Physics Notes - Ch. 2 Motion in One Dimension

Size: px
Start display at page:

Download "Physics Notes - Ch. 2 Motion in One Dimension"

Transcription

1 Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume, disance, speed, color, ec. I makes no sense o say i B. Vecor describes boh magniude and direcion; e. displacemen, elociy, orce, ec. 1. Speed is he magniude (amoun) o elociy; elociy mus include boh magniude (speed) and direcion. On diagrams, arrows are used o represen ecor quaniies; he direcion o he arrow or he angle a which i poins gies he direcion o he ecor and he magniude o he ecor is proporional o he lengh o he arrow. Vecors displacemen elociy acceleraion orce weigh momenum Scalars disance speed mass ime olume emperaure work and energy Frames o reerence sandard or comparison; any moemen o posiion, disance, or speed is made agains a rame o reerence; wih respec o Earh is mos common We can say i is norheas because i is eacly 45 degrees rom each ais BUT i i were 35 degrees aboe he ais insead?? We would need o say 35 degrees Norh o Eas! II. Disance s. Displacemen Disance oal lengh moed or oal ground coered; a scalar quaniy No direcion necessary! I you ran around he rack, you would go a disance o 400 meers. Displacemen Deined as he change in posiion ( or dela means - i ) wih respec o a reerence poin. I is a ecor quaniy. I you ran around he rack, your displacemen would be ZERO meers. We can use displacemen and disance inerchangeably in his course, bu hey are no necessarily he same hing. Noe displacemen is no always equal o he disance raeled

2 Here are some graphs o posiion ersus ime: 1 Quesions: Which graph(s) show a saring posiion away rom and moing arher away rom he origin in he posiie direcion? Which graph(s) show an objec reurning oward he saring posiion? III. Velociy s. Speed Aerage speed oal disance coered diided by he oal ime aken; scalar quaniy Aerage elociy displacemen or /ime; ecor quaniy. Since elociy is a ecor, we mus deine i in erms o anoher ecor, displacemen. Oenimes aerage speed and aerage elociy are inerchangeable or he purposes o he AP Physics B eam. Speed = d or is he magniude o elociy, ha is, speed is a scalar and elociy is a ecor. For eample, i you are driing wes a 50 miles per hour, we say ha your speed is 50 mph, and your elociy is 50 mph wes. We will use he leer or boh speed and elociy in our calculaions, and will ake he direcion o elociy ino accoun when necessary. Insananeous elociy is he elociy a a speciic ime which may be dieren rom he aerage elociy which will be seen in he graphs below. Eample #1 : Le s say you raelled 5 meers Norh in minues, sopped or 10 minues, hen coninued in he same direcion going 400 meers in 8 minues calculae your aerage elociy or he rip.

3 IV. Acceleraion: In his course we will only calculae wih consan acceleraions. (In order o work well wih changing acceleraions, you would need o use calculus.) Aerage acceleraion is he rae o change o elociy; change in elociy wih ime (a = / ) i an objec s elociy is changing, i s acceleraing een i i s slowing down and een i he only hing changing is is direcion o rael. An objec raeling in a circle a a consan speed is sill changing is elociy because is direcion is changing consanly SO i is acceleraing!! Eample # : I a car goes rom res o 48 mph (miles per hour) in 4 seconds, calculae is acceleraion. Noe A irs you migh hink ha + acceleraion is speeding up and negaie acceleraion is slowing down NOT necessarily. You only hae negaie acceleraion when he direcion o he acceleraion is opposie o he direcion ha is deined as posiie. I s all abou he direcion o he acceleraion no speed up or slow down. V. Free Fall We say an objec is in ree all when is moion is conrolled by graiy. i a= = In he picure o he righ, a ball is hrown upward wih some iniial elociy. As i goes up, is speed decreases unil i insananeously becomes zero a he op. Then i speeds up as i alls back down. I up has been deined as posiie, hen he balls elociy is: posiie as i moes upward slowing down; becomes zero a he op negaie as i moes downward gaining speed BUT, he ball s acceleraion has he same negaie alue a all posiions! Try i using he ormula!! a= E: iniial speed going up is 40 m/s and i raels upward or 4 seconds and sops momenarily hen alls or 4 seconds and reaches a inal speed o 40 m/s. Using he signs or up and down moion (gien aboe), calculae he aerage acceleraion or each par o he rip, hen he aerage acceleraion or he oal rip. i This acceleraion is also presen a he op EVEN WHEN he insananeous speed is ZERO! This acceleraion is due o graiy and (when a is his special case, due o graiy we label i g and call i ree all acceleraion). Graiy does no ake a holiday jus because he objec reached he op o is rajecory! On Earh, g = 3 /s = 3 Fee per second each second. This is he same as 9.81 meers per second each second (ha is or 9.81 m/s (we regularly round i o 10 m/s o make calculaions easier). Eample #3: A ball is dropped rom he op o a cli. How as will i be raeling aer 1,, and 3 seconds? How high is he cli i he ball his he boom in 5 seconds?

4 In he absence o air resisance, all objecs, regardless o heir mass or olume, dropped near he surace o a plane all wih he same consan acceleraion. Look a he picure aboe. The eaher and he apple in a acuum chamber all a he same rae! In he presence o air resisance, objecs dropped will iniially accelerae a g and hen he acceleraion will decrease o zero once erminal elociy is reached. See he kinemaic ormulas (las page o hese noes) or use in hese eamples. Eample # 4 : A rocke raeling a 88 m/s is acceleraed uniormly o 13 m/s oer a 15 s ineral. Wha is he displacemen during his ime? Eample # 5 : A lowerpo alls rom res on a windowsill 5.0 m aboe he sidewalk. a. How as is he lowerpo moing when i srikes he ground? b. How much ime does a bug on he sidewalk below hae o moe ou o he way beore he lowerpo his he ground or he bug?

5 VI. Graphs o Moion Relaionship beween displacemen s. ime graph, elociy s. ime graph, and acceleraion s. ime graph Eample #6: The graph shows posiion as a uncion o ime or wo rains running on parallel racks. Which is rue? 1. A ime B, boh rains hae he same speed.. Boh rains speed up all he ime. 3. Boh rains hae he same speed a some ime beore B. 4. Boh rains hae he same acceleraion a some ime beore B.

6 Simple Kinemaic Formulas (For cases where he objec sars rom res; in oher words, he iniial elociy is 0.) = 00mi = 50mi/hr X 4hrs. 50mi/hr mus be he aerage elociy or he whole rip. Do no use his ormula or insananeous elociy or o ry o ind a elociy a a paricular momen. ******************************************************************************************* Use his ormula o ind he elociy a a paricular momen (insananeous = a elociy), he acceleraion, or he ime i he oher erms are known. aerage a = = 1 a Use his o ind acceleraion, he change in elociy, or he elapsed ime i he oher erms are known. Use his o ind he displacemen (change in posiion,) he acceleraion, or he ime when he oher erms are known. General Kinemaic Formulas: The Big Three Formulas or uniormly acceleraed moion {The ormulas below are general. I he objec sars rom res hen he iniial elociy is 0 and he ormulas may be simpliied o he orms aboe.} = i + a Use his o ind he inal elociy, he original elociy, he acceleraion, or he elapsed ime when he oher erms are known. = + a i Use his o ind he inal elociy, he original elociy, he acceleraion, or he displacemen when he oher erms are known. = i + 1 a Use his o ind he displacemen, he original elociy, he elapsed ime, or he acceleraion when he oher erms are known. Physics HW probs: P # s 3, 8, 10, 13, 16-19, 1, 3, 7, 30, 3, 34, 38, 4, 43, and 46. Reised 009 kjl

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line. CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, W-F oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

I. OBJECTIVE OF THE EXPERIMENT.

I. OBJECTIVE OF THE EXPERIMENT. I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

More information

s in boxe wers ans Put

s in boxe wers ans Put Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chaper Moion along a sraigh line Kinemaics & Dynamics Kinemaics: Descripion of Moion wihou regard o is cause. Dynamics: Sudy of principles ha relae moion o is cause. Basic physical ariables in kinemaics

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

Review Equations. Announcements 9/8/09. Table Tennis

Review Equations. Announcements 9/8/09. Table Tennis Announcemens 9/8/09 1. Course homepage ia: phsics.bu.edu Class web pages Phsics 105 (Colon J). (Class-wide email sen) Iclicker problem from las ime scores didn ge recorded. Clicker quizzes from lecures

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key RECTILINEAR MOTION Conens Topic Page No. Theory 01-01 Exercise - 1 0-09 Exercise - 09-14 Exercise - 3 15-17 Exercise - 4 17-0 Answer Key 1 - Syllabus Kinemaics in one dimension. Name : Conac No. ARRIDE

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

Kinematics in One Dimension

Kinematics in One Dimension Kinemaics in One Dimension PHY 7 - d-kinemaics - J. Hedberg - 7. Inroducion. Differen Types of Moion We'll look a:. Dimensionaliy in physics 3. One dimensional kinemaics 4. Paricle model. Displacemen Vecor.

More information

total distance cov ered time int erval v = average speed (m/s)

total distance cov ered time int erval v = average speed (m/s) Physics Suy Noes Lesson 4 Linear Moion 1 Change an Moion a. A propery common o eeryhing in he unierse is change. b. Change is so imporan ha he funamenal concep of ime woul be meaningless wihou i. c. Since

More information

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Chapter 2: One-Dimensional Kinematics

Chapter 2: One-Dimensional Kinematics Chaper : One-Dimensional Kinemaics Answers o Een-Numbered Concepual Quesions. An odomeer measures he disance raeled by a car. You can ell his by he fac ha an odomeer has a nonzero reading afer a round

More information

Kinematics. introduction to kinematics 15A

Kinematics. introduction to kinematics 15A 15 15A Inroducion o kinemaics 15B Velociy ime graphs and acceleraion ime graphs 15C Consan acceleraion formulas 15D Insananeous raes of change Kinemaics AreAS of STuDy Diagrammaic and graphical represenaion

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

02. MOTION. Questions and Answers

02. MOTION. Questions and Answers CLASS-09 02. MOTION Quesions and Answers PHYSICAL SCIENCE 1. Se moves a a consan speed in a consan direcion.. Reprase e same senence in fewer words using conceps relaed o moion. Se moves wi uniform velociy.

More information

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point 2012 Sepember 25 Eam I Physics 105 Circle he leer of he single bes answer. Each uesion is worh 1 poin Physical Consans: Earh s free-fall acceleraion = g = 9.80 m/s 2 3. (Mark wo leers!) The below graph

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4.

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4. Inquiry an Communicaion 8. (a) ensiy eermine by Group A is he mos reasonable. (b) When roune off o wo significan igis, Group B has he same alue as Group A. Howeer, saing an experimenal measuremen o six

More information

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2 PhysicsndMahsTuor.com 7 car is ravelling wih uniform acceleraion along a sraigh road. The road has marker poss every 1 m. When he car passes one pos, i has a speed of 1 m s 1 and, when i passes he nex

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Mechanics Acceleration The Kinematics Equations

Mechanics Acceleration The Kinematics Equations Mechanics Acceleraion The Kinemaics Equaions Lana Sheridan De Anza College Sep 27, 2018 Las ime kinemaic quaniies graphs of kinemaic quaniies Overview acceleraion he kinemaics equaions (consan acceleraion)

More information

Kinematics Motion in 1 Dimension and Graphs

Kinematics Motion in 1 Dimension and Graphs Kinemaics Moion in 1 Dimension and Graphs Lana Sheridan De Anza College Sep 27, 2017 Las ime moion in 1-dimension some kinemaic quaniies graphs Overview velociy and speed acceleraion more graphs Kinemaics

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

Rectilinear Kinematics

Rectilinear Kinematics Recilinear Kinemaic Coninuou Moion Sir Iaac Newon Leonard Euler Oeriew Kinemaic Coninuou Moion Erraic Moion Michael Schumacher. 7-ime Formula 1 World Champion Kinemaic The objecie of kinemaic i o characerize

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

PHYS 100: Lecture 2. Motion at Constant Acceleration. Relative Motion: Reference Frames. x x = v t + a t. x = vdt. v = adt. x Tortoise.

PHYS 100: Lecture 2. Motion at Constant Acceleration. Relative Motion: Reference Frames. x x = v t + a t. x = vdt. v = adt. x Tortoise. a PHYS 100: Lecure 2 Moion a Consan Acceleraion a 0 0 Area a 0 a 0 v ad v v0 a0 v 0 x vd 0 A(1/2)( v) Area v 0 v v-v 0 v 0 x x v + a 1 0 0 2 0 2 Relaive Moion: Reference Frames x d Achilles Toroise x Toroise

More information

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r. Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Physics 131- Fundamentals of Physics for Biologists I

Physics 131- Fundamentals of Physics for Biologists I 10/3/2012 - Fundamenals of Physics for iologiss I Professor: Wolfgang Loser 10/3/2012 Miderm review -How can we describe moion (Kinemaics) - Wha is responsible for moion (Dynamics) wloser@umd.edu Movie

More information

72 Calculus and Structures

72 Calculus and Structures 72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ Secion. Curilinear Moion he sudy of he moion of a body along a general cure. We define û he uni ecor a he body, angenial o he cure û he uni ecor normal o he cure Clearly, hese uni ecors change wih ime,

More information

Linear Motion I Physics

Linear Motion I Physics Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

More information

Kinematics in two Dimensions

Kinematics in two Dimensions Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

More information

Velocity is a relative quantity

Velocity is a relative quantity Veloci is a relaie quani Disenangling Coordinaes PHY2053, Fall 2013, Lecure 6 Newon s Laws 2 PHY2053, Fall 2013, Lecure 6 Newon s Laws 3 R. Field 9/6/2012 Uniersi of Florida PHY 2053 Page 8 Reference Frames

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Kinematics. See if you can define distance. We think you ll run into the same problem.

Kinematics. See if you can define distance. We think you ll run into the same problem. Kinemaics Inroducion Moion is fundamenal o our lives and o our hinking. Moving from place o place in a given amoun of ime helps define boh who we are and how we see he world. Seeing oher people, objecs

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Testing What You Know Now

Testing What You Know Now Tesing Wha You Know Now To bes each you, I need o know wha you know now Today we ake a well-esablished quiz ha is designed o ell me his To encourage you o ake he survey seriously, i will coun as a clicker

More information

Work Power Energy. For conservaive orce ) Work done is independen o he pah ) Work done in a closed loop is zero ) Work done agains conservaive orce is sored is he orm o poenial energy 4) All he above.

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

Ex: An object is released from rest. Find the proportion of its displacements during the first and second seconds. y. g= 9.8 m/s 2

Ex: An object is released from rest. Find the proportion of its displacements during the first and second seconds. y. g= 9.8 m/s 2 FREELY FALLING OBJECTS Free fall Acceleraion If e only force on an objec is is wei, e objec is said o be freely fallin, reardless of e direcion of moion. All freely fallin objecs (eay or li) ae e same

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information