude all esoues of C (C), mus be dead. Fo C o eman n CB, no oen should be added o C and hene no oen should be added o C (C). hus, all he obs n C (C) mus be n J(C (C)). he ondon φ + ensues ha when C (C) s n CB, all he oens ae n J(C (C)) and no J(C(C)) +. Hene C s n CB. Suffeny: Le C (C) be n CB. hen m(c (C)) and hene m(c). Also by Lemma 3, all maed obs ae n J(C (C)). and no n J(C (C)) + and J ( C ( C)) J ( C ( C)) + φ. By Lemma 7 J ( C) and J(C) s+ J(C (C)) + whee J(C) s+ J ( C) + \ J ( C) }. Now, J(C) s+ J(C (C)) φ. { Hene fo all esoues n C and J ) havng m ( ), J(C). heefoe, C an ge a oen f and only f some ohe C (C) has a oen. Hene C s n CB. Coollay 2: Gven a CW C, and suose φ, hen C s n CB f and only f + S s emy. Poof: By heoem 3, C s n CB f and only f C (C) s n CB. hen heoem omlees he oof. Coollay 3: Gven ( ( C)) J C + ( φ, C (C) s n CB f and only f all he smle CWs n C (C) ae n CB. Poof: Neessy: Suose C (C) s n CB. Le hee be a smle CW C C ( ) suh ha s no n CB. I means C ehe m(c ) o oen an be added o C. Sne C C ( ), m( C ( C)) o oens an be added o C C (C). Hene, C (C) s no longe n CB. Suffeny: If all he smle CWs n C (C) ae n CB, means m(c ) and no oens wll eve be added o C. Sne C (C) U C, m(c (C)) and m(j(c (C) )) φ. Hene by defnon of CB, C (C) s n CB, ovded J ( C ( C)) J ( C ( C)) + φ. Coollay 4: Gven a CW C, and suose J ( C ( C)) J ( C ( C)) + φ, hen any CW C C (C) s n CB f C s n CB. Poof: By heoem 3, C s n CB f and only f C (C) s n CB. hen Coollay 3 omlees he oof. B. FMRF Cal Subsysems Fo bee eseve on ahevng dsahng oles wh deadlo avodane, he one of al subsysems [] s nodued. o avod deadlo, wo n ogess (WIP) mus be lmed whn ean al subsysems ha ae onsued by usng al shons, alled MAXWIP. A al subsysem fo a CW C n MRF s defned as he se of J-laes J(C). In ase of FMRF, Cal Subsysem fo a CW C an be defned f J ( C ( C)) J ( C ( C)) + φ and n hs ase s defned as he se of J-laes J(C (C)). Defne he se S S alled he suo of he bnay -nvaan ha mnmally oves S. Lemma 8: In FMRF, a smle CW C s no n deadlo f and only f one has m(j(c (C)) <m( S ). Poof: hee s CB n a sysem f and only f S s emy (by heoem ). Sne S S J ( C ( C)) s he suo of he bnay -nvaan, he oal numbe of s oens s onseved. hus, S wll be emy f and only f all he oens ae n J(C (C)).e. he al subsysem. he ondon m( S ) an be gven n ems of he nal mang of C (C), sne fo FMRF, he nal mang assgns oens only o R and PI laes. Noe ha one an now avod deadlo of a smle CW C by ensung ha he mang of s al subsysem S s less han he oal mang of he nal esoues n C (C). o be able o analyze FMRF sysems (and fo MRF sysems) and all s ossble deadlo suues, we need o denfy he se of all CWs.e smle CWs and CWs omosed of unon of nondson smle CWs (unons hough shaed esoues among smle CWs) [9, ]. Le us denoe hs se as CW. Lemma 9: hee s no CB n he FMRF sysem f fo evey C CW, he se C (C) s no n CB.

8 Poof: By heoem, when C (C) s no n CB, mles ha S s no emy. hen Lemma 8 omlees he oof. b. v s eesened by he veo v v Lemma : In FMRF, hee s no CB n he sysem f and only f fo evey C CW, one has m(j(c (C)) less han he nal 2. Le eesen a se of esoue laes. hen a. s eesened by he veo F mang of C (C). b. s eesened by he veo S hese esuls show ha we an avod deadlo by MAXWIP,.e. lmng WIP n all he al subsysems. Poof:. a: Any se of ob laes { J,2,..., m} s IV. MARIX COMPUAION OF PERI NE OBJECS PN ovde gea oal nsgh and mahemaal ehnques fo analyss, bu hey have had he defeny of no ovdng an effen omuaonal famewo fo smle omue-based analyss. We now nodue a max famewo fo omung suual obes of a PN ha oes hs defeny. Commensuae wh he aonng P J R PI PO wh J, R, PI, and PO beng he ses of ob laes, esoue laes, nu laes, and ouu laes esevely, aon he lae veo as v o wh v J, R, PI, o PO. Smlaly, aon he nu ndene max as I F F F F ]. Noe ha hee ae no nu as o [ v o ansons fom he laes n PO, so ha F o, a max of zeos. Paon he ouu ndene max as O [ S v S S S o ]. Noe ha hee ae no ouu as fom ansons o he laes n PI, so ha S. hese sub-maes ae Boolean maes havng enes of o. A. O/And Algeba Fo Comung PN Obes Gven Boolean maes A [ a ] and B [ b ], defne a logal o/and max algeba wheen addon oeaons ae elaed by logal o and mullaon oeaons by logal and. ha s, he max odu s defned by C A B wh ( a b ) ( a2 b2 ) ( a3 b3 ) L wh denong logal and and denong logal o. he max sum s defned by C A B wh a b. Noe ha hese max odus ae easly efomed usng sandad sofwae ogams nludng MALAB, e. hen one has omuaonal mehods fo omung PN obes based on he followng esul. Lemma : Max omuaon of PN e and os ses fo laes.. Le v eesen a se of ob laes. hen a. v s eesened by he veo F v v S eesened as a veo v havng m enes v and zeo enes ohewse. hen, by defnon v { } { xl I( l, ), some } x F ), some }. Moeove, { l v F v v { x l } wh xl [ Fv ) v( )] [ Fv ) v( )] x whh s equal o f and only f F v ) fo some.. b: Smlaly, by defnon, v { } {xl O(l, ),some } { l v x S ), some }. Also, v x S v x } wh { l xl [ Sv ) v( )] [ Sv ) v( )] whh s equal o f and only f S v ) fo some. 2. a: Any se of esoues laes { R,2,..., m} s eesened as a veo havng m enes and zeo enes ohewse. hen, by defnon { } { xl I( l, ), some } { l x F { x l } wh xl [ F ) ( )] [ F ) ( )] 2. b: Smlaly, by defnon, { } {xl O(l, ),some } x F ), some }. Moeove, { l x S ), some }. Also, x S x } wh { l xl [ S ) ( )] [ S ) ( )] whh s equal o f and only f S ) fo some. Lemma 2: Max omuaon of PN e and os ses fo ansons:. Le x eesen a se of ansons. hen a. x J s eesened by he veo S v x b. x R s eesened by he veo S x 8

9 9. x J s eesened by he veo x F v d. x R s eesened by he veo x F Poof: Pos ses of ansons ae ses of ob laes and esoues,.e. x { J, R}.. a. Any se of ansons { l l,2,..., n} s eesened as a veo x havng n enes x l and zeo enes ohewse. hen, by defnon x J { l } J { J O(, some l} { J S (, some l}. Moeove, S v x { } whee v S ( x( )} { S ( x } { v v l l whh s equal o f and only f Sv ( fo some l.. b. Any se of ansons { l l,2,..., n} s eesened as a veo x havng n enes x l and zeo enes ohewse. hen, by defnon x R { l } R { R O(, some l} { R S (, some l}. Moeove, S x { } whee S ( x( )} { S ( x } { l l whh s equal o f and only f S ( fo some l... Any se of ansons { l l,2,..., n} s eesened as a veo x havng n enes x l and zeo enes ohewse. hen, by defnon x J { l } J { J I(, some l} v { J F (, some l}. Moeove, F v x { } whee { v v l l F ( F ( x( )} { F ( x } whh s equal o f and only f v fo some l.. d. Any se of ansons { l l,2,..., n} s eesened as a veo x havng n enes x l and zeo enes ohewse. hen, by defnon x R { l } R { R I(, some l} { R F (, some l}. Moeove, x { } whee F ( x( )} { F ( x } F { l l F ( whh s equal o f and only f fo some l. B. Cula Was In Max Fom A wa elaon dgah fo MRF [2] s defned as W (S F ) () Eah one n he elemens w of W, eesens ha he dgah has an a fom esoue o esoue. CWs aea as loos n hs dgah. Smle CW aea as smle loos e.g. no onanng any smalle loos. W s used o omue all he smle CWs n MRF sysems usng a bnay sng algeba aoah used by [2] whh gves an ouu max CW. Eah CW s eesened as a ow n he max CW. In hs max CW eah eny of one n oson (,) means ha eah esoue s nluded n he h smle CW. Howeve, due o he omlexy of he Fee-Choe exenson of he MRF sysems, and due o he dvesy of loo ahs ha a se of esoues onaned n a smle CW mgh have, we need o denfy no only he esoues ha omose eah smle CW, bu also he ansons ha ln hem. hs wll gve us sef nfomaon needed o loae shons needed fo onsuons of ou deadlo oly fo FMRF sysems. We defne W (by dualy of W ) as W (F S ) () hs s a dgah of ansons. ha s, W s a dgah havng as fom anson o anson (by byassng a esoue.). Eah one n he elemens w of W, eesens ha he dgah has an a fom anson o anson. hen, one an denfy loos among ansons by usng sng algeba as above whh gves he ouu max CW. We loosely say s n CW f CW. Bu, even f we alulae wo ouomes fom he sng algeba, anson loos and esoue loos, we wll no be able o denfy whh se of anson loos oesond o whh se of esoue loos (due o he behavo of he algohm.). o do hs, defne, O S W (2) F O whee O s a zeo-max havng nxn elemens, O s a zeomax havng mxm elemens, n be he numbe of esoues o ows (olumn) of S (F ), and m be he numbe of ansons o ows (olumns) of F (S ). hs s a dgah of ansons and esoues R. Fo examle, hs dgah an be obaned by easng all he obs laes fom Fgue 3, and eeng he esoues, he ansons, and all he lns beween hem, as shown n Fgue 5. P n Fgue 5. Gahal eesenaon of dgah max W 6 7 R M B B 2 B 3 M 2 R P ou

10 Noe ha, usng hs dgah max W wh he bnay sng algeba algohm gven n [2], we ge he se C w [CW CW ], whee CW s he se of smle CW of esoues and CW s a se of smle CW of ansons. In ode o fnd he omlee se of smle CWs and he unon of non-dson smle CWs, we use he Guel algohm [] whh gves a max G. G ovdes he se of omosed CWs (ows) fom unons of smle CWs (olumns).e. an eny of n evey (, ) oson mles h smle CW s nluded n he h omosed CW. hen, we an alulae he se of loo esoues CW and loo ansons CW usng he followng onsuons, CW CW G CW (3) G CW (4) Noe ha denoes a smle CW, whle CW and CW efe o all he CWs (.e. smle and he unons). C. Max Algohm fo Comung C (C) Poey 4 of FMRF,.e J,, s wha dffeenaes FMRF fom MRF sysems. We aly hs oey of FMRF o omue C (C) usng maes. o do so, we mus fs omue C and J de (C) fo eah CW as equed o un Algohm. he nex algohm shows a oune whh an easly be mlemened usng ools suh as MALAB, o omue C and J de (C). Algohm 2: Calulang C usng maes fo : (CW ) f max(cw (,:)S F v )> [(,:) mles ene h ow] C (,:)CW (,:) Calulang J de (C) fo : (CW) f max(cw (,:)S F v )> J de (,:)CW (,:)S F v fo : J de fo : J de f J de (,) hen J de (,) f J de (,)> hen J de (,) Fndng nal C (C) DC S F v m fo : (CW ) f max(and(d(,:),j de (,:))) C (C)((m,:))CW (,:) mm+ Afe omung C, J de (C) and he nal C (C) usng Algohm 2, we use Algohm o omue C (C) eusvely. Noe ha Algohm only omues he se C (C) fo a CW C unde onsdeaon. hen, hs se s onveed o a sngle ow by usng unon of all he ows of C (C). he same oedue s followed fo all he ohe CWs n he sysem usng a smle fo loo o ge he omlee se C (C) fo all he CWs n he sysem. D. Cal Shons And Cal Subsysems In Max Fom In hs seon we use maes o omue he PN obes.e. Cal Shons and Cal Subsysems equed n Seon III fo deadlo analyss n FMRF sysems. C and C ae he se of nu and ouu ansons fom a CW C. One CW s onsued, we use Algohm 2 and hen Algohm o onsu C (C) fo eah C CW. Le (C) and C (C) be he se of nu and ouu C ansons fom C (C). In max fomulaon, s denoed as dc (C) and C (C) d esevely. I s omued as: dc (C) C (C) S (5) C (C) d C (C) F (6) o fnd he se of ansons CW (C (C)) beween esoues n he se C (C), we use, CW ( C ( C)) d C ( C) C ( C) d (7) he al subsysems J(C (C)) fo a gven CW ae gven by, CW ( C ( C)) F (8) he shon ob ses J(C (C)) + ae gven by, + d C ( C) ( d C ( C) C ( C) d ) F (9) Now we have all he mahney o omue usng maes he obes equed fo deadlo avodane usng heoem 3 and Lemma. E. MAXWIP Dsahng Poly Fo Deadlo Avodane In FMRF Lemmas 8, 9, and fomulae he MAXWIP dsahng oly fo deadlo avodane n FMRF sysems. Aodng o hs oly, CB n FMRF s avoded by lmng WIP n he al subsysems of eah CW C. hs oly an be mlemened as a eal-me deadlo avodane onol sheme by onollng he fng of he eedene ansons of he al subsysems. V. EXAMPLES We now llusae he new noons develoed n hs ae, as well as he owe of he max fomulaon, by omung hem fo wo examle FMRF. In he fs examle, deadlo an ou, whle a small hange n he suue yelds Examle 2, whee deadlo an neve ou. Examle : Consde Fgue 3. hs aula sysem onans hee deson esoues B, B2 and B3. Aodng o Seon IV, he elevan maes fo alulang he shon v v

11 obs and al subsysems ae F, S, F v and S v. F v s a max of obs equed o fe ansons. S v s a max of obs saed on fng of ansons. F s a max of esoues equed o fe ansons and S s a max of esoues eleased when ansons ae fed. hese maes fo he sysem n Fgue 3 ae gven by, R R2 M M2 B B2 B3 R R2 M M2 B B2 B F ' S b a 2a b2 m m2 b3 b 2b b a 2a b2 m m2 b3 b 2b F v ' S v he se of CWs n hs sysem usng he bnay sng algeba [] s gven by: R R2 M M2 B B2 B3 CW Eah ow n hs se eesens a CW e.g. he fs ow of hs se eesens he CW R-M-B-B3. Usng Algohm 2 and, he se C (C) fo hs sysem s omued as: R R2 M M2 B B2 B3 C (C) We obseve ha n hs ase, eah ow s he same, whh ndaes ha eah CW n CW s elaed by he deson esoues B2 and B3. hs s why we u wh he same esoues n eah ow of C (C). In fa, all he CWs n CW ae n he same equvalene lass C (C). he shon obs and al subsysems usng Equaons (8) and (9) ae gven by b a 2a b2 m m2 b3 b 2b J(C (C)) + b a 2a b2 m m2 b3 b 2b J(C (C)) In hs ase, φ + )) ( ( )) ( ( C C J C C J. Hene, f all he obs n J(C (C)).e. a, 2a, b2, m, m2, and b3 ae maed, hen aodng o heoem 3, C (C) s n CB and deadlo wll ou. Examle 2: Fgue 6 shows a small hange n he PN suue of Fgue 3. A new esoue R3 s added o he sysem whh efoms he as 3a,.e. R2 s no used fo 2a.

12 2 Pn Fgue 6. Case whee C J ( C ( )) + φ Hee, only he F and S maes hange. he maes F v and S v eman he same. hs s beause a new esoue s added o he sysem, bu he ass and he ansons eman he same. he addon of a new esoue esuls n an addonal olumn n he F and S maes. F R R2 R3 M M2 B B2 B S ' R R2 R3 M M2 B B2 B he oesondng CW and C (C) maes ae gven by: CW R R2 R3 M M2 B B2 B3 R R2 R3 M M2 B B2 B3 C (C) he shon obs and al subsysem usng Equaons (8) and (9) ae gven by: b a 2a b2 m m2 b3 b 2b J ( C ( C)) + b a 2a b2 m m2 b3 b 2b J ( C ( C)) J ( C ( C)) + We see ha φ. Hee, R3 C ( C) and heefoe, he as b3 J ( C ( C)) and B B2 B3 b b b3 3 a 2a 5 7 R M m m2 M2 9 R2 b 2a R3 2 3 Pou b3 J ( C ( C)) +. Hene, aodng o heoem 2, deadlo an neve ou. VI. CONCLUSIONS A heoy fo deadlo avodane n Fee Choe Mul- Reenan Flow Lnes (FMRF) s ovded ha exs nown esuls fo MRF. I s shown ha he ouene of deson laes, whh ae followed by wo o moe esoue ahs, means ha he usual noon of al shon used n MRF does no aly fo FMRF. heefoe, we defne a new noon of al shon fo FMRF ha s ed o deadlo avodane. A MAXWIP dsahng oly s fomulaed fo deadlo avodane n FMRF sysems. Aodng o hs oly, has been shown ha he wo n ogess (WIP) mus be lmed n he al subsysems o avod deadlo. A max fomulaon ha effenly omues he vaous PN obes equed fo deadlo avodane n FMRF has been ovded. hs max fomulaon allows.fas and effen numeal omuaon ehnques o be aled o PN analyss. REFERENCES [] Ballal P., Godano V., Lews F., "Deadlo fee dynam esoue assgnmen n mul-obo sysems wh mulle mssons: a max-based aoah," Po. Medeanean Conf. Conol & Auomaon, Anona, Ialy, June 26. [2] Coman,., Lesenson, C., and Rves R., Inoduon o Algohms, Pene Hall of Inda, 2. [3] Ezelea, J.; Colom, J.M.; Manez, J., A Pe ne based deadlo evenon oly fo flexble manufaung sysems, IEEE ansaon on Robos and Auomaon, Volume, Issue 2, Al 995 Page(s): [4] Godano V., Lews F., Meles J., uhano B., Coodnaon onol oly fo moble senso newos wh shaed heeogeneous esoues, Poeedngs of he IEEE Inenaonal Confeene on Conol and Auomaon, Budaes, June 25. [5] Godano V., Ballal P., Lews F., uhano B., Zhang J. B., Suevsoy onol of moble senso newos: mah fomulaon, smulaon, mlemenaon, IEEE ansaons on Sysems, Man and Cybenes, Pa B, Volume 36, Issue 4, Aug. 26 Page(s): [6] Godano V., Lews F., uhano B., Ballal P., Yeshala V., Max omuaonal famewo fo dsee even onol of weless senso newos wh some moble agens, Po. Medeanean Conf. Conol & Auomaon, Lmassol, Cyus, June 25. [7] Guel, A., Bogdan S., Lews F., Max Aoah o Deadlo- Fee Dsahng n Mul-Class Fne Buffe Flowlnes, IEEE ansaons on Auoma Conol, Volume 45, Issue, Nov 2 Page(s): [8] I. N. Hesen., os n Algeba, Blasdell Publshng Co., 964. [9] Lawley, M. Inegang Roung Flexbly and Algeba Deadlo Avodane Poles n Auomaed Manufaung Sysems, Inenaonal Jounal of Poduon Reseah, 38(3); , 2. [] Lews F., Guel A., Bogdan S., Doanal A. Pasavanu O., Analyss of deadlo and ula was usng a max model fo flexble manufaung sysems, Auomaa, vol.34, no. 9, Seembe 998.

13 [] Lews F., Weless senso newos, Sma envonmens:ehnologes, Poools, and Alaons, ed. D. J. Coo and S. K.Das, John Wley, New Yo, 24. [2] Meles J., Lews F., Guel A., Imlemenaon of a deadlo avodane oly fo mula eenan flow lnes usng a max-based dsee even onolle, Poeedngs of he Inenaonal symosum on advanes n obo dynams and onol, New Oleans, Novembe 22. [3] Muaa,. Pe Nes: Poees, Analyss and Alaons, Poeedngs of he IEEE, vol.77, no.4, Al 989, [4] Ozmulu, S. And Hamonosy, C.M., A eal me mehodology fo mnmzng mean flowme n FMSs wh oung flexbly: heshold based Alenae Roung, Euoean Jounal of Oeaonal Reseah, 66 (2): , 25. [5] Peeson, J. L., Pe Ne heoy and he Modelng of Sysems, Pene-Hall, Englewood Clffs, NJ, 98. [6] Wys, R.A.; Yang, N.S.; Josh, S.; Deeon of deadlos n flexble manufaung ells, IEEE ansaons on Robos and Auomaon, vol.:7, Issue: 6, Deembe 99. [7] Xng K.Y., Hu B.S., Chen H.X., Deadlo Avodane Poly fo Pe-ne Modelng of Flexble Manufaung Sysems Wh Shaed Resoues, IEEE ansaons on Auoma Conol, Volume 4, Feb 99 Page(s):

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2 Joh Rley Novembe ANSWERS O ODD NUMBERED EXERCISES IN CHAPER Seo Eese -: asvy (a) Se y ad y z follows fom asvy ha z Ehe z o z We suppose he lae ad seek a oado he z Se y follows by asvy ha z y Bu hs oads

More information

calculating electromagnetic

calculating electromagnetic Theoeal mehods fo alulang eleomagne felds fom lghnng dshage ajeev Thoapplll oyal Insue of Tehnology KTH Sweden ajeev.thoapplll@ee.kh.se Oulne Despon of he poblem Thee dffeen mehods fo feld alulaons - Dpole

More information

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION MACROECONOMIC THEORY T. J. KEHOE ECON 85 FALL 7 ANSWERS TO MIDTERM EXAMINATION. (a) Wh an Arrow-Debreu markes sruure fuures markes for goods are open n perod. Consumers rade fuures onras among hemselves.

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

Silence is the only homogeneous sound field in unbounded space

Silence is the only homogeneous sound field in unbounded space Cha.5 Soues of Sound Slene s he onl homogeneous sound feld n unbounded sae Sound feld wh no boundaes and no nomng feld 3- d wave equaon whh sasfes he adaon ondon s f / Wh he lose nseon a he on of = he

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

The Two Dimensional Numerical Modeling Of Acoustic Wave Propagation in Shallow Water

The Two Dimensional Numerical Modeling Of Acoustic Wave Propagation in Shallow Water The Two Densonal Nueal Modelng Of Aous Wave Poagaon n Shallow Wae Ahad Zaaa John Penose Fan Thoas and Xung Wang Cene fo Mane Sene and Tehnology Cun Unvesy of Tehnology. CSIRO Peoleu. Absa Ths ae desbes

More information

모바일와이맥스시스템에서주변셀의신호세기정보를이용한인접셀간섭감소기법. Mitigation of inter-cell interference using geometrical information in mobile WiMAX system

모바일와이맥스시스템에서주변셀의신호세기정보를이용한인접셀간섭감소기법. Mitigation of inter-cell interference using geometrical information in mobile WiMAX system 모바일와이맥스시스템에서주변셀의신호세기정보를이용한인접셀간섭감소기법 염재흥 O 이용환서울대학교전기컴퓨터공학부 Mgaon of ne-ell nefeene usng geomeal nfomaon n moble WMAX sysem Jae-Heung Yeom O Yong-Hwan Lee Shool of Eleal Engneeng INMC Seoul Naonal Unvesy

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels nvenon Jounl o Reseh Tehnoloy n nneen & Mnemen JRTM SSN: 455-689 wwwjemom Volume ssue 0 ǁ Ooe 08 ǁ PP 9-45 Cuo uons n he me o onl oeos wh M-ele enels on Qn Chenmn Hou* Ynn Unvesy Jln Ynj 00 ASTRACT: n

More information

Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms

Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms Bakallaon Analyss of Pavemen-laye Modl Usng Paen Seah Algohms Poje Repo fo ENCE 74 Feqan Lo May 7 005 Bakallaon Analyss of Pavemen-laye Modl Usng Paen Seah Algohms. Inodon. Ovevew of he Poje 3. Objeve

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data Avlble ole wwwsceceeccom Physcs Poce 0 475 480 0 Ieol Cofeece o Mecl Physcs Bomecl ee Pmee smo Hyohess es of wo Neve Boml Dsbuo Poulo wh Mss D Zhwe Zho Collee of MhemcsJl Noml UvesyS Ch zhozhwe@6com Absc

More information

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Physics 201 Lecture 15

Physics 201 Lecture 15 Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

More information

Channel Bargaining with Retailer Asymmetry

Channel Bargaining with Retailer Asymmetry Channel Baganng wh Reale Asymmey Anhony ukes Eshe Gal-O annan Snvasan 3 Shool of Eonoms & Managemen, Unvesy of Aahus, Åhus enmak, adukes@eon.au.dk Glenn Snson Cha n Comeveness and Pofesso of Busness Admnsaon

More information

Lecture Notes 4: Consumption 1

Lecture Notes 4: Consumption 1 Leure Noes 4: Consumpon Zhwe Xu (xuzhwe@sju.edu.n) hs noe dsusses households onsumpon hoe. In he nex leure, we wll dsuss rm s nvesmen deson. I s safe o say ha any propagaon mehansm of maroeonom model s

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Robust Centralized Fusion Kalman Filters with Uncertain Noise Variances

Robust Centralized Fusion Kalman Filters with Uncertain Noise Variances ELKOMNIKA Indonean Jounal of Eleal Engneeng Vol., No.6, June 04, pp. 4705 ~ 476 DOI: 0.59/elkomnka.v6.5490 4705 Robu Cenalzed Fuon Kalman Fle wh Unean Noe Vaane Wen-juan Q, Peng Zhang, Z-l Deng* Depamen

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

s = rθ Chapter 10: Rotation 10.1: What is physics?

s = rθ Chapter 10: Rotation 10.1: What is physics? Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES EP Queung heory and eleraffc sysems 3rd lecure Marov chans Brh-deah rocess - Posson rocess Vora Fodor KTH EES Oulne for oday Marov rocesses Connuous-me Marov-chans Grah and marx reresenaon Transen and

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

Final Exam. Tuesday, December hours, 30 minutes

Final Exam. Tuesday, December hours, 30 minutes an Faniso ae Univesi Mihael Ba ECON 30 Fall 04 Final Exam Tuesda, Deembe 6 hous, 30 minues Name: Insuions. This is losed book, losed noes exam.. No alulaos of an kind ae allowed. 3. how all he alulaions.

More information

Some Analytic Results for the Study of Broadband Noise Radiation from Wings, Propellers and Jets in Uniform Motion *

Some Analytic Results for the Study of Broadband Noise Radiation from Wings, Propellers and Jets in Uniform Motion * Some Analy Resuls fo he Suy of Boaban Nose Raaon fom Wngs Poelles an Jes n Unfom oon *. aassa an J. Case NASA Langley Reseah Cene Hamon gna Absa Alan Powell has mae sgnfan onbuons o he unesanng of many

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS Intenatonal Jounal of Mathematcal Engneeng Scence ISSN : 22776982 Volume Issue 4 (Apl 202) http://www.mes.com/ https://stes.google.com/ste/mesounal/ APPLICATIONS OF SEMIGENERALIZED CLOSED SETS G.SHANMUGAM,

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Pareto Set-based Ant Colony Optimization for Multi-Objective Surgery Scheduling Problem

Pareto Set-based Ant Colony Optimization for Multi-Objective Surgery Scheduling Problem Send Odes fo Repns o epns@benhamsene.ae The Open Cybenes & Sysems Jounal, 204, 8, 2-28 2 Open Aess Paeo Se-based An Colony Opmzaon fo Mul-Objeve Sugey Shedulng Poblem Xang We,* and Gno Lm 2 Fauly of Mehanal

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3 elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

More information

Handling Fuzzy Constraints in Flow Shop Problem

Handling Fuzzy Constraints in Flow Shop Problem Handlng Fuzzy Consans n Flow Shop Poblem Xueyan Song and Sanja Peovc School of Compue Scence & IT, Unvesy of Nongham, UK E-mal: {s sp}@cs.no.ac.uk Absac In hs pape, we pesen an appoach o deal wh fuzzy

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic. Eponenial and Logaihmic Equaions and Popeies of Logaihms Popeies Eponenial a a s = a +s a /a s = a -s (a ) s = a s a b = (ab) Logaihmic log s = log + logs log/s = log - logs log s = s log log a b = loga

More information

Available online through ISSN

Available online through  ISSN Intenational eseach Jounal of Pue Algeba -() 01 98-0 Available online though wwwjpainfo ISSN 8 907 SOE ESULTS ON THE GOUP INVESE OF BLOCK ATIX OVE IGHT OE DOAINS Hanyu Zhang* Goup of athematical Jidong

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

A DISCRETE PARAMETRIC MARKOV-CHAIN MODEL OF A TWO NON-IDENTICAL UNIT COLD STANDBY SYSTEM WITH PREVENTIVE-MAINTENANCE

A DISCRETE PARAMETRIC MARKOV-CHAIN MODEL OF A TWO NON-IDENTICAL UNIT COLD STANDBY SYSTEM WITH PREVENTIVE-MAINTENANCE IJRRA 7 (3) Decembe 3 www.aaess.com/volumes/vol7issue3/ijrra_7_3_6.df A DICRETE PARAMETRIC MARKOV-CHAIN MODEL OF A TWO NON-IDENTICAL UNIT COLD TANDBY YTEM WITH PREVENTIVE-MAINTENANCE Rakes Gua¹ * & Paul

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management P age NPTEL Proec Economerc Modellng Vnod Gua School of Managemen Module23: Granger Causaly Tes Lecure35: Granger Causaly Tes Rudra P. Pradhan Vnod Gua School of Managemen Indan Insue of Technology Kharagur,

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

A New Interference Approach for Ballistic Impact into Stacked Flexible Composite Body Armor

A New Interference Approach for Ballistic Impact into Stacked Flexible Composite Body Armor 5h AIAA/ASME/ASCE/AHS/ASC Suues, Suual Dynams, and Maeals Confeene17h 4-7 May 9, Palm Sngs, Calfona AIAA 9-669 A New Inefeene Aoah fo Balls Ima no Saked Flexble Comose Body Amo S. Legh Phoenx 1 and

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY Unvesy of Calfona, Davs Dae: June xx, 009 Depamen of Economcs Tme: 5 hous Mcoeconomcs Readng Tme: 0 mnues PRELIMIARY EXAMIATIO FOR THE Ph.D. DEGREE Pa I ASWER KEY Ia) Thee ae goods. Good s lesue, measued

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Computational results on new staff scheduling benchmark instances

Computational results on new staff scheduling benchmark instances TECHNICAL REPORT Compuaonal resuls on new saff shedulng enhmark nsanes Tm Curos Rong Qu ASAP Researh Group Shool of Compuer Sene Unersy of Nongham NG8 1BB Nongham UK Frs pulshed onlne: 19-Sep-2014 las

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

c- : r - C ' ',. A a \ V

c- : r - C ' ',. A a \ V HS PAGE DECLASSFED AW EO 2958 c C \ V A A a HS PAGE DECLASSFED AW EO 2958 HS PAGE DECLASSFED AW EO 2958 = N! [! D!! * J!! [ c 9 c 6 j C v C! ( «! Y y Y ^ L! J ( ) J! J ~ n + ~ L a Y C + J " J 7 = [ " S!

More information

Modal Analysis of Periodically Time-varying Linear Rotor Systems using Floquet Theory

Modal Analysis of Periodically Time-varying Linear Rotor Systems using Floquet Theory 7h IFoMM-Confeene on Roo Dynams Venna Ausa 25-28 Sepembe 2006 Modal Analyss of Peodally me-vayng Lnea Roo Sysems usng Floque heoy Chong-Won Lee Dong-Ju an Seong-Wook ong Cene fo Nose and Vbaon Conol (NOVIC)

More information

Time-Space Model of Business Fluctuations

Time-Space Model of Business Fluctuations Time-Sace Moel of Business Flucuaions Aleei Kouglov*, Mahemaical Cene 9 Cown Hill Place, Suie 3, Eobicoke, Onaio M8Y 4C5, Canaa Email: Aleei.Kouglov@SiconVieo.com * This aicle eesens he esonal view of

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Regularization and Stabilization of the Rectangle Descriptor Decentralized Control Systems by Dynamic Compensator

Regularization and Stabilization of the Rectangle Descriptor Decentralized Control Systems by Dynamic Compensator www.sene.org/mas Modern Appled ene Vol. 5, o. 2; Aprl 2 Regularzaon and ablzaon of he Reangle Desrpor Deenralzed Conrol ysems by Dynam Compensaor Xume Tan Deparmen of Eleromehanal Engneerng, Heze Unversy

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

In accordance with Regulation 21(1), the Agency has notified, and invited submissions &om, certain specified

In accordance with Regulation 21(1), the Agency has notified, and invited submissions &om, certain specified hef xeuve Offe Wesen Regonal Fshees Boad The We odge al s odge Galway 6 June 2009 Re Dea S nvonmenal Poeon Ageny An Ghnwmhomoh un Oloomhnll omhshd Headquaes. PO Box 000 Johnsown asle sae ouny Wexfod, eland

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

The sound field of moving sources

The sound field of moving sources Nose Engneeng / Aoss -- ong Soes The son el o mong soes ong pon soes The pesse el geneae by pon soe o geneal me an The pess T poson I he soe s onenae a he sngle mong pon, soe may I he soe s I be wen as

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a)

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a) Ieol Jol o Se Reeh Pblo Volme Ie 5 y ISSN 5-5 FRACTIONAL ELLIN INTEGRAL TRANSFOR IN / S.. Kh R..Pe* J.N.Slke** Deme o hem hh Aemy o Egeeg Al-45 Pe I oble No.: 98576F No.: -785759 Eml-mkh@gml.om Deme o

More information

Electromagnetic waves in vacuum.

Electromagnetic waves in vacuum. leromagne waves n vauum. The dsovery of dsplaemen urrens enals a peular lass of soluons of Maxwell equaons: ravellng waves of eler and magne felds n vauum. In he absene of urrens and harges, he equaons

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California MEMSBase Fork Gyrosoe Ω r z Volage Deermnng Resoluon EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 17 () Curren (+) Curren Eleroe EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 18 [Zaman,

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information