1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

Size: px
Start display at page:

Download "1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a"

Transcription

1 Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum. D. kineic energy. 2. The graph below shows he ariaion wih ime of he acceleraion a of a body moing in a sraigh-line. a 1 2 The shaded area represens A. he change in elociy from 1 o 2. B. he elociy a 2. C. he aerage elociy beween 1 and 2. D. he elociy a 1. 1

2 3. The diagram below shows he ariaion wih ime of he elociy of an objec. The area beween he line of he graph and he ime-axis represens A. he aerage elociy of he objec. B. he displacemen of he objec. C. he impulse acing on he objec. D. he work done on he objec. 4. The graph below shows he ariaion wih ime of he acceleraion a of a spaceship. a T The spaceship is a res a =. The shaded area represens A. he disance raelled by he spaceship beween = and = T. B. he speed of he spaceship a = T. C. he rae a which he speed of he spaceship changes beween = and = T. D. he rae a which he acceleraion changes beween = and = T. 2

3 5. The graph below shows he ariaion wih ime of he acceleraion a of a spaceship. a T The spaceship is a res a =. The shaded area represens A. he disance raelled by he spaceship beween = and = T. B. he speed of he spaceship a = T. C. he rae a which he speed of he spaceship changes beween = and = T. D. he rae a which he acceleraion changes beween = and = T. 6. A seel sphere is dropped from res in oil. Which of he following graphs bes represens he ariaion wih ime of he speed of he sphere? A. speed B. speed ime ime C. speed D. speed ime ime 3

4 7. The diagram below shows he ariaion wih ime of he elociy of an objec. Which one of he following graphs shows he ariaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 4

5 8. A ball is dropped from res a ime = on o a horizonal surface from which i rebounds. Which one of he following graphs bes shows he ariaion of speed of he ball wih ime from he ime = o he ime ha he ball leaes he surface? A. B. C. D. 5

6 9. A car acceleraes uniformly from res. I hen coninues a consan speed before he brakes are applied, bringing he car o res. Which of he following graphs bes shows he ariaion wih ime of he acceleraion a of he car? A. a B. a C. a D. a 6

7 1. A ball is held a res in air. The ball is hen released. Which one of he following graphs bes shows he ariaion wih ime of he disance d fallen by he ball? A. d B. d C. d D. d 7

8 11. The graph shows he ariaion wih ime of he elociy of an objec. Which one of he following graphs bes represens he ariaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a (1) 8

9 12. An archer shoos an arrow a an angle o he horizonal. Air resisance is negligible. Which of he following graphs bes represens he ariaion wih ime of he horizonal componen of he arrow s elociy from he ime i is launched o he ime jus before i his he ground? A. elociy B. elociy ime ime C. elociy D. elociy ime ime 13. The graph below shows he ariaion wih ime of he displacemen s of a car. In which ime ineral is he speed greaes? s A B C D 9

10 14. The graph shows he ariaion wih ime of he elociy of an objec moing along a sraigh line. Which graph shows he ariaion wih ime of he acceleraion a of he objec? A. a B. a a C. D. a 1

11 15. A ball is hrown erically upwards a ime =. Air resisance is no negligible and he acceleraion of free fall is g. The ball reaches a maximum heigh a ime = T and hen descends, reaching a erminal speed. Which graph bes shows he ariaion wih ime of he acceleraion a of he ball? A. a +g B. a +g T T g g C. a +g D. a +g T T g g 11

12 16. An objec is dropped from res from a poin seeral hundred meres aboe he surface of he Earh a ime =. The objec srikes he ground a = T and air resisance is no negligible. Which of he following skech graphs bes shows he ariaion wih ime, of he speed of he objec? A. B. T T C. D. T T 12

13 17. The graph below shows he ariaion wih ime of he elociy of an objec moing on a sraigh-line. Which of he graphs below bes represens he ariaion wih ime of he acceleraion a of he objec? 13

14 18. A projecile is fired from he ground a ime =. I lands back on he ground a ime = T. Which of he following skech graphs bes shows he ariaion wih ime of he erical speed V V and horizonal speed V H of he projecile? Air resisance is negligible. speed A. B. V H speed V H V V V V T C. D. T speed speed V H V V V H V V T T 14

15 19. The graph below shows how a quaniy y aries wih ime for a falling objec. y Which one of he following quaniies could be represened by y? A. Speed when air resisance is negligible B. Speed when air resisance is no negligible C. Disance moed from res when air resisance is negligible D. Disance moed from res when air resisance is no negligible 2. A boy hrows a small sone a an angle o he horizonal. Which one of he following skeches bes shows he pah of he sone as i rises and hen falls back o Earh? Air resisance is negligible and he acceleraion of free fall is consan. A. B. C. D. 15

16 21. A sone is hrown from O a an angle o he horizonal. Which skech below bes shows he pah of he sone when air resisance is no negleced? On each skech, he broken line shows he pah for he same sone in a acuum. A. B. O O C. D. O O 22. The diagram below shows he pah of a projecile in he absence of air resisance. Verical posiion Horizonal posiion Which one of he following diagrams bes represens he pah of he projecile under he same iniial condiions when he air resisance is aken ino accoun? (The pah in absence of air resisance is shown for comparison as a doed line.) A. Verical B. posiion Verical posiion Horizonal posiion Horizonal posiion C. Verical D. posiion Verical posiion Horizonal posiion Horizonal posiion 16

17 23. A ball is hrown horizonally from he op of a cliff. Air resisance is negligible. Which of he following diagrams bes represens he subsequen pah of he ball? A. B. C. D. 17

18 24. Two forces P and Q ac a a poin X. The indiidual forces are represened in magniude and direcion in he diagram below. Which of he following diagrams bes shows he alue of S, where S = (P Q)? A. B. P Q P S S Q C. D. S S Q Q P P 18

19 25. A sailing boa is moing wih consan elociy o he righ parallel o he dock. Sailor Hulo, up on he mas, drops his elescope a he momen he is opposie Lucie who is sanding on he dock. Which one of he following bes shows he pah of he falling elescope as seen by Lucie? A. B. C. D. 19

20 26. A car is heading due Eas a a speed of 1 m s 1. A bird is flying due Norh a a speed of 4 m s 1, as shown below. N 4 m s 1 W S E Car 1 m s 1 Bird Which one of he following ecors represens he elociy of he bird relaie o a person in he car? A. B. C. D. (1) 27. A paricle is projeced horizonally wih speed from a heigh H. I lands a horizonal disance R from he poin of launch as shown in he diagram below. H R A second paricle is projeced horizonally from he same heigh wih speed 2. Neglecing air resisance he horizonal disance raelled by his paricle is A. R. B. 2R. C. 2R. D. 4R. 2

21 28. The graph shows he ariaion wih ime of he acceleraion a of an objec a / ms / s The objec is a res a ime =. Which of he following is he elociy of he objec a ime = 6. s? A..5 m s 1. B. 2. m s 1. C. 36 m s 1. D. 72 m s 1. 21

22 29. Peer and Susan boh sand on he edge of a erical cliff. V (Peer) V (Susan) Sea Susan hrows a sone erically downwards and, a he same ime, Peer hrows a sone erically upwards. The speed V wih which boh sones are hrown is he same. Neglecing air resisance, which one of he following saemens is rue? A. The sone hrown by Susan will hi he sea wih a greaer speed han he sone hrown by Peer. B. Boh sones will hi he sea wih he same speed no maer wha he heigh of he cliff. C. In order o deermine which sone his he sea firs, he heigh of he cliff mus be known. D. In order o deermine which sone his he sea firs boh he heigh of he cliff and he mass of each sone mus be known. 22

23 3. A sone is hrown a an angle o he horizonal. Ignoring air resisance, he horizonal componen of he iniial elociy of he sone deermines he alue of A. range only. B. maximum heigh only. C. range and maximum heigh. D. range and ime of fligh. 31. A sone X is hrown erically upwards wih speed from he op of a building. A he same ime, a second sone Y is hrown erically downwards wih he same speed as shown. X Y Building Air resisance is negligible. Which one of he following saemens is rue abou he speeds wih which he sones hi he ground a he base of he building? A. The speed of sone X is greaer han ha of sone Y. B. The speed of sone Y is greaer han ha of sone X. C. The speed of sone X is equal o ha of sone Y. D. Any saemen abou he speeds depends on he heigh of he building. 23

24 32. A ball is released from res near he surface of he Moon. Which one of he following quaniies increases a a consan rae? A. Only disance fallen B. Only speed C. Only speed and disance fallen D. Only speed and acceleraion 33. The minue hand of a clock hung on a erical wall has lengh L. P L The minue hand is obsered a he ime shown aboe and hen again, 3 minues laer. Wha is he displacemen of, and he disance moed by, he end P of he minue hand during his ime ineral? displacemen disance moed A. 2L erically downwards πl B. 2L erically upwards πl C. 2L erically downwards 2L D. 2L erically upwards 2L 24

25 34. Which one of he following is a correc definiion of displacemen? A. Disance from a fixed poin B. Disance moed from a fixed poin C. Disance from a fixed poin in a gien direcion D. Disance moed in a gien direcion 35. A paricle moes from a poin P o a poin Q in a ime T. Which one of he following correcly defines boh he aerage elociy and aerage acceleraion of he paricle? A. B. C. D. Aerage elociy displacemen of Q and P T displacemen of Q and P T disance beween Q and P T disance beween Q and P T Aerage acceleraion change in speed from Q o P T change in elociy from Q o P T change in speed from Q o P T change in elociy from Q o P T 36. Two sones, X and Y, of differen mass are dropped from he op of a cliff. Sone Y is dropped a shor ime afer sone X. Air resisance is negligible. Whils he sones are falling, he disance beween hem will A. decrease if he mass of Y is greaer han he mass of X. B. increase if he mass of X is greaer han he mass of Y. C. decrease wheher he mass of X is greaer or less han he mass of Y. D. increase wheher he mass of X is greaer or less han he mass of Y. 25

26 37. Poins P and Q are a disances R and 2R respeciely from he cenre X of a disc, as shown below. Q P R X 2R The disc is roaing abou an axis hrough X, normal o he plane of he disc. Poin P has linear speed and cenripeal acceleraion a. Which one of he following is correc for poin Q? Linear speed Cenripeal acceleraion A. a B. 2a C. 2 2a D. 2 4a 26

27 38. A sone is hrown wih speed from he op of a cliff of heigh H, as shown below. h cliff H The sone is hrown a an angle o he horizonal so ha i rises o a heigh h aboe he op of he cliff before falling ino he sea. The acceleraion of free fall is g. Air resisance is negligible. Which one of he following expressions gies correcly he speed of he sone as i his he sea? A. + ( 2gh) B. + ( 2gH ) C. ( 2 g { h + H} ) D. ( 2gH ) 2 + sea 27

28 39. A sone is hrown from he op of a cliff wih speed a an angle θ aboe he horizonal, as shown. cliff Air resisance is negligible and he acceleraion of free fall is g. Wha is he horizonal elociy of he sone a ime afer he sone has been hrown? A. sinθ B. sinθ g C. cosθ D. cosθ g 28

29 4. The diagram below shows he rajecory of a ball hrown ino he air. There is no air resisance. rajecory of ball A X B D C Which arrow gies he direcion of he resulan force on he ball a he poin X? A. A B. B C. C D. D 29

30 41. A body saring from res moes along a sraigh-line under he acion of a consan force. Afer raelling a disance d he speed of he body is. iniial posiion d The speed of he body when i has raelled a disance 2 d from is iniial posiion is A.. 4 B.. 2 C.. 2 D

31 42. A ball rolls off a horizonal able wih elociy. I lands on he ground a ime T laer a a disance D from he foo of he able as shown in he diagram below. Air resisance is negligible. able D A second heaier ball rolls off he able wih elociy. Which one of he following is correc for he heaier ball? Time o land Disance from able A. T D B. T less han D C. less han T D D. less han T less han D 43. Which of he following is a correc definiion of aerage acceleraion? A. B. C. D. change in elociy ime aken elociy ime aken change in speed ime aken speed ime aken 31

32 44. Two idenical meal spheres X and Y are released a he same ime from he same heigh aboe he horizonal ground. Sphere X falls erically from res. Sphere Y is projeced horizonally as shown below. X Y ground Air resisance is negligible. Which of he following saemens is correc? A. Sphere X his he ground before sphere Y because i raels a shorer disance. B. Sphere Y his he ground before sphere X because is iniial elociy is greaer. C. The spheres hi he ground a he same ime because horizonal moion does no affec erical moion. D. The spheres hi he ground a he same ime because hey hae equal weighs. 45. An objec has iniial speed u and acceleraion a. Afer raelling a disance s, is final speed is. The quaniies u,, a and s are relaed by he expression 2 = u 2 + 2as. Which of he following includes he wo condiions necessary for he equaion o apply? A. a has consan direcion u and are in he same direcion B. a has consan direcion a, u and are in he same direcion C. a has consan magniude a has consan direcion D. a has consan magniude u and are in he same direcion 32

33 46. A small seel ball falls from res hrough a disance of 3 m. When calculaing he ime of fall, air resisance can be ignored because A. air is less dense han seel. B. air resisance increases wih he speed of he ball. C. he air is no moing. D. air resisance is much less han he weigh of he ball. 47. Two idenical meal spheres are held aboe he ground as shown. spheres (no o scale) ground The separaion beween hem is small compared o heir disance aboe he ground. When he spheres are released, he separaion of he spheres will A. remain consan. B. decrease coninuously. C. increase coninuously. D. increase iniially and hen remain consan. 33

34 48. A sone is projeced horizonally from he op of a cliff. Neglecing air resisance, which one of he following correcly describes wha happens o he horizonal componen of elociy and o he erical componen of elociy? Horizonal componen of elociy Verical componen of elociy A. Decreases Increases B. Decreases Consan C. Consan Consan D. Consan Increases 49. Which one of he following is a rue saemen concerning he erical componen of he elociy and he acceleraion of a projecile when i is a is maximum heigh? (The acceleraion of free fall is g.) Verical componen of elociy Acceleraion A. maximum zero B. maximum g C. zero zero D. zero g Answers 1. B 2. A 3. B 4. B 5. B 6. A 7. D 8. A 9. A 1. D 11. A 34

35 12. C 13. A 14. A 15. C 16. C 17. A 18. B 19. B 2. C 21. B 22. A 23. A 24. A 25. C 26. B 27. C 28. C 29. B 3. A 31. C 32. B 33. A 34. C 35. B 36. D 37. C 38. D 39. C 4. D 41. C 42. A 35

36 43. A 44. C 45. C 46. D 47. A 48. D 49. D 36

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2 PhysicsndMahsTuor.com 7 car is ravelling wih uniform acceleraion along a sraigh road. The road has marker poss every 1 m. When he car passes one pos, i has a speed of 1 m s 1 and, when i passes he nex

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

s in boxe wers ans Put

s in boxe wers ans Put Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key RECTILINEAR MOTION Conens Topic Page No. Theory 01-01 Exercise - 1 0-09 Exercise - 09-14 Exercise - 3 15-17 Exercise - 4 17-0 Answer Key 1 - Syllabus Kinemaics in one dimension. Name : Conac No. ARRIDE

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point 2012 Sepember 25 Eam I Physics 105 Circle he leer of he single bes answer. Each uesion is worh 1 poin Physical Consans: Earh s free-fall acceleraion = g = 9.80 m/s 2 3. (Mark wo leers!) The below graph

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line. CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

Physics Unit Workbook Two Dimensional Kinematics

Physics Unit Workbook Two Dimensional Kinematics Name: Per: L o s A l o s H i g h S c h o o l Phsics Uni Workbook Two Dimensional Kinemaics Mr. Randall 1968 - Presen adam.randall@mla.ne www.laphsics.com a o 1 a o o ) ( o o a o o ) ( 1 1 a o g o 1 g o

More information

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r. Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

More information

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at Q2.1 This is he x graph of he moion of a paricle. Of he four poins P, Q, R, and S, he velociy is greaes (mos posiive) a A. poin P. B. poin Q. C. poin R. D. poin S. E. no enough informaion in he graph o

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, W-F oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chapter 2 Exam Momentum & Impulse Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

More information

RELATIVE MOTION. Contents. Theory 01. Exercise Exercise Exercise Exercise Answer Key 13.

RELATIVE MOTION. Contents. Theory 01. Exercise Exercise Exercise Exercise Answer Key 13. RELAIVE MOION Conens opic Page No. heory 01 Exercise - 1 0-07 Exercise - 08-09 Exercise - 3 09-11 Exercise - 4 1 Answer Key 13 Syllabus Relaive Velociy Name : Conac No. ARRIDE LEARNING ONLINE E-LEARNING

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Review Equations. Announcements 9/8/09. Table Tennis

Review Equations. Announcements 9/8/09. Table Tennis Announcemens 9/8/09 1. Course homepage ia: phsics.bu.edu Class web pages Phsics 105 (Colon J). (Class-wide email sen) Iclicker problem from las ime scores didn ge recorded. Clicker quizzes from lecures

More information

WORK, ENERGY AND POWER NCERT

WORK, ENERGY AND POWER NCERT Exemplar Problems Physics Chaper Six WORK, ENERGY AND POWER MCQ I 6.1 An elecron and a proon are moving under he influence of muual forces. In calculaing he change in he kineic energy of he sysem during

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

More information

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for Impulse & Momenum Objecies To deelop he principle of linear impulse and momenum for a paricle. To sudy he conseraion of linear momenum for paricles. To analyze he mechanics of impac. To inroduce he concep

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

More information

Questions 1 and 2 refer to the graph below. The graph is a displacement-time graph for a runner. Displacement / m. Time / s

Questions 1 and 2 refer to the graph below. The graph is a displacement-time graph for a runner. Displacement / m. Time / s Quesions 1 and 2 refer o he graph below. The graph is a displacemen-ime graph for a runner. 80 isplacemen / m 60 40 0 0 4 6 8 / s 1 The velociy of he runner a 5 s is approximaely 8 m s 9 m s C 40 m s 2

More information

Summary:Linear Motion

Summary:Linear Motion Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

More information

total distance cov ered time int erval v = average speed (m/s)

total distance cov ered time int erval v = average speed (m/s) Physics Suy Noes Lesson 4 Linear Moion 1 Change an Moion a. A propery common o eeryhing in he unierse is change. b. Change is so imporan ha he funamenal concep of ime woul be meaningless wihou i. c. Since

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

4 3 a b (C) (a 2b) (D) (2a 3b)

4 3 a b (C) (a 2b) (D) (2a 3b) * A balloon is moving verically pwards wih a velociy of 9 m/s. A sone is dropped from i and i reaches he grond in 10 sec. The heigh of he balloon when he sone was dropped is (ake g = 9.8 ms - ) (a) 100

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

1. The 200-kg lunar lander is descending onto the moon s surface with a velocity of 6 m/s when its retro-engine is fired. If the engine produces a

1. The 200-kg lunar lander is descending onto the moon s surface with a velocity of 6 m/s when its retro-engine is fired. If the engine produces a PROBLEMS. The -kg lunar lander is descending ono he moon s surface wih a eloci of 6 m/s when is rero-engine is fired. If he engine produces a hrus T for 4 s which aries wih he ime as shown and hen cus

More information

We may write the basic equation of motion for the particle, as

We may write the basic equation of motion for the particle, as We ma wrie he basic equaion of moion for he paricle, as or F m dg F F linear impulse G dg G G G G change in linear F momenum dg The produc of force and ime is defined as he linear impulse of he force,

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example Thurs Sep 10 Assign 2 Friday SI Sessions: Moron 227 Mon 8:10-9:10 PM Tues 8:10-9:10 PM Thur 7:05-8:05 PM Read Read Draw/Image lay ou coordinae sysem Wha know? Don' know? Wan o know? Physical Processes?

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

Ex: An object is released from rest. Find the proportion of its displacements during the first and second seconds. y. g= 9.8 m/s 2

Ex: An object is released from rest. Find the proportion of its displacements during the first and second seconds. y. g= 9.8 m/s 2 FREELY FALLING OBJECTS Free fall Acceleraion If e only force on an objec is is wei, e objec is said o be freely fallin, reardless of e direcion of moion. All freely fallin objecs (eay or li) ae e same

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

EF 151 Exam #2 - Spring, 2014 Page 1 of 6

EF 151 Exam #2 - Spring, 2014 Page 1 of 6 EF 5 Exam # - Spring, 04 Page of 6 Name: Secion: Inrucion: Pu your name and ecion on he exam. Do no open he e unil you are old o do o. Wrie your final anwer in he box proided If you finih wih le han 5

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June 2010.

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June 2010. Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 224 FINAL EXAMINATION June 21 Value: 1% General Insrucions This examinaion consiss of wo pars. Boh

More information

Dynamics. Option topic: Dynamics

Dynamics. Option topic: Dynamics Dynamics 11 syllabusref Opion opic: Dynamics eferenceence In his cha chaper 11A Differeniaion and displacemen, velociy and acceleraion 11B Inerpreing graphs 11C Algebraic links beween displacemen, velociy

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

Kinematics. introduction to kinematics 15A

Kinematics. introduction to kinematics 15A 15 15A Inroducion o kinemaics 15B Velociy ime graphs and acceleraion ime graphs 15C Consan acceleraion formulas 15D Insananeous raes of change Kinemaics AreAS of STuDy Diagrammaic and graphical represenaion

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Chapter 2: One-Dimensional Kinematics

Chapter 2: One-Dimensional Kinematics Chaper : One-Dimensional Kinemaics Answers o Een-Numbered Concepual Quesions. An odomeer measures he disance raeled by a car. You can ell his by he fac ha an odomeer has a nonzero reading afer a round

More information

Work Power Energy. For conservaive orce ) Work done is independen o he pah ) Work done in a closed loop is zero ) Work done agains conservaive orce is sored is he orm o poenial energy 4) All he above.

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

MECHANICAL PROPERTIES OF FLUIDS NCERT

MECHANICAL PROPERTIES OF FLUIDS NCERT Chaper Ten MECHANICAL PROPERTIES OF FLUIDS MCQ I 10.1 A all cylinder is filled wih iscous oil. A round pebble is dropped from he op wih zero iniial elociy. From he plo shown in Fig. 10.1, indicae he one

More information

I. OBJECTIVE OF THE EXPERIMENT.

I. OBJECTIVE OF THE EXPERIMENT. I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in

More information

Kinematics in One Dimension

Kinematics in One Dimension Kinemaics in One Dimension PHY 7 - d-kinemaics - J. Hedberg - 7. Inroducion. Differen Types of Moion We'll look a:. Dimensionaliy in physics 3. One dimensional kinemaics 4. Paricle model. Displacemen Vecor.

More information