Study of semiconductors with positrons. Outlook:

Size: px
Start display at page:

Download "Study of semiconductors with positrons. Outlook:"

Transcription

1 Study of semiconductors with positrons V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Introduction Positron trapping into defects Methods of positron annihilation Positron lifetime spectroscopy Outlook: Doppler broadening spectroscopy Coincidence Doppler broadening spectroscopy

2 Introduction Questions of semiconductor industry Defect types? Defect charge states? Defect concentrations? Answers of positron annihilation Vacancy-like defects and defect complexes Size of a vacancy (mono-, di-, vacancy cluster) Neutral or negatively charged vacancy-complexes Positively charged defects are invisible Sensitivity limits cm -3

3 Positron in condensed matter γ MeV 1.27 MeV Diffusion L nm γ Na τ 1/2 = 3.7 ps γ 1274 kev Ne + 22 Na + e e + +υ Na β %, EC 9.5 % β % Thermalization 3 ps E 300 kev k b T 100 µm γ MeV e Ne

4 Positron trapping - Vacancy Perfect lattice Atom potential in GaAs (110) plane Positron wave function in GaAs (110) plane Positrons are repelled by positive atom cores

5 Positron trapping - Vacancy Mono-vacancy Vacancy represents a positron trap due to the missing nuclei (potential well for a positron)

6 Methods of positron annihilation Sensitive to electron density distribution L Positron Annihilation Lifetime Spectroscopy (PALS) + = D + τ b λ = 1/ τ = π r0 c ψ ( r) ψ ( r) γ dr b τ b positron bulk lifetime λ - positron annihilation rate the lower the electron density is, the higher is the positron lifetime + Sensitive to electron momentum distribution energy and momentum conservation leads to Angular Correlation of Annihilation Radiation (ACAR) Doppler Broadening of annihilation line Spectroscopy (DOBS) Coincidence Doppler Broadening

7 Methods of Positron Annihilation γ 22 Na Positron lifetime spectroscopy 1.27 MeV e + Thermalization 3 ps E 300 kev k b T 100 µm E1 = 0.511MeV + plc Diffusion L nm p p T / 2 p L θ E p T / m 0 c Θ Angular correlation of annihilation radiation Doppler broadening spectroscopy 2 2 = m0c plc / 2

8 Technique of positron lifetime spectroscopy PM photomultiplier SCA Single Channel Analyzer TAC Time to Amplitude Converter MCA Multichannel Analyzer

9 Positron Annihilation Lifetime Spectroscopy (PALS) probability n(t) that e + is alive at time t: λ - positron annihilation rate Positron lifetime spectrum in bulk: (no trapping of positrons) bulk dn ( t) dt = λ n( t) n( 0) = 1 λ b = 1 τ b n( t) = e λ bulk t annihilation radiation λ - slope of the exponential decay

10 Positron Annihilation Lifetime Spectroscopy model of trapping into a defect annihilation from bulk with λ b =1/τ b s -1 trapping to vacancy-defect with K s -1 annihilation from the defect with λ d =1/τ d two-component lifetime spectrum Nt ( ) = I/ τ exp( t/ τ ) + I / τ exp( t/ τ ) analysis by non-linear fitting bulk trapping trapping rate K λ d 1 = τ d annihilation radiation λ b 1 = τ b Information vacancy type (mono-, di-, vacancy cluster) τ 2 reflects the electron density defect concentration C K = I I 1 τ b τ C τ av = Iiτ i i

11 The Nature of EL2 defect in GaAs one of the most frequently studied crystal lattice defects at all responsible for semi-insulating properties of GaAs: large technological importance is deep donor, compensates shallow acceptors, e.g. C - impurities defect shows metastable state after illumination at low temperatures IR-absorption of defect disappears during illumination at T < 100 K ground state recovers during annealing at about 110 K many structural models proposed Dabrowski, Scheffler and Chadi, Chang (1988): simple As Ga -antisite defect responsible must show a metastable structural change stabil metastabil (Dabrowski 1988, Chadi 1988)

12 The Nature of EL2 defect in GaAs in metastable state at low temperature: Ga vacancy should disappear during annealing at about 110 K confirmed by positron lifetime measurements kinetics of recovery of ground state is identical for IR- und positron experiment: E A = (0.37 ± 0.02) ev evidence of the vacancy in metastable state confirms the proposed structural model Recovery time t 1/2 [s] Positron annihilation IR absorption / [K ] T a 1 Krause et al., Phys. Rev. Lett. 65 (1990) 3329

13 Temperature dependence of positron trapping Compensation in GaAs:S formation of S As -V Ga complex increase of τ av to low T is due to the trapping into negative shallow Rydberg potential of the defect V + (r) 13.6a 0 4.8a 0 r 0.1eV 3.5eV 1 ε 0r observed S As -V Ga complex is negatively charged

14 Positron trapping shallow traps negative ions are also positron trapping centers due to small negative Coulomb potential (J. Gebauer et al. 1997) term shallow relates to the positron binding energy (few mev). therefore the trapping is significant at low temperatures only the electron density is not reduced: τ st = τ b

15 Annihilation-Line Doppler broadening spectroscopy Doppler effect electron momentum in propagation direction of 511 kev γ-ray leads to Doppler broadening of annihilation line γ 1 p L p 1.0 e + annihilation 85 Sr θ p T Technique γ 2 Normalized intensity in GaAs FWHM 2.6 kev FWHM = 1.4 kev γ ray energy [kev] E 1 -E 2 =p L c E 1, E 2 energy of γ quanta

16 Annihilation-Line Doppler broadening spectroscopy Data Treatment Line Parameters Shape parameter S = A A s 0, A = E + E Wing parameter s 0 s N E E 0 s D de W = A A w 0, A w = E 2 E 1 N D de Information Both S and W are sensitive to the concentration and defect type W is sensitive to chemical surrounding of the annihilation site, due to high momentum of core electrons participating in annihilation

17 Coincidence Doppler broadening spectroscopy Technique Both γ - quanta are detected coincidence time is 0.5 µs

18 Doppler coincidence spectroscopy 10 0 Relative intensity Simple Coincidence Coincidence with E 1 +E 2 =2m 0 c 2 Without coincidence background is dramatically reduced by coincident detection of second annihilation γ-quantum this opens a possibility to investigate the high momentum part of the energy spectrum, i.e. annihilation with core electrons the atoms thus the chemical surrounding of a positron trap can be studied γ ray energy [kev]

19 Doppler coincidence spectroscopy chemical sensitivity of energy spectra ρ(p) [10 3 (m 0 c) -1 ] 10-2 Elemental Si Ga As 10-3 Te Ratio to bulk GaAs 1,5 1,0 0,5 Te Ga As Si Electron momentum p L (10-3 m 0 c) Electron momentum p L (10-3 m 0 c)

20 Nature of vacancy complexes in Si and Te doped GaAs positron lifetime spectroscopy Doppler coincidence Ratio to bulk GaAs 1,0 0,8 1,0 0,8 Experiment Theory V Ga -Te As Vacancy in GaAs:Te V Gā Si Ga V As V Ga Measurement temperature V Ga -Si Ga in GaAs:Si τ 2 = 260 ps V Ga -Te As in GaAs:Te τ 2 = 253 ps V Ga -Si Ga Electron momentum p L (10-3 m 0 c) J. Gebauer et al., Phys. Rev. B 60, 1464 (1999)

21 Conclusion positron annihilation is a sensitive tool for investigation of vacancy-like defects in semiconductors information on type and concentration of vacancies can be obtained temperature dependence of positron trapping is governed by the charge state of the defects chemical surrounding of the annihilation site can be studied with the help of coincidence Doppler broadening technique positively charged defects are invisible for positrons This presentation can be found as a pdf-file file on our Websites:

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods Application of Positron Annihilation for defects investigations in thin films V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Outlook: Introduction to Positron

More information

2. Point Defects. R. Krause-Rehberg

2. Point Defects. R. Krause-Rehberg R. Krause-Rehberg 2. Point Defects (F-center in NaCl) 2.1 Introduction 2.2 Classification 2.3 Notation 2.4 Examples 2.5 Peculiarities in Semiconductors 2.6 Determination of Structure and Concentration

More information

Introduction into Positron Annihilation

Introduction into Positron Annihilation Introduction into Positron Annihilation Introduction (How to get positrons? What is special about positron annihilation?) The methods of positron annihilation (positron lifetime, Doppler broadening, ACAR...)

More information

Basics and Means of Positron Annihilation

Basics and Means of Positron Annihilation Basics and Means of Positron Annihilation Positron history Means of positron annihilation positron lifetime spectroscopy angular correlation Doppler-broadening spectroscopy Near-surface positron experiments:

More information

Vacancy generation during Cu diffusion in GaAs M. Elsayed PhD. Student

Vacancy generation during Cu diffusion in GaAs M. Elsayed PhD. Student Vacancy generation during Cu diffusion in GaAs M. Elsayed PhD. Student Martin Luther University-FB Physik IV Halle-Wittenberg Outlines Principles of PAS vacancy in Semiconductors and shallow positron traps

More information

Application of positrons in materials research

Application of positrons in materials research Application of positrons in materials research Trapping of positrons at vacancy defects Using positrons, one can get defect information. R. Krause-Rehberg and H. S. Leipner, Positron annihilation in Semiconductors,

More information

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Institute of Radiation Physics http://www.hzdr.de Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Positron Annihilation Spectroscopy

More information

Material Science using Positron Annihilation

Material Science using Positron Annihilation Material Science using Positron Annihilation R. Krause-Rehberg Universität Halle, Inst. für Physik 9.3.2018 Some historical remarks Techniques of Positron Annihilation Study of Defects in Semiconductors

More information

in Si by means of Positron Annihilation

in Si by means of Positron Annihilation Investigation of the Rp/2 /2-effect in Si by means of Positron Annihilation R. Krause-Rehberg, F. Börner, F. Redmann Universität Halle Martin-Luther-Universität R. Kögler, W. Skorupa Forschungszentrum

More information

Defect chemistry in GaAs studied by two-zone annealings under defined As vapor pressure. Outlook:

Defect chemistry in GaAs studied by two-zone annealings under defined As vapor pressure. Outlook: Defect chemistry in studied by two-zone annealings under defined vapor pressure V. Bondarenko 1, R. Krause-Rehberg 1, J. Gebauer 2, F. Redmann 1 1 Martin-Luther-University Halle-Wittenberg, Halle, Germany

More information

Vacancy-like defects in SI GaAs: post-growth treatment

Vacancy-like defects in SI GaAs: post-growth treatment Vacancy-like defects in SI : post-growth treatment V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany B. Gruendig-Wendrock, J.R. Niklas TU Bergakademie Freiberg,

More information

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2 Identification of Getter Defects in high-energy self-implanted Silicon at Rp R. Krause-Rehberg 1, F. Börner 1, F. Redmann 1, J. Gebauer 1, R. Kögler 2, R. Kliemann 2, W. Skorupa 2, W. Egger 3, G. Kögel

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

Positron Annihilation Spectroscopy

Positron Annihilation Spectroscopy Positron Annihilation Spectroscopy (1) Angular Correlation θ N x, y = p x, y m C θ γ-ray (511keV ± E) 0 (2) Doppler Broadening Cp E = z 2 θ N p ~100µm 22 Na (e + Source) e - e + ~ 10-12 s Sample γ-ray

More information

Positron Annihilation in Materials Science

Positron Annihilation in Materials Science Positron Annihilation in Materials Science R. Krause-Rehberg Universität Halle, Inst. für Physik History Techniques of Positron Annihilation Defects in Semiconductors User-dedicated Positron Facilities

More information

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER Paul Coleman University of Bath THE FATE OF POSITRONS IN CONDENSED MATTER POSITRON-SURFACE INTERACTIONS positron backscattering BACKSCATTERED

More information

Positron Annihilation Spectroscopy on Defects in Semiconductors

Positron Annihilation Spectroscopy on Defects in Semiconductors Positron Annihilation Spectroscopy on Defects in Semiconductors R. Krause-Rehberg Universität Halle, Inst. für Physik Some historical remarks Techniques of Positron Annihilation Study of Defects in Semiconductors

More information

Unmanageable Defects in Proton- Irradiated Silicon: a Factual Outlook for Positron Probing N. Yu. Arutyunov 1,2, M. Elsayed 1, R.

Unmanageable Defects in Proton- Irradiated Silicon: a Factual Outlook for Positron Probing N. Yu. Arutyunov 1,2, M. Elsayed 1, R. Unmanageable Defects in Proton- Irradiated Silicon: a Factual Outlook for Positron Probing N. Yu. Arutyunov 1,2, M. Elsayed 1, R. Krause-Rehberg 1 1 Department of Physics, Martin Luther University, 06120

More information

R. Krause-Rehberg. Martin-Luther-Universität Halle-Wittenberg. Positron Lifetime / Doppler Broadening / Angular Correlation / AMOC

R. Krause-Rehberg. Martin-Luther-Universität Halle-Wittenberg. Positron Lifetime / Doppler Broadening / Angular Correlation / AMOC Experimental Techniques of Positron Annihilation and the pulsed Positron Source EPOS R. Krause-Rehberg -Wittenberg Techniques of Positron Annihilation Positron Sources Positron Lifetime / Doppler Broadening

More information

Investigation of SiC by Positrons

Investigation of SiC by Positrons nd/march/000/erlangen Investigation of SiC by Positrons Atsuo KAWASUSO Martin-Luther-Universität Halle-Wittenberg (Humboldt Research Fellow) Japan Atomic Energy Research Institute Takasaki Establishment

More information

Positron Annihilation in Material Research

Positron Annihilation in Material Research Positron Annihilation in Material Research Introduction Positron sources, positron beams Interaction of positrons with matter Annihilation channels: Emission of 1, 2 or 3 γ-quanta Annihilation spectroscopies:

More information

Research Center Dresden Rossendorf

Research Center Dresden Rossendorf News of the EPOS Project at the ELBE Radiation Source in the Research Center Dresden Rossendorf EPOS-Team & R. Krause-Rehberg Extended Concept of EPOS Progress of the mono-energetic Positron Beam (MePS)

More information

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS) Progress of the EPOS Project: Gamma Induced Positron Spectroscopy (GiPS) R. Krause-Rehberg 1,*,W.Anwand 2,G.Brauer 2, M. Butterling 1,T.Cowan 2,M. Jungmann 1, A. Krille 1, R. Schwengner 2, A. Wagner 2

More information

Identification of the 0.95 ev luminescence band in n-type GaAs:Si

Identification of the 0.95 ev luminescence band in n-type GaAs:Si INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) 1 7 PII: S0953-8984(03)66937-7 Identification of the 0.95 ev luminescence band in n-type GaAs:Si

More information

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The EPOS Team and R. Krause-Rehberg Martin-Luther University, Halle-Wittenberg, Dept. of Physics, 06099 Halle / Germany

More information

PRINCIPLES OF POSITRON ANNIHILATION

PRINCIPLES OF POSITRON ANNIHILATION 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state

More information

Positron theoretical prediction

Positron theoretical prediction Positron theoretical prediction Schrödinger equation: ˆ 2 p x, t Vx, t x, t i 22 m tt non-relativistic equation of motion for electron Erwin Schrödinger 1933 Nobel prize Positron theoretical prediction

More information

The appearance of vacancies during Cu and Zn diffusion in III-V compound semiconductors

The appearance of vacancies during Cu and Zn diffusion in III-V compound semiconductors The appearance of vacancies during Cu and Zn diffusion in III-V compound semiconductors Dissertation zur Erlangung des akademischen Grades Dr. rerum naturalium (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen

More information

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers R. Krause-Rehberg 1, A. Wagner 2 and many colleagues of Univ. Halle and

More information

Defect structure and oxygen diffusion in PZT ceramics

Defect structure and oxygen diffusion in PZT ceramics Defect structure and oxygen diffusion in PZT ceramics Adam Georg Balogh Institute of Materials Science Technische Universität Darmstadt A. G. Balogh Folie 1 Introduction Ferroelectrics are of great technical

More information

Characterization of native point defects in GaN by positron annihilation spectroscopy

Characterization of native point defects in GaN by positron annihilation spectroscopy 1 Characterizat of native point defects in GaN by positron annihilat spectroscopy K. Saarinen Laboratory of Physics, Helsinki University of Technology, P. O. Box 1100, FIN-02015 HUT, Finland (in: III-V

More information

Positron Annihilation techniques for material defect studies

Positron Annihilation techniques for material defect studies Positron Annihilation techniques for material defect studies H. Schut Section : Neutron and Positron Methods in Materials (NPM 2 ) Department: Radiation, Radionuclides and Reactors (R 3 ) Faculty of Applied

More information

Positron Annihilation Lifetime Spectroscopy (PALS)

Positron Annihilation Lifetime Spectroscopy (PALS) Positron Annihilation Lifetime Spectroscopy (PALS) Javier Puertas 12/12/12 Contents 1. Introduction. 1.1. General idea of the process. 3. PALS: Experimental results. 1.2. What is a positron? 3.1. Math.

More information

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei. Motivation Spins and excited states of double-magic nucleus 16 O Decay spectra are caused by electro-magnetic transitions. g-spectroscopy deals with g-ray detection and is one of the most relevant methods

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

The intense positron source EPOS at Research Center Rossendorf

The intense positron source EPOS at Research Center Rossendorf The intense positron source EPOS at Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, A. Krille 1, V. Bondarenko 1 1 -Wittenberg 2 FZ Rossendorf Martin-Luther-Universität RK Halle

More information

Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique

Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique S. Thraenert 1, E. M. Hassan 1, D. Enke 2, R. Krause-Rehberg 1 Martin-Luther-Universität Halle-Wittenberg

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-3 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 Electrically active defects in semiconductors induced by radiation

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

2. Point Defects. R. Krause-Rehberg

2. Point Defects. R. Krause-Rehberg R. Krause-Rehberg 2. Point Defects (F-center in acl) 2.1 Introduction 2.2 Classification 2.3 otation 2.4 Examples 2.5 Peculiarities in Semiconductors 2.6 Determination of Structure and Concentration 2.7

More information

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, 1 Martin-Luther-University Halle 2 Research Center Rossendorf Martin-Luther-Universität

More information

characterization in solids

characterization in solids Electrical methods for the defect characterization in solids 1. Electrical residual resistivity in metals 2. Hall effect in semiconductors 3. Deep Level Transient Spectroscopy - DLTS Electrical conductivity

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Testing and Evaluation of Scintillators

Testing and Evaluation of Scintillators Institut für Physik, Martin-Luther-Universität Halle-Wittenberg February 18th, 2009 Preface: Moved to IZM (With a Little Help from my Friends) Preface: Proud Father Preface: Table of Contents 1 Preface

More information

Photoionization of the silicon divacancy studied by positron-annihilation spectroscopy

Photoionization of the silicon divacancy studied by positron-annihilation spectroscopy PHYSICAL REVIEW B VOLUME 57, NUMBER 20 15 MAY 1998-II Photoionization of the silicon divacancy studied by positron-annihilation spectroscopy H. Kauppinen* and C. Corbel Institut National des Sciences et

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 3 February 06 Modern Physics IV Lecture 4 Agenda Administrative

More information

Improvement of depth resolution of VEPAS by a sputtering technique

Improvement of depth resolution of VEPAS by a sputtering technique Martin Luther University Halle Improvement of depth resolution of VEPAS by a sputtering technique R. Krause Rehberg, M. John, R. Böttger, W. Anwand and A. Wagner Martin Luther University Halle & HZDR Dresden

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Investigation of Free Volume in Polymers by Positron Annihilation Lifetime Spectroscopy (PALS)

Investigation of Free Volume in Polymers by Positron Annihilation Lifetime Spectroscopy (PALS) Investigation of Free Volume in Polymers by Positron Annihilation Lifetime Spectroscopy (PALS) Master Thesis by M. Qasim Shaikh Under supervision of Prof. Reinhard Krause-Rehberg Martin-Luther-Universität

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Tuomisto, Filip; Ranki, V.; Look, D.C.; Farlow, G.C. Introduction and recovery of Ga and N sublattice defects in electron-irradiated GaN

Tuomisto, Filip; Ranki, V.; Look, D.C.; Farlow, G.C. Introduction and recovery of Ga and N sublattice defects in electron-irradiated GaN Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Tuomisto, Filip; Ranki, V.; Look,

More information

2. Thermodynamics of native point defects in GaAs

2. Thermodynamics of native point defects in GaAs 2. Thermodynamics o native point deects in The totality o point deects in a crystal comprise those existing in a perectly chemically pure crystal, so called intrinsic deects, and those associated with

More information

EPOS an intense positron beam project at the Research Center Rossendorf

EPOS an intense positron beam project at the Research Center Rossendorf EPOS an intense positron beam project at the Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, V. Bondarenko 1, A. Rogov 2, K. Noack 2 1 Martin-Luther-University Halle 2 Research

More information

Semi-insulating SiC substrates for high frequency devices

Semi-insulating SiC substrates for high frequency devices Klausurtagung Silberbach, 19. - 21. Feb. 2002 Institut für Werkstoffwissenschaften - WW 6 Semi-insulating SiC substrates for high frequency devices Vortrag von Matthias Bickermann Semi-insulating SiC substrates

More information

Hussein Ayedh. PhD Studet Department of Physics

Hussein Ayedh. PhD Studet Department of Physics Hussein Ayedh PhD Studet Department of Physics OUTLINE Introduction Semiconductors Basics DLTS Theory DLTS Requirements Example Summary Introduction Energetically "deep trapping levels in semiconductor

More information

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy)

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy) CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy) 64 Techniques in Positron annihilation spectroscopy PAS comprises of different techniques which provide information

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy R. Krause-Rehberg and many colleagues of Univ. Halle and HZDR Martin-Luther University

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 13 - Gamma Radiation Material For This Lecture Gamma decay: Definition Quantum interpretation Uses of gamma spectroscopy 2 Turn to γ decay

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

COMPUTATION OF POSITRON IMPLANTATION PROFILE IN SOLIDS. *Corresponding author. Tel:

COMPUTATION OF POSITRON IMPLANTATION PROFILE IN SOLIDS. *Corresponding author.   Tel: COMPUTATION OF POSITRON IMPLANTATION PROFILE IN SOLIDS O. M. Osiele 1 *, G. E. Adeshakin 2 and O. Olubosede 3 1 Department of Physics, Delta State University, Abraka, Delta State, Nigeria. 2 Department

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY (MIPBF) By PEIHAI LI M.Eng., B.Sc. A Thesis Submitted to the School of Graduate Studies in

More information

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle

More information

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications The 2nd International Symposium on Physics, Engineering and Technologies for Biomedicine Volume 2018 Conference Paper Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Multiscale modelling of D trapping in W

Multiscale modelling of D trapping in W CMS Multiscale modelling of D trapping in W Kalle Heinola, Tommy Ahlgren and Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki, Finland Contents Background Plasma-wall

More information

Slow-Positron-Beam Techniques

Slow-Positron-Beam Techniques Slow-Positron-Beam Techniques 1 Slow-Positron-Beam Techniques The main advantage of the conventional sample source sandwich arrangement is that the emitted positrons immediately penetrate the sample. A

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Evidence of a second acceptor state of the E center in Si1-x Gex

Evidence of a second acceptor state of the E center in Si1-x Gex Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Kuitunen, K. & Tuomisto,

More information

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n zigzag armchair Three major categories of nanotube structures can be identified based on the values of m and n m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Nature 391, 59, (1998) chiral J. Tersoff,

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL Solid State Physics SEMICONDUCTORS - IV Lecture 25 A.H. Harker Physics and Astronomy UCL 9.9 Carrier diffusion and recombination Suppose we have a p-type semiconductor, i.e. n h >> n e. (1) Create a local

More information

Experimental X-Ray Spectroscopy: Part 2

Experimental X-Ray Spectroscopy: Part 2 Experimental X-Ray Spectroscopy: Part 2 We will use the skills you have learned this week to analyze this spectrum: What are the spectral lines? Can we determine the plasma temperature and density? Other

More information

The Semiconductor in Equilibrium

The Semiconductor in Equilibrium Lecture 6 Semiconductor physics IV The Semiconductor in Equilibrium Equilibrium, or thermal equilibrium No external forces such as voltages, electric fields. Magnetic fields, or temperature gradients are

More information

LAB 4: Gamma-ray coincidence spectrometry (2018)

LAB 4: Gamma-ray coincidence spectrometry (2018) LAB 4: Gamma-ray coincidence spectrometry (2018) As you have seen, in several of the radioactive sources we encountered so far, they typically emit more than one gamma photon per decay or even more than

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production Experiment N2: Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production References: 1. Experiments in Nuclear

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Analysis of γ spectrum

Analysis of γ spectrum IFM The Department of Physics, Chemistry and Biology LAB 26 Analysis of γ spectrum NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - To understand features of gamma spectrum and recall basic knowledge

More information

SLOW-POSITRON IMPLANTATION SPECTROSCOPY IN NANOSCIENCE *

SLOW-POSITRON IMPLANTATION SPECTROSCOPY IN NANOSCIENCE * SLOW-POSITRON IMPLANTATION SPECTROSCOPY IN NANOSCIENCE * Ivan PROCHÁZKA a, Jakub ČÍŽEK a, Gerhard BRAUER b, Wolfgang ANWAND b a Department of Low Temperature Physics, Faculty of Mathematics and Physics,

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Nuclear Lifetimes. = (Eq. 1) (Eq. 2)

Nuclear Lifetimes. = (Eq. 1) (Eq. 2) Nuclear Lifetimes Theory The measurement of the lifetimes of excited nuclear states constitutes an important experimental technique in nuclear physics. The lifetime of a nuclear state is related to its

More information

High-resolution photoinduced transient spectroscopy of radiation defect centres in silicon. Paweł Kamiński

High-resolution photoinduced transient spectroscopy of radiation defect centres in silicon. Paweł Kamiński Institute of Electronic Materials Technology Joint Laboratory for Characterisation of Defect Centres in Semi-Insulating Materials High-resolution photoinduced transient spectroscopy of radiation defect

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

GAMMA RAY SPECTROSCOPY

GAMMA RAY SPECTROSCOPY GAMMA RAY SPECTROSCOPY Gamma Ray Spectroscopy 1 In this experiment you will use a sodium iodide (NaI) detector along with a multichannel analyzer (MCA) to measure gamma ray energies from energy level transitions

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

Ion Implantation ECE723

Ion Implantation ECE723 Ion Implantation Topic covered: Process and Advantages of Ion Implantation Ion Distribution and Removal of Lattice Damage Simulation of Ion Implantation Range of Implanted Ions Ion Implantation is the

More information