Size: px
Start display at page:

Download ""

Transcription

1 WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done by a consevaive foce depends only on he iniial and final posiions of he body d) Wok done by a consevaive foce is he poduc of Foce and displacemen e) Duing a ound ip he body aains he same iniial KE Ex Gaviaional foce, Elecosaic foce ec Non - Consevaive foce a) A foce is said o be non- consevaive if he wok done by i depends on he pah followed by he body b) Wok done by a non-consevaive foce fo a closed pah is no zeo c) Duing a ound ip he body aains a diffeen KE as ha of iniial d) Wok done by a non-consevaive foce is he poduc of Foce and disance e) Due o a non-consevaive hee may be a loss of mechanical enegy bu he oal enegy is consan Ex Ficional foce 3 Wok: a Wok is said o be done when he poin of applicaion of foce has some displacemen in he diecion of he foce b) The amoun of wok done is given by he do poduc of foce and displacemen Fs W = = Fscosθ c) Wok is independen of he ime aken and is a scala d) If he foce and displacemen ae pependicula o each ohe, hen he wok done is zeo e) A peson owing a boa upseam is a es wih espec o an obseve on he shoe Accoding o he obseve he peson does no pefom any wok Howeve, he peson pefoms wok agains he flow of wae If he sops owing he boa, he boa moves in he diecion of flow of wae and wok is pefomed by he foce due o flow, as hee is displacemen in he diecion of flow f) If he wok is done by a unifomly vaying foce such as esoing foce in a sping, hen he wok done is equal o he poduc of aveage foce and displacemen g) If he foce is vaying non unifomly, hen he wok done = F ds = F ds cos θ h) The aea of F s gaph gives he wok done i) SI uni of wok is joule j) Joule is he wok done when a foce of one Newon displaces a body hough one mee in he diecion of foce k) CGS uni of wok is eg; J = 0 7 egs l) If he foce o is componen is in a diecion opposie o he displacemen, he wok is negaive Ex When a body is lifed veically upwads, he wok done by he gaviaional foce is negaive, as he displacemen is upwad wheeas he gaviaional foce is acing downwads m) The wok done in lifing an objec of mass m hough a heigh h is equal o mgh n) When a body of mass m is aised fom a heigh h o heigh h, hen he wok done = mg(h h ) wwwsakshieducaioncom

2 o) Le a body be lifed hough a heigh 'h' veically upwads by a foce 'F' acing upwads Then, he wok done by he esulan foce is W = (F mg)h p) The wok done on a sping in seching o compessing i hough a disance x is given W = kx whee k is he foce consan o sping consan q) Wok done in changing he elongaion of a sping fom x o x is W = k ( x x ) ) The wok done in pulling he bob of a simple pendulum of lengh L hough an angle W = mgl( cos θ ) s) The wok done in lifing a homogeneous meal od lying on he gound such ha i makes an angle 'θ' wih he hoizonal, is W = mglsin θ ) The wok done in oaing a od o ba of mass m hough an angle θ abou a poin of suspension is mgl W = ( cos θ ) = mglsin (θ/) whee L is he disance of he cene of gaviy fom he poin of suspension u) The wok done in lifing a body of mass 'm' and densiy 'd s ' in a liquid of densiy 'd l ' hough a heigh 'h' unde gaviy is W = m g h dl h ds v) Wok done in pulling back a pa of lengh of a chain hanging fom he edge ono a smooh n mgl hoizonal able compleely is W = n w) Inclined plane : i Wok done in moving a block of mass 'm' up a smooh inclined plane of inclinaion 'θ' hough a disance 's' is W = Fs = (mg sinθ) s ii If he plane is ough, hen W = mg (sinθ+µ k cosθ)s x) Wok done by a posiion dependen foce If he posiion of a body changes fom x o x hen wok done is given by W x = x F dx = aea unde F S cuve y) Wok done by a ime dependen foce F a = m Now dv a = v = dv = a And W = m( v u ) z) Wok done when posiion depends on ime ds v = When = v= v and when = v= v,hen wwwsakshieducaioncom

3 W = m( v v ) 4 Spings: a) The esoing foce on he sping pe uni elongaion is called foce consan o sping consan F = - Kx (Negaive sign indicaes ha he foce is opposie o elongaion) b) The wok done in seching o compessing a sing hough x is given by W = Kx F c) W = x x = Fx F Q K = x F d) W = F F F = Q x = K k k W = K x x Also, W = ( F x F x ) e) If he sping is seched fom x and x hen he wok don is given by ( ) f) If a body is dopped fom a heigh h on o a sping of consan k, and if x is he compession in he sping, hen mg ( h + x) = kx g) If ai ficion is consideed, ( mg f )( h + x) = kx h) If a body of mass on moving wih a speed v collides a sping in is pih and compesses he sping hough x hen, mv = kx If ficion is consideed kx = mv f s = mv µ mgs i) If a sping of sping consan k is cu ino n equal pas he sping consan of each pa is nk k l = k l = k l = = k l + l + l j) If a sping of consan k is cu ino unequal pas, hen ( ) 5 Powe: a Rae of doing wok is called powe wok Powe = = Foce x velociy ime wwwsakshieducaioncom b SI uni of powe is wa and CGS uni is eg/second hose powe = 746 wa c If a vehicle avels wih a speed of v ovecoming a oal esisance of F, hen he powe of he engine is given by P = F v dθ d If a body is oaed in cicula pah, he powe exeed is given by P = τ = τω e If a block of mass 'm' is pulled along he smooh inclined plane of angle 'θ', wih consan velociy 'v', hen he powe exeed is, p = (mg sin θ)v f If he block is pulled up a ough inclined plane hen he powe is P = mg (sinθ + µ k cosθ)v

4 g If he block is pulled down a ough inclined plane hen he powe is P = mg (sinθ - µ k cosθ)v h When wae is coming ou fom a hose pipe of aea of coss secion 'A' wih a velociy 'v' and his a wall nomally and i) sops dead, hen foce exeed by he wae on he wall is Av ρ And he powe exeed by wae is P = A v 3 ρ (ρ = densiy of wae) ii) If wae ebounds wih same velociy (v) afe siking he wall, P = Av 3 ρ dm i When sand dops fom a saionay doppe a a ae of on o a conveye bel moving wih a consan velociy, hen he exa foce equied o keep he bel moving wih a consan speed V is dm given by F = v and he powe equied = P = dm v j If a pump lifs he wae fom a well of deph 'h' and impas some velociy 'v' o he wae, hen he powe of pump P = mgh + mv k Powe exeed by a machine gun which fies 'n' bulles in ime '' is P = l If a pump delives V lies of wae ove a heigh of h mees in one minue, hen he powe of he engine (P) = Vgh 60 m A moo sends a liquid wih a velociy 'V' in a ube of coss secion 'A' and 'd' is he densiy of he liquid, hen he powe of he moo is P = AdV 3 n A body of mass M iniially a es on a smooh hoizonal suface acceleaes unifomly and acquies velociy V in ime The wok done on he body in ime is mv i) Wok done = 6 ENERGY: ii) Aveage powe = W = mv mv iii) Insananeous powe = Fv = wwwsakshieducaioncom mnv a) The enegy possessed by a body by viue of is moion is called kineic enegy Ex A fied bulle, blowing wind, ec Fo a body of mass m is moving wih a velociy v, kineic enegy = mv b) The enegy possessed by a body by viue of is moion is called kineic enegy Ex A ben bow, Wae soed in a esevoi ec c) A flying bid possesses boh KE and PE d) The wok done in lifing an objec of mass m hough a heigh h is soed as poenial enegy in he body and i is equal o mgh e) Wok enegy heoem : The wok done by he consan esulan foce acing on a body is equal o he change in is kineic enegy W = mv mu

5 P f) If he kineic enegy of a body of mass m is E and is momenum is P, hen E = m g) If he momenum of he body inceased by n imes, KE incease by n imes h) If he KE of he body inceases by n imes, he momenum inceases by n imes P i) If he momenum of he body inceases by P%, % incease in KE= + P% 00 j) If he momenum of he body deceases by p%, % decease in KE= P p% 00 k) If he KE of he body inceases by E%, % incease in momenum= + E 00% 00 E 00 l) If he KE of he body deceases by E%, % decease in momenum= + 00% m) If wo bodies, one heavie and he ohe lighe ae moving wih he same momenum, hen he lighe body possesses geae kineic enegy n) If wo bodies, one heavie and he ohe lighe have he same KE hen he heavie body possesses geae momenum o) Two bodies, one is heavie and he ohe is lighe ae moving wih he same momenum If hey ae sopped by he same eading foce, hen i) The disance avelled by he lighe body is geae (s m ) ii) They will come o es wihin he same ime ineval p) Two bodies, one is heavie and he ohe is lighe ae moving wih same kineic enegy If hey ae sopped by he same eading foce, hen i) The disance avelled by boh he bodies ae same ii) The ime aken by he heavie body will be moe ( m ) wwwsakshieducaioncom

PHYS PRACTICE EXAM 2

PHYS PRACTICE EXAM 2 PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

Work Power Energy. For conservaive orce ) Work done is independen o he pah ) Work done in a closed loop is zero ) Work done agains conservaive orce is sored is he orm o poenial energy 4) All he above.

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Physics Equation List :Form 4 Introduction to Physics

Physics Equation List :Form 4 Introduction to Physics Physics Equaion Lis :Form 4 Inroducion o Physics Relaive Deviaion Relaive Deviaion Mean Deviaion 00% Mean Value Prefixes Unis for Area and Volume Prefixes Value Sandard form Symbol Tera 000 000 000 000

More information

2. v = 3 4 c. 3. v = 4c. 5. v = 2 3 c. 6. v = 9. v = 4 3 c

2. v = 3 4 c. 3. v = 4c. 5. v = 2 3 c. 6. v = 9. v = 4 3 c Vesion 074 Exam Final Daf swinney (55185) 1 This pin-ou should have 30 quesions. Muliple-choice quesions may coninue on he nex column o page find all choices befoe answeing. 001 10.0 poins AballofmassM

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

r r r r r EE334 Electromagnetic Theory I Todd Kaiser 334 lecoagneic Theoy I Todd Kaise Maxwell s quaions: Maxwell s equaions wee developed on expeienal evidence and have been found o goven all classical elecoagneic phenoena. They can be wien in diffeenial

More information

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work MÜHENDİSLİK MEKNİĞİ. HFT İş-Eneji Pwe f a fce: Pwe in he abiliy f a fce d wk F: The fce applied n paicle Q P = F v = Fv cs( θ ) F Q v θ Pah f Q v: The velciy f Q ÖRNEK: İŞ-ENERJİ ω µ k v Calculae he pwe

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

EN221 - Fall HW # 7 Solutions

EN221 - Fall HW # 7 Solutions EN221 - Fall2008 - HW # 7 Soluions Pof. Vivek Shenoy 1.) Show ha he fomulae φ v ( φ + φ L)v (1) u v ( u + u L)v (2) can be pu ino he alenaive foms φ φ v v + φv na (3) u u v v + u(v n)a (4) (a) Using v

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , PART A PHYSICS

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,  PART A PHYSICS Pena Towe, oad No, Conacos Aea, isupu, Jamshedpu 83, Tel (657)89, www.penaclasses.com AIEEE PAT A PHYSICS Physics. Two elecic bulbs maked 5 W V and W V ae conneced in seies o a 44 V supply. () W () 5 W

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

Motion on a Curve and Curvature

Motion on a Curve and Curvature Moion on Cue nd Cuue his uni is bsed on Secions 9. & 9.3, Chpe 9. All ssigned edings nd execises e fom he exbook Objecies: Mke cein h you cn define, nd use in conex, he ems, conceps nd fomuls lised below:

More information

P h y s i c s F a c t s h e e t

P h y s i c s F a c t s h e e t P h y s i c s F a c s h e e Sepembe 2001 Numbe 20 Simple Hamonic Moion Basic Conceps This Facshee will:! eplain wha is mean by simple hamonic moion! eplain how o use he equaions fo simple hamonic moion!

More information

2-d Motion: Constant Acceleration

2-d Motion: Constant Acceleration -d Moion: Consan Acceleaion Kinemaic Equaions o Moion (eco Fom Acceleaion eco (consan eloci eco (uncion o Posiion eco (uncion o The eloci eco and posiion eco ae a uncion o he ime. eloci eco a ime. Posiion

More information

Chapter 15 Oscillatory Motion I

Chapter 15 Oscillatory Motion I Chaper 15 Oscillaory Moion I Level : AP Physics Insrucor : Kim Inroducion A very special kind of moion occurs when he force acing on a body is proporional o he displacemen of he body from some equilibrium

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Physics 207 Lecture 13

Physics 207 Lecture 13 Physics 07 Lecue 3 Physics 07, Lecue 3, Oc. 8 Agenda: Chape 9, finish, Chape 0 Sa Chape 9: Moenu and Collision Ipulse Cene of ass Chape 0: oaional Kineaics oaional Enegy Moens of Ineia Paallel axis heoe

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

WORK, ENERGY AND POWER NCERT

WORK, ENERGY AND POWER NCERT Exemplar Problems Physics Chaper Six WORK, ENERGY AND POWER MCQ I 6.1 An elecron and a proon are moving under he influence of muual forces. In calculaing he change in he kineic energy of he sysem during

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Rotational Motion and the Law of Gravity

Rotational Motion and the Law of Gravity Chape 7 7 Roaional Moion and he Law of Gaiy PROBLEM SOLUTIONS 7.1 (a) Eah oaes adians (360 ) on is axis in 1 day. Thus, ad 1 day 5 7.7 10 ad s 4 1 day 8.64 10 s Because of is oaion abou is axis, Eah bulges

More information

Homework Set 2 Physics 319 Classical Mechanics

Homework Set 2 Physics 319 Classical Mechanics Homewor Se Physics 19 Classical Mechanics Problem.7 a) The roce velociy equaion (no graviy) is m v v ln m Afer wo minues he velociy is m/sec ln = 79 m/sec. b) The rae a which mass is ejeced is ( 1 6-1

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav PHYSICS 5A FALL 2001 FINAL EXAM v = x a = v x = 1 2 a2 + v 0 + x 0 v 2 = v 2 0 +2a(x, x 0) a = v2 r ~v = x ~a = vx v = v 0 + a y z ^x + ^y + ^z ^x + vy x, x 0 = 1 2 (v 0 + v) ~v P=A = ~v P=B + ~v B=A ^y

More information

Fundamental Vehicle Loads & Their Estimation

Fundamental Vehicle Loads & Their Estimation Fundaenal Vehicle Loads & Thei Esiaion The silified loads can only be alied in he eliinay design sage when he absence of es o siulaion daa They should always be qualified and udaed as oe infoaion becoes

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Sharif University of Technology - CEDRA By: Professor Ali Meghdari Shaif Univesiy of echnology - CEDRA By: Pofesso Ali Meghai Pupose: o exen he Enegy appoach in eiving euaions of oion i.e. Lagange s Meho fo Mechanical Syses. opics: Genealize Cooinaes Lagangian Euaion

More information

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants An Open cycle and losed cycle Gas ubine Engines Mehods o impove he pefomance of simple gas ubine plans I egeneaive Gas ubine ycle: he empeaue of he exhaus gases in a simple gas ubine is highe han he empeaue

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line 1 CIRCULAR MOTION 1. ANGULAR DISPLACEMENT Intoduction: Angle subtended by position vecto of a paticle moving along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle moving

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

Physics 2001/2051 Moments of Inertia Experiment 1

Physics 2001/2051 Moments of Inertia Experiment 1 Physics 001/051 Momens o Ineia Expeimen 1 Pelab 1 Read he ollowing backgound/seup and ensue you ae amilia wih he heoy equied o he expeimen. Please also ill in he missing equaions 5, 7 and 9. Backgound/Seup

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Physics 120 Homework Solutions April 25 through April 30, 2007

Physics 120 Homework Solutions April 25 through April 30, 2007 Physics Homewok Solutions Apil 5 though Apil 3, 7 Questions: 6. The oce is pependicula to evey incement o displacement. Theeoe, F =. 6.4 Wok is only done in acceleating the ball om est. The wok is done

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

Linear Motion I Physics

Linear Motion I Physics Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( ) : PHYS 55 (Pat, Topic ) Eample Solutions p. Review of Foce Eample ( ) ( ) What is the dot poduct fo F =,,3 and G = 4,5,6? F G = F G + F G + F G = 4 +... = 3 z z Phs55 -: Foce Fields Review of Foce Eample

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Momentum and Collisions

Momentum and Collisions SOLUTIONS TO PROBLES Section 8. P8. m 3.00 kg, (a) omentum and Collisions Linea omentum and Its Consevation v ( 3.00î 4.00ĵ ) m s p mv ( 9.00î.0ĵ ) kg m s Thus, p x 9.00 kg m s and p y.0 kg m s. p p x

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields Lecure 16 (Momenum and Impulse, Collisions and Conservaion o Momenum) Physics 160-02 Spring 2017 Douglas Fields Newon s Laws & Energy The work-energy heorem is relaed o Newon s 2 nd Law W KE 1 2 1 2 F

More information

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information