THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that"

Transcription

1 THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because of hs syery he heorecal auocorrelaon funcon and he saple auocorrelaon funcon (below) only need be exaned over he posve lags =, L. SAMPLE AUTOCORRELATIONS γ T ( y y)( y y) = + = = T ( y y) = r,,, L. The r are conssen esaors of he heorecal auocorrelaon coeffcens ρ. Under he assupon ha y follows a whe nose process he sandard errors of hese r are approxaely equal o T. Thus, under he null hypohess ha y follows a whe nose process, roughly 95% of he r should fall whn he range of ±.96 / T. If ore han 5% of he r fall ousde of hs range, hen os lkely y does no follow a whe nose process. THEORETICAL PARTIAL AUTOCORRELATIONS Cov( y, y y, L, y + ) φ = Var( y y, L, y ) + E( y E( y y, L, y ))( y E( y y, L, y = + + E( y E( y y, L, y + )) =,, L = he correlaon beween y and y afer neng ou he effecs he nervenng values y, L, have on boh of he y + ))

2 SAMPLE PARTIAL AUTOCORRELATIONS ˆ φ are calculaed usng he forulas for he heorecal auocorrelaons for a gven ARMA(p,q) odel (see y ACF_PACF_Table.doc Word docuen for he forulas) bu replacng all of he heorecal auocorrelaons ( ρ ) wh he above saple auocorrelaons ( r ) and all of he unknown Box-Jenkns coeffcens ( φ, θ ) wh her correspondng esaes ( ˆ φ, ˆ θ ) obaned by he ehod of oens or soe oher ehod. The ˆ φ are conssen esaors of he heorecal paral auocorrelaons, φ. Under he assupon ha follows a whe nose process he sandard errors of hese ˆ y φ are approxaely equal o T. Thus, under he null hypohess ha y follows a whe nose process, roughly 95% of he φ should fall whn he range of ±.96 / T. If ore han 5% of he ˆ φ fall ousde of hs range, hen os lkely whe nose process. ˆ y does no follow a GOODNESS-OF-FIT MEASURES. AIC (Akake Inforaon Creron) AIC = L aˆ + K ( ) where K = p + q +, L( aˆ ) = he log of he lkelhood funcon of he Box- Jenkns ARMA(p,q) odel, a = he resdual a e for he Box-Jenkns odel ˆ and he log lkelhood funcon, L( a ˆ ), s a onooncally decreasng funcon of he su of squared resduals, a ˆ. In oher words, he saller a ˆ s, he larger L( aˆ ) s and vce versa.. SBC (Schwarz Bayesan Creron) SBC = L aˆ + K n ( ) ln( ) SBC = L aˆ + K n ( ) ln( ) where n s he nuber of resduals copued for he odel. In ers of choosng a Box-Jenkns odel, he saller hese goodness-of-f easures, he beer. Tha s, we prefer he Box-Jenkns odel ha has he salles AIC and SBC

3 easures. Noce ha, as you add coeffcens o he Box-Jenkns odel, ( φ, θ ), he f of he odel, as easured by he su of squared resduals, herefore, addng coeffcens always ncreases he log lkelhood, aˆ, always decreases and, L ˆ ), of he Box- ( a Jenkns odel. To offse he endency for addng coeffcens o a odel us o prove s f, he above goodness-of-f (nforaon) crera each nclude a "penaly" er. (For he AIC creron he penaly er s +K whle for he SBC easure he penaly er s +Kln(T). Thus, wh hese crera, as one adds coeffcens o he Box-Jenkns odel, he proveen n f cong fro reducon n he su of squared resduals wll evenually be offse by he penaly er ovng n he oppose drecon. The goodness-of-f crera are hen nended o keep us fro buldng large order Box- Jenkns odels us o prove he f us o fnd ha such large order odels don' forecas very well. Shbaa (976) has shown ha, for a fne-order AR process, he AIC creron asypocally overesaes he order wh posve probably. Thus, an esaor of he AR order (p) based on AIC wll no be conssen. (By conssen we ean ha, as he saple sze goes o nfny, he correc order of an AR(p) Box-Jenkns odel wll be correcly chosen wh probably one.) In conras, he SBC creron s conssen n choosng he correc order of an AR(p) odel. Ofen hese wo crera choose he sae Box-Jenkns odel as beng he bes odel. However, when here s a dfference n choce, he AIC easure nvarably ples a Box-Jenkns odel of bgger order (K = p + q + ) han he order of he odel pled by he SBC creron. In oher words, he SBC creron ends o pck he ore parsonous odel when here s a "spl" decson arsng fro usng hese crera. Personally, I prefer o rely on he SBC creron n he case of "spl" decsons. A TEST FOR WHITE NOISE RESIDUALS (and hus he Box-Jenkns odel's "copleeness") H : Resduals of Esaed Box-Jenkns odel are whe nose (.e. uncorrelaed a all lags). Oher hngs held consan, he esaed Box-Jenkns odel s adequae. H : Resduals of Esaed Box-Jenkns odel are no whe nose. In hs case, a beer odel can be found by addng ore paraeers o he odel. The ch-square es used o es for whe nose resduals s calculaed as where χ = nn ( + ) r ( aˆ ) = n k = aa ˆˆ = n aˆ = + k r ( aˆ ) ( n ),

4 n = nuber of resduals, and aˆ s he e resdual of he Box-Jenkns odel. Ths sasc was suggesed by Lung and Box (978) and s called he Lung-Box ch-square sasc for esng for whe nose resduals. The null hypohess above s acceped f he observed ch-square sasc s sall (.e. has a probably value greaer han.5) and s reeced f he ch-square sasc s "large" (.e. has a probably value less han.5). As far as he choce of he nuber of lags,, o use, I would sugges = for quarerly daa and = 4 for onhly daa o ncrease he power of he es gven he frequency wh whch he daa s observed. CONSTRUCTION OF THE P-Q BOX In hs class we wll be consrucng a "P-Q Box" of he for P Q where. represens he followng nubers n each cell: AIC, SBC, χ, and he p-value of he Lung-Box ch-square sasc, χ. These cells represen he os prevalen Box- Jenkns odels ha apply o non-seasonal econoc e seres daa, naely, he ARMA(,), AR(), AR(), MA(), MA(), and ARMA(,) odels. Usng he saple ACF and saple PACF of he daa one can ofen narrow down he choce beween hese cell (odels) bu no always wh cerany. Thus, he P-Q Box can ofen help confr whch Box-Jenkns odel s bes for he daa. The odel wh he lowes AIC and SBC easures and havng whe nose resduals s he odel ha he P-Q Box sascs sugges. Hopefully, afer lookng a he saple ACF and saple PACF and he P-Q Box resuls one can coe o a enave choce for he p and q orders of he Box-Jenkns odel. OVERFITTING EXERCISE To confr he choce of odel suggesed by he saple ACF, saple PACF, and he P-Q Box, one should conduc an overfng exercse. Tha s, you should f wo addonal Box-Jenkns odels, one havng one ore auoregressve coeffcen and one havng one ore ovng average coeffcen and hen exanng (ndvdually) he sascal sgnfcance of he exra coeffcen n each odel. For exaple, f your enave choce s p = and q = (an AR() odel), you should exane he AR coeffcen n an AR() odel and deerne wheher hs "overfng" coeffcen s

5 sascally sgnfcan or no. If s no sascally sgnfcan (.e. he p-value s >.5), you can "fall" back o your orgnal choce. The oher overfng odel for he AR() odel s he ARMA(,) odel. So when you f, he overfng paraeer s he MA paraeer. If s no sascally sgnfcan, hen you can "fall" back o your orgnal "alos fnal" choce agan and ake your "fnal" choce for forecasng purposes. Of course, f eher of he overfng paraeers s sascally sgnfcan, you need o connue he odel buldng process.

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management P age NPTEL Proec Economerc Modellng Vnod Gua School of Managemen Module23: Granger Causaly Tes Lecure35: Granger Causaly Tes Rudra P. Pradhan Vnod Gua School of Managemen Indan Insue of Technology Kharagur,

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Analysis And Evaluation of Econometric Time Series Models: Dynamic Transfer Function Approach

Analysis And Evaluation of Econometric Time Series Models: Dynamic Transfer Function Approach 1 Appeared n Proceedng of he 62 h Annual Sesson of he SLAAS (2006) pp 96. Analyss And Evaluaon of Economerc Tme Seres Models: Dynamc Transfer Funcon Approach T.M.J.A.COORAY Deparmen of Mahemacs Unversy

More information

Two-Step versus Simultaneous Estimation of Survey-Non-Sampling Error and True Value Components of Small Area Sample Estimators

Two-Step versus Simultaneous Estimation of Survey-Non-Sampling Error and True Value Components of Small Area Sample Estimators Two-Sep versus Sulaneous Esaon of Survey-Non-Saplng Error and True Value Coponens of Sall rea Saple Esaors a PVB Sway, TS Zeran b c and JS Meha a,b Bureau of Labor Sascs, Roo 4985, Massachuses venue, NE,

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

2. SPATIALLY LAGGED DEPENDENT VARIABLES

2. SPATIALLY LAGGED DEPENDENT VARIABLES 2. SPATIALLY LAGGED DEPENDENT VARIABLES In hs chaper, we descrbe a sascal model ha ncorporaes spaal dependence explcly by addng a spaally lagged dependen varable y on he rgh-hand sde of he regresson equaon.

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform? ourier Series & The ourier Transfor Wha is he ourier Transfor? Wha do we wan fro he ourier Transfor? We desire a easure of he frequencies presen in a wave. This will lead o a definiion of he er, he specru.

More information

Bayesian Model Selection for Structural Break Models *

Bayesian Model Selection for Structural Break Models * Baesan Model Selecon for Srucural Brea Models * Andrew T. Levn Federal eserve Board Jere M. Pger Unvers of Oregon Frs Verson: Noveber 005 Ths verson: Aprl 007 Absrac: We ae a Baesan approach o odel selecon

More information

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

How about the more general linear scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )? lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag. Saionary Processes Sricly saionary - The whole join disribuion is indeenden of he dae a which i is measured and deends only on he lag. - E y ) is a finie consan. ( - V y ) is a finie consan. ( ( y, y s

More information

Additive Outliers (AO) and Innovative Outliers (IO) in GARCH (1, 1) Processes

Additive Outliers (AO) and Innovative Outliers (IO) in GARCH (1, 1) Processes Addve Oulers (AO) and Innovave Oulers (IO) n GARCH (, ) Processes MOHAMMAD SAID ZAINOL, SITI MERIAM ZAHARI, KAMARULZAMMAN IBRAHIM AZAMI ZAHARIM, K. SOPIAN Cener of Sudes for Decson Scences, FSKM, Unvers

More information

Application of ARIMA Model for River Discharges Analysis

Application of ARIMA Model for River Discharges Analysis Alcaon of ARIMA Model for Rver Dscharges Analyss Bhola NS Ghmre Journal of Neal Physcal Socey Volume 4, Issue 1, February 17 ISSN: 39-473X Edors: Dr. Go Chandra Kahle Dr. Devendra Adhkar Mr. Deeendra Parajul

More information

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations Chaper 6: Ordnary Leas Squares Esmaon Procedure he Properes Chaper 6 Oulne Cln s Assgnmen: Assess he Effec of Sudyng on Quz Scores Revew o Regresson Model o Ordnary Leas Squares () Esmaon Procedure o he

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure ldes for INRODUCION O Machne Learnng EHEM ALPAYDIN he MI Press, 004 alpaydn@boun.edu.r hp://.cpe.boun.edu.r/~ehe/l CHAPER 6: Densonaly Reducon Why Reduce Densonaly?. Reduces e copley: Less copuaon.

More information

b denotes trend at time point t and it is sum of two

b denotes trend at time point t and it is sum of two Inernaional Conference on Innovaive Applicaions in Engineering and Inforaion echnology(iciaei207) Inernaional Journal of Advanced Scienific echnologies,engineering and Manageen Sciences (IJASEMSISSN: 2454356X)

More information

Monetary policymaking and inflation expectations: The experience of Latin America

Monetary policymaking and inflation expectations: The experience of Latin America Moneary policymaking and inflaion expecaions: The experience of Lain America Luiz de Mello and Diego Moccero OECD Economics Deparmen Brazil/Souh America Desk 8h February 7 1999: new moneary policy regimes

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Midterm Exam. Thursday, April hour, 15 minutes

Midterm Exam. Thursday, April hour, 15 minutes Economcs of Grow, ECO560 San Francsco Sae Unvers Mcael Bar Sprng 04 Mderm Exam Tursda, prl 0 our, 5 mnues ame: Insrucons. Ts s closed boo, closed noes exam.. o calculaors of an nd are allowed. 3. Sow all

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

MODELING TIME-VARYING TRADING-DAY EFFECTS IN MONTHLY TIME SERIES

MODELING TIME-VARYING TRADING-DAY EFFECTS IN MONTHLY TIME SERIES MODELING TIME-VARYING TRADING-DAY EFFECTS IN MONTHLY TIME SERIES Wllam R. Bell, Census Bureau and Donald E. K. Marn, Howard Unversy and Census Bureau Donald E. K. Marn, Howard Unversy, Washngon DC 0059

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING

ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING ESE 5 ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING Gven a geostatstcal regresson odel: k Y () s x () s () s x () s () s, s R wth () unknown () E[ ( s)], s R ()

More information

EXPONENTIAL PROBABILITY DISTRIBUTION

EXPONENTIAL PROBABILITY DISTRIBUTION MTH/STA 56 EXPONENTIAL PROBABILITY DISTRIBUTION As discussed in Exaple (of Secion of Unifor Probabili Disribuion), in a Poisson process, evens are occurring independenl a rando and a a unifor rae per uni

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Li An-Ping. Beijing , P.R.China

Li An-Ping. Beijing , P.R.China A New Type of Cpher: DICING_csb L An-Png Bejng 100085, P.R.Chna apl0001@sna.com Absrac: In hs paper, we wll propose a new ype of cpher named DICING_csb, whch s derved from our prevous sream cpher DICING.

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Dynamic Regressions with Variables Observed at Different Frequencies

Dynamic Regressions with Variables Observed at Different Frequencies Dynamc Regressons wh Varables Observed a Dfferen Frequences Tlak Abeysnghe and Anhony S. Tay Dearmen of Economcs Naonal Unversy of Sngaore Ken Rdge Crescen Sngaore 96 January Absrac: We consder he roblem

More information

Final Exam. Tuesday, December hours

Final Exam. Tuesday, December hours San Francisco Sae Universiy Michael Bar ECON 560 Fall 03 Final Exam Tuesday, December 7 hours Name: Insrucions. This is closed book, closed noes exam.. No calculaors of any kind are allowed. 3. Show all

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS Yugoslav Journal of Operaons Research Vol 9 (009) Number 0- DOI:0.98/YUJOR0900C GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS Danel CIUIU Facul of Cvl Indusral and Agrculural Buldngs Techncal Unvers

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Journal of Econometrics. The limit distribution of the estimates in cointegrated regression models with multiple structural changes

Journal of Econometrics. The limit distribution of the estimates in cointegrated regression models with multiple structural changes Journal of Economercs 46 (8 59 73 Conens lss avalable a ScenceDrec Journal of Economercs ournal homepage: www.elsever.com/locae/econom he lm dsrbuon of he esmaes n conegraed regresson models wh mulple

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18 Multpont Analyss for Sblng ars Bostatstcs 666 Lecture 8 revously Lnkage analyss wth pars of ndvduals Non-paraetrc BS Methods Maxu Lkelhood BD Based Method ossble Trangle Constrant AS Methods Covered So

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes

Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes Journal of Modern Appled Sascal Mehods Volume Issue Arcle 8 5--3 Robusness of D versus Conrol Chars o Non- Processes Saad Saeed Alkahan Performance Measuremen Cener of Governmen Agences, Insue of Publc

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Panel Data Regression Models

Panel Data Regression Models Panel Daa Regresson Models Wha s Panel Daa? () Mulple dmensoned Dmensons, e.g., cross-secon and me node-o-node (c) Pongsa Pornchawseskul, Faculy of Economcs, Chulalongkorn Unversy (c) Pongsa Pornchawseskul,

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Arima Fit to Nigerian Unemployment Data

Arima Fit to Nigerian Unemployment Data 2012, TexRoad Publicaion ISSN 2090-4304 Journal of Basic and Applied Scienific Research www.exroad.com Arima Fi o Nigerian Unemploymen Daa Ee Harrison ETUK 1, Barholomew UCHENDU 2, Uyodhu VICTOR-EDEMA

More information

PHYS 705: Classical Mechanics. Canonical Transformation

PHYS 705: Classical Mechanics. Canonical Transformation PHYS 705: Classcal Mechancs Canoncal Transformaon Canoncal Varables and Hamlonan Formalsm As we have seen, n he Hamlonan Formulaon of Mechancs,, are ndeenden varables n hase sace on eual foong The Hamlon

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Economics 120C Final Examination Spring Quarter June 11 th, 2009 Version A

Economics 120C Final Examination Spring Quarter June 11 th, 2009 Version A Suden Name: Economcs 0C Sprng 009 Suden ID: Name of Suden o your rgh: Name of Suden o your lef: Insrucons: Economcs 0C Fnal Examnaon Sprng Quarer June h, 009 Verson A a. You have 3 hours o fnsh your exam.

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Real Exchange Rates In Developing Countries: Are Balassa-Samuelson Effects Present?

Real Exchange Rates In Developing Countries: Are Balassa-Samuelson Effects Present? WP/04/88 Real Exchange Raes In Developng Counres: Are Balassa-Samuelson Effecs Presen? Ehsan U. Choudhr and Mohsn S. Khan 2004 Inernaonal Moneary Fund WP/04/88 IMF Workng Paper Mddle Eas and Cenral Asa

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

Applied Econometrics and International Development Vol- 8-2 (2008)

Applied Econometrics and International Development Vol- 8-2 (2008) Appled Economercs and Inernaonal Developmen Vol- 8-2 (2008) HEALTH, EDUCATION AND ECONOMIC GROWTH: TESTING FOR LONG- RUN RELATIONSHIPS AND CAUSAL LINKS AKA, Béda F. * DUMONT, Jean Chrsophe Absrac Ths paper

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

SEASONAL PRICE TRANSMISSION IN SOYBEAN

SEASONAL PRICE TRANSMISSION IN SOYBEAN SEASONAL PRICE TRANSMISSION IN SOYBEAN INTERNATIONAL MARKET: THE CASE OF BRAZIL AND ARGENTINA 1 Eduardo Luz Machado 2 Maro Anono Margardo 3 Resumo: esse rabalho analsou o comporameno sazonal e o relaconameno

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500 Comparson of Supervsed & Unsupervsed Learnng n βs Esmaon beween Socks and he S&P500 J. We, Y. Hassd, J. Edery, A. Becker, Sanford Unversy T I. INTRODUCTION HE goal of our proec s o analyze he relaonshps

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

Testing Twin Deficits and Saving-Investment exus in Turkey [ FIRST DRAFT] Abstract

Testing Twin Deficits and Saving-Investment exus in Turkey [ FIRST DRAFT] Abstract Tesng Twn Defcs and Savng-Invesmen exus n Turkey [ FIRST DRAFT] Absrac Ths paper provdes fresh evdence on he valdy of wn defc and he Feldsen-Horoka hypoheses for Turkey durng he perod of 1987-004 usng

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Volatility. Many economic series, and most financial series, display conditional volatility

Volatility. Many economic series, and most financial series, display conditional volatility Volailiy Many economic series, and mos financial series, display condiional volailiy The condiional variance changes over ime There are periods of high volailiy When large changes frequenly occur And periods

More information

Determining the Number of Games Needed to Guarantee an NHL Playoff Spot

Determining the Number of Games Needed to Guarantee an NHL Playoff Spot Deermnng he Number of Games Needed o Guaranee an NHL Playoff Spo Tyrel Russell and Peer van Bee Cheron School of Compuer Scence Unversy of Waerloo {crussel,vanbee}@uwaerloo.ca Absrac. Many spors fans nves

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

Lecture 2 April 04, 2018

Lecture 2 April 04, 2018 Sas 300C: Theory of Saisics Spring 208 Lecure 2 April 04, 208 Prof. Emmanuel Candes Scribe: Paulo Orensein; edied by Sephen Baes, XY Han Ouline Agenda: Global esing. Needle in a Haysack Problem 2. Threshold

More information

Long-Run Relationship and Causality between Foreign Direct Investment and Growth: Evidence from Ten African Countries

Long-Run Relationship and Causality between Foreign Direct Investment and Growth: Evidence from Ten African Countries Inernaonal Journal of Economcs and Fnance www.ccsene.org/jef Long-Run Relaonshp and Causaly beween Foregn Drec Invesmen and Growh: Evdence from Ten Afrcan Counres Loesse Jacques ESSO Ecole Naonale Supéreure

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY ENGINEERING REPORT NO. 121 ARECIBO THREE-MIRROR SYSTEMS, V: APERTURE ILLUMINATION AND SHAPED SURFACES

NATIONAL RADIO ASTRONOMY OBSERVATORY ENGINEERING REPORT NO. 121 ARECIBO THREE-MIRROR SYSTEMS, V: APERTURE ILLUMINATION AND SHAPED SURFACES NATONAL RADO ASTRONOMY OBSERVATORY ENGNEERNG REPORT NO. 2 ARECBO THREE-MRROR SYSTEMS V: APERTURE LLUMNATON AND SHAPED SURFACES S. VON HOERNER MARCH 985 20 COPES ARECBO THREE-MRROR SYSTEMS V: APERTURE LLUMNATON

More information