Lecture 17: Kinetics of Phase Growth in a Two-component System:

Size: px
Start display at page:

Download "Lecture 17: Kinetics of Phase Growth in a Two-component System:"

Transcription

1 Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien nucleus has eached is ciical size (*), he suface enegy ha esics he developmen of he new phase become insignifican and he kineics fo gowh ae becoming dominaed by he limiing kineic mechanism, i.e., he migaion o jumping of aoms fom α maix o paicle. If he phase gowh equies no long-ange diffusion of aoms, hen he ae of gowh is conolled by he ae of aomic ansfe acoss he gowing paicle ineface. This is usually he case of single-componen phase ansfomaion as we discussed in lecue 15. Howeve, fo he wo-componen phase ansfomaion (paiculaly in he case of dilue soluion of one phase dispesed in anohe), gowh of he mino phase usually equies long-ange diffusion. In his case, he gowh ae can be deemined by wo diffeen ae-limiing pocesses: Ineface Limied Gowh and Diffusion Limied Gowh. Boh of hese wo pocesses ae empeaue dependen --- ypically he gowh ae is Ahenius ype wih gowh becoming vey slow a low empeaues. Ineface Limied Gowh: In his case, gowh is limied by how fas aoms can ansfe acoss he α/ ineface and no he ae a which aoms can be anspoed o he gowing ineface. This is equivalen o gowh whee no long-ange diffusion is equied (like ha descibed in Lecue 15 fo he single-componen sysem). Diffusion Limied Gowh: In his case, he gowh ae is limied by he diffusiviy, i.e., how fas he necessay aoms ae ansfe fom he α maix o he gowing -paicles. In geneal, he ae of diffusion anspo falls off vey quickly wih empeaue. S A B B S α α S aom Two-componen sysem Concenaion of B aoms a beginning, single-componen sysem (Lecue 15) C 0, X A >> X B 1

2 The following kineics eamen applies only o he dilue-soluion of α phase conaining small mola facion of phase, i.e., mola facion of B (X B ) << mola facion of A (X A ). In las Lecue, we deived he diffusion flux of B aoms acoss he α/ ineface: J = M ( C ) (1) Whee M = M ' RT defined as an ineface paamee, a measue of he anspo kineics of aoms acoss he α/ ineface, C has he uni of #/cm 3, M has he uni of cm/sec. Deiving he diffusion flux via Fick s law: Hee again he plo descibing he concenaion of B as a funcion of he adial coodinae fom he cene of he paicle of adius : C phase C C 0 α maix fla ineface adial coodinae Fick s fis Law: J = -D dc d The peinen diffusion equaion is Fick s second law c = D C (Assume D is consan) Assuming a quasi-seady sae in he α phase, c =0 C =0 In hee dimensions, in Caesian coodinaes, we have = + + x y z

3 In spheical pola coodinae: x = sinφcosθ z y = sinφsinθ z = cosφ φ Fo a spheically symmeic case θ y No dependence on φ and θ x = d d + d d Thus, d c d C =0 + dc d =0 Then we have: C( ) = a + b Whee a, b ae consans. Now conside wo limiing condiions: 1. As, C( ) = C 0, hen we have b = C 0 a. As, C( ) = C, hen we have C = +C 0, hen we have a = (C -C 0 ) ( C C0) So, C( ) = C 0 + = C 0 - ( C0 C ) ; This assumes ha concenaion in he maix fa away fom he gowing paicle is C 0. In geneal, howeve, hee will be ohe paicles, all compeing fo B aoms a same ime. The ne effec is ha he aveage concenaion in he bulk is lowe han C 0 as descibed in he diagam below. Also, his aveage concenaion in he bulk is ime dependen, now maked as C. paicle C 0 paicle C C C 3

4 So he above equaion can be e-wien as C( ) = C - ( C C) Then he concenaion gadien in α nex o paicle is dc C C ( ) = d = Now, wih he Fick s fis Law, we have dc J = J = D( ) d = = DC ( C) ( ) Hee we use J jus in ode o disinc he flux fom he ohe wo as deduced in Eq. (1) and (3) Since his flux also descibes he diffusion of B aoms acoss he α/ ineface, i mus be equal o he flux as descibed above in Eq. (1) J = M ( C ) (1) The hid way o deive he diffusion flux: As B aoms coss he α/ ineface, he adius of inceases. In ime ineval d, he adius inceases by d, he volume of inceases by d. The composiion in his egion changes fom C o, and he # of B aoms aived in ime d in he volume elemen is ( C ) d d, as >>C The aea hough which B aoms aived is uni ime, i.e., he flux, is J = C d d C d = (3) d, hus, # of B aom cossing he α/ ineface pe uni aea pe Hee we use J jus in ode o disinc he flux fom he ohe wo as deduced in Eq. (1) and () In a quasi-seady sae, all hee fluxes J, J, J as deduced above in Eqs. (1)()(3) ae equal, J = J = J o d DC ( C) C = = MC ( Cα) d 4

5 DC ( C) Fis, fom = MC ( Cα ), we have DC + MCα C = D + M Le s examine wo limiing cases: 1. when M >> D: Then C This is he diffusion limied case, whee he consumpion of B aoms aound he paicle is so apid ha he local concenaion of B eaches he equilibium concenaion of B in α phase,. C In his case, hee is vey small buildup of B aoms nea he paicles. C. when D >> M: Then C C This is he ineface limied case, whee he consumpion of B aoms aound he paicle is so slow compaed o he long-ange diffusion flux fom he bulk α phase ha he local concenaion of B emains appoximaely he same as he bulk concenaion of B in α phase, C. C C In his case, diffusion is fas and gowh is ineface-conolled. Thee is a lage buildup of B nex o. We & Zene examined diffusion limied gowh, Tubull examined ineface limied gowh (Lecue 15). Nex Lecue, we will addess he geneal case ha consides boh he wo kineics pocesses. 5

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

An Automatic Door Sensor Using Image Processing

An Automatic Door Sensor Using Image Processing An Auomaic Doo Senso Using Image Pocessing Depamen o Elecical and Eleconic Engineeing Faculy o Engineeing Tooi Univesiy MENDEL 2004 -Insiue o Auomaion and Compue Science- in BRNO CZECH REPUBLIC 1. Inoducion

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch Two-dimensional Effecs on he CS Ineacion Foces fo an Enegy-Chiped Bunch ui Li, J. Bisognano,. Legg, and. Bosch Ouline 1. Inoducion 2. Pevious 1D and 2D esuls fo Effecive CS Foce 3. Bunch Disibuion Vaiaion

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

The Global Trade and Environment Model: GTEM

The Global Trade and Environment Model: GTEM The Global Tade and Envionmen Model: A pojecion of non-seady sae daa using Ineempoal GTEM Hom Pan, Vivek Tulpulé and Bian S. Fishe Ausalian Bueau of Agiculual and Resouce Economics OBJECTIVES Deive an

More information

ME 304 FLUID MECHANICS II

ME 304 FLUID MECHANICS II ME 304 LUID MECHNICS II Pof. D. Haşme Tükoğlu Çankaya Uniesiy aculy of Engineeing Mechanical Engineeing Depamen Sping, 07 y du dy y n du k dy y du k dy n du du dy dy ME304 The undamenal Laws Epeience hae

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

ATMO 551a Fall 08. Diffusion

ATMO 551a Fall 08. Diffusion Diffusion Diffusion is a net tanspot of olecules o enegy o oentu o fo a egion of highe concentation to one of lowe concentation by ando olecula) otion. We will look at diffusion in gases. Mean fee path

More information

PHYS PRACTICE EXAM 2

PHYS PRACTICE EXAM 2 PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

A Numerical Hydration Model of Portland Cement

A Numerical Hydration Model of Portland Cement A Numeical Hydaion Model of Poland Cemen Ippei Mauyama, Tesuo Masushia and Takafumi Noguchi ABSTRACT : A compue-based numeical model is pesened, wih which hydaion and micosucual developmen in Poland cemen-based

More information

Integration of the constitutive equation

Integration of the constitutive equation Inegaion of he consiive eqaion REMAINDER ON NUMERICAL INTEGRATION Analyical inegaion f ( x( ), x ( )) x x x f () Exac/close-fom solion (no always possible) Nmeical inegaion. i. N T i N [, T ] [ i, i ]

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole ignen 6 Soluion - Hydogen ga i oed a high peue in a ecangula conaine (--hick wall). Hydogen concenaion a he inide wall i kole / and eenially negligible on he ouide wall. The B fo hydogen in eel i.6 / ec

More information

Lecture 5 Emission and Low-NOx Combustors

Lecture 5 Emission and Low-NOx Combustors Lecue 5 Emiion and Low-NOx Combuo Emiion: CO, Nox, UHC, Soo Modeling equiemen vay due o diffeence in ime and lengh cale, a well a pocee In geneal, finie-ae ineic i needed o pedic emiion Flamele appoach

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST00 Lecue Noes 5 6: Geneal Relaiviy Basic pinciples Schwazschild geomey The geneal heoy of elaiviy may be summaized in one equaion, he Einsein equaion G µν 8πT µν, whee G µν is he Einsein enso and T

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

Effect of Wall Absorption on dispersion of a solute in a Herschel Bulkley Fluid through an annulus

Effect of Wall Absorption on dispersion of a solute in a Herschel Bulkley Fluid through an annulus Available online a www.pelagiaeseachlibay.com Advances in Applied Science Reseach,, 3 (6):3878-3889 ISSN: 976-86 CODEN (USA): AASRFC Effec of Wall Absopion on dispesion of a solue in a Heschel Bulley Fluid

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Feedback Couplings in Chemical Reactions

Feedback Couplings in Chemical Reactions Feedback Coulings in Chemical Reacions Knud Zabocki, Seffen Time DPG Fühjahsagung Regensbug Conen Inoducion Moivaion Geneal model Reacion limied models Diffusion wih memoy Oen Quesion and Summay DPG Fühjahsagung

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

r r r r r EE334 Electromagnetic Theory I Todd Kaiser 334 lecoagneic Theoy I Todd Kaise Maxwell s quaions: Maxwell s equaions wee developed on expeienal evidence and have been found o goven all classical elecoagneic phenoena. They can be wien in diffeenial

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u Genealized Mehods of Momens he genealized mehod momens (GMM) appoach of Hansen (98) can be hough of a geneal pocedue fo esing economics and financial models. he GMM is especially appopiae fo models ha

More information

Q & Particle-Gas Multiphase Flow. Particle-Gas Interaction. Particle-Particle Interaction. Two-way coupling fluid particle. Mass. Momentum.

Q & Particle-Gas Multiphase Flow. Particle-Gas Interaction. Particle-Particle Interaction. Two-way coupling fluid particle. Mass. Momentum. Paicle-Gas Muliphase Flow Fluid Mass Momenum Enegy Paicles Q & m& F D Paicle-Gas Ineacion Concenaion highe dilue One-way coupling fluid paicle Two-way coupling fluid paicle Concenaion highe Paicle-Paicle

More information

Pressure Vessels Thin and Thick-Walled Stress Analysis

Pressure Vessels Thin and Thick-Walled Stress Analysis Pessue Vessels Thin and Thick-Walled Sess Analysis y James Doane, PhD, PE Conens 1.0 Couse Oveview... 3.0 Thin-Walled Pessue Vessels... 3.1 Inoducion... 3. Sesses in Cylindical Conaines... 4..1 Hoop Sess...

More information

( ) c(d p ) = 0 c(d p ) < c(d p ) 0. H y(d p )

( ) c(d p ) = 0 c(d p ) < c(d p ) 0. H y(d p ) 8.7 Gavimeic Seling in a Room Conside a oom of volume V, heigh, and hoizonal coss-secional aea A as shown in Figue 8.18, which illusaes boh models. c(d ) = 0 c(d ) < c(d ) 0 y(d ) (a) c(d ) = c(d ) 0 (b)

More information

MECHANICS OF MATERIALS Poisson s Ratio

MECHANICS OF MATERIALS Poisson s Ratio Fouh diion MCHANICS OF MATRIALS Poisson s Raio Bee Johnson DeWolf Fo a slende ba subjeced o aial loading: 0 The elongaion in he -diecion is accompanied b a conacion in he ohe diecions. Assuming ha he maeial

More information

Monochromatic Wave over One and Two Bars

Monochromatic Wave over One and Two Bars Applied Mahemaical Sciences, Vol. 8, 204, no. 6, 307-3025 HIKARI Ld, www.m-hikai.com hp://dx.doi.og/0.2988/ams.204.44245 Monochomaic Wave ove One and Two Bas L.H. Wiyano Faculy of Mahemaics and Naual Sciences,

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc.

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc. Numeical solution of diffusion mass tansfe model in adsoption systems Pof., D.Sc. Agenda Mass Tansfe Mechanisms Diffusion Mass Tansfe Models Solving Diffusion Mass Tansfe Models Paamete Estimation 2 Mass

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Design Guideline for Buried Hume Pipe Subject to Coupling Forces

Design Guideline for Buried Hume Pipe Subject to Coupling Forces Design Guideline fo Buied Hume Pipe Sujec o Coupling Foces Won Pyo Hong 1), *Seongwon Hong 2), and Thomas Kang 3) 1) Depamen of Civil, nvionmenal and Plan ngineeing, Chang-Ang Univesiy, Seoul 06974, Koea

More information

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants An Open cycle and losed cycle Gas ubine Engines Mehods o impove he pefomance of simple gas ubine plans I egeneaive Gas ubine ycle: he empeaue of he exhaus gases in a simple gas ubine is highe han he empeaue

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anyone who can contemplate quantum mechanics without getting dizzy hasn t undestood it. --Niels Boh Lectue 17, p 1 Special (Optional) Lectue Quantum Infomation One of the most moden applications of QM

More information

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN D. Keffe - ChE 40: Hea Tansfe and Fluid Flow Deamen of Chemical Enee Uniesi of Tennessee Pof. Daid Keffe Couse Lecue Noes SIXTEEN SECTION.6 DIFFERENTIL EQUTIONS OF CONTINUITY SECTION.7 DIFFERENTIL EQUTIONS

More information

2. The units in which the rate of a chemical reaction in solution is measured are (could be); 4rate. sec L.sec

2. The units in which the rate of a chemical reaction in solution is measured are (could be); 4rate. sec L.sec Kineic Pblem Fm Ramnd F. X. Williams. Accding he equain, NO(g + B (g NOB(g In a ceain eacin miue he ae f fmain f NOB(g was fund be 4.50 0-4 ml L - s -. Wha is he ae f cnsumpin f B (g, als in ml L - s -?

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson Convecive Hea Tansfe (6) Foced Convecion (8) Main Andesson Agenda Convecive hea ansfe Conini eq. Convecive dc flow (inodcion o ch. 8) Convecive hea ansfe Convecive hea ansfe Convecive hea ansfe f flid

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

5.111 Lecture Summary #6 Monday, September 15, 2014

5.111 Lecture Summary #6 Monday, September 15, 2014 5.111 Lectue Summay #6 Monday, Septembe 15, 014 Readings fo today: Section 1.9 Atomic Obitals. Section 1.10 Electon Spin, Section 1.11 The Electonic Stuctue of Hydogen. (Same sections in 4 th ed.) Read

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Unsteady Mass- Transfer Models

Unsteady Mass- Transfer Models See T&K Chaper 9 Unseady Mass- Transfer Models ChEn 6603 Wednesday, April 4, Ouline Conex for he discussion Soluion for ransien binary diffusion wih consan c, N. Soluion for mulicomponen diffusion wih

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS PHYS 54 - GENERAL RELATIVITY AND COSMOLOGY - 07 - PROBLEM SET 7 - SOLUTIONS TA: Jeome Quinin Mach, 07 Noe ha houghou hee oluion, we wok in uni whee c, and we chooe he meic ignaue (,,, ) a ou convenion..

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Pseudosteady-State Flow Relations for a Radial System from Department of Petroleum Engineering Course Notes (1997)

Pseudosteady-State Flow Relations for a Radial System from Department of Petroleum Engineering Course Notes (1997) Pseudoseady-Sae Flow Relaions fo a Radial Sysem fom Deamen of Peoleum Engineeing Couse Noes (1997) (Deivaion of he Pseudoseady-Sae Flow Relaions fo a Radial Sysem) (Deivaion of he Pseudoseady-Sae Flow

More information

Non-sinusoidal Signal Generators

Non-sinusoidal Signal Generators Non-sinusoidal Signal Geneaos ecangle, iangle, saw ooh, pulse, ec. Muliibao cicuis: asable no sable saes (wo quasi-sable saes; i emains in each sae fo pedeemined imes) monosable one sable sae, one unsable

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION FINITE DIFFERENCE ROCH TO WVE GUIDE MODES COMUTTION Ing.lessando Fani Elecomagneic Gou Deamen of Elecical and Eleconic Engineeing Univesiy of Cagliai iazza d mi, 93 Cagliai, Ialy SUMMRY Inoducion Finie

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stella Stuctue and Evolution Theoetical Stella odels Conside each spheically symmetic shell of adius and thickness d. Basic equations of stella stuctue ae: 1 Hydostatic equilibium π dp dp d G π = G =.

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

IV. Transport Phenomena. Lecture 19: Transient Diffusion. 1 Response to a Current Step. MIT Student. 1.1 Sand s Time

IV. Transport Phenomena. Lecture 19: Transient Diffusion. 1 Response to a Current Step. MIT Student. 1.1 Sand s Time IV. Transpor Phenomena Lecure 19: Transien iffusion MIT Suden In his lecure we show how o use simple scaling argumens o approximae he soluion o ransien diffusion problems, which arise in elecrochemical

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information