Parameter estimation in linear Gaussian covariance models

Size: px
Start display at page:

Download "Parameter estimation in linear Gaussian covariance models"

Transcription

1 Parameter estimation in linear Gaussian covariance models Caroline Uhler (IST Austria) Joint work with Piotr Zwiernik (UC Berkeley) and Donald Richards (Penn State University) Big Data Reunion Workshop Simons Institute, UC Berkeley December 16, 2014 Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

2 Linear Gaussian covariance model S p : (real) symmetric p p matrices S p 0 : cone of (real) symmetric p p positive definite matrices Definition (Linear Gaussian covariance model) A random vector X R p satisfies the linear Gaussian covariance model M G given by G = (G 0, G 1,..., G r ), G i S p, if X N p (µ, Σ θ ) and Σ θ = G 0 + r θ i G i, θ = (θ 1,... θ r ) R r. i=1 M G parametrized by a spectrahedron { Θ G = θ = (θ 1,... θ r ) R r r } G0 + θ i G i S p 0 Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14 i=1

3 Examples of linear Gaussian covariance models Correlation matrices: Θ G = {θ R (p 2) Ip + 1 i<j p θ ij (E ij + E ji ) S p 0 where E ij is the p p zero-matrix, where the (i, j) entry is 1. Covariance matrices with prescribed zeros (relevance networks) Butte et al. (2000), Chaudhuri, Drton & Richardson (2007) Stationary stochastic processes from repeated time series data Anderson (1970, 1973) Brownian motion tree models: Phylogenetic models (Felsenstein (1973, 1981)) Network tomography models for analyzing the structure of the connections in the Internet (Eriksson et al. (2010), Tsang et al. (2004)) Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14 },

4 Maximum likelihood estimation X 1,..., X n sample from N p (µ, Σ ), Σ true covariance matrix X = 1 n X i n sample mean, used to estimate µ S n = 1 n i=1 n (X i X )(X i X ) T sample covariance matrix i=1 S n S p 0 with probability 1 if n p Log-likelihood function: l( ; S n ) : S p 0 R log-likelihood function l(σ; S n ) = n 2 log det Σ n 2 tr(s nσ 1 ) For linear Gaussian covariance models we constrain l( ; S n ) to Θ G : MLE ˆΣ := arg max l(σ θ ; S n ) θ Θ G Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

5 Maximum likelihood estimation For K := Σ 1, l(k; S n ) = n 2 log det K n 2 tr(s nk) is concave in K S p 0 with global maximum K = S 1 n Concave function constrained to affine subspace remains concave ML estimation in Gaussian graphical models is convex problem l(σ; S n ) is not concave for all Σ S p 0, but it is strictly concave over random convex region 2Sn := {Σ S p 0 Σ 2S n } Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

6 Numerical optimization of the likelihood Newton-Raphson method: Start at natural least-squares estimator Σ given by θ, the solution to r j=1 θ j tr (G i G j ) = tr (S n G i ) for all i = 1,..., r Update: θ (k+1) = θ (k) ( θ T θ l(θ(k) ; S n )) 1 θ l(θ (k) ; S n ) Our observation: For simulated data Newton-Raphson algorithm typically converges in 2-3 steps It converges to a point ˆΣ with larger likelihood than the true (data-generating) covariance matrix Σ, and usually ˆΣ 2Sn. Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

7 Estimating correlation matrices A venerable problem that becomes difficult even for 3 3 matrices: Rousseeuw & Molenberghs (1994), Small, Wang & Yang (2000), Stuart & Ord (1991) Simulations using Newton-Raphson algorithm Simulations for 2 examples: 1 1/2 1/3 1/4 1 1/2 1/3 Σ = 1/2 1 1/4 and Σ = 1/2 1 1/5 1/6 1/3 1/5 1 1/7. 1/3 1/4 1 1/4 1/6 1/7 1 Least-squares estimator is given by Σ = I p + 1 i<j p (S n) ij (E ij + E ji ) Plot ratio of likelihoods L(Σ (t) )/L(Σ ) and compare to L(S n )/L(Σ ) Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

8 Estimating correlation matrices: Simulations n = 10 n = 50 n = 100 Paths Paths Paths 3 3: Ratio Ratio Ratio S Newton steps S Newton steps S Newton steps Paths Paths Paths 4 4: Ratio Ratio Ratio S Newton steps S Newton steps S Newton steps Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

9 Geometric picture Σ = true covariance matrix, S n = sample covariance matrix 2Sn = {Σ S p 0 Σ 2S n } (random!) convex region Clearly: S n 2 2Sn With high probability : 2 ˆ 2 2 2Sn 2Sn 2Sn Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

10 Wishart distribution i.i.d. sample X 1,..., X n from N p (µ, Σ). Then n S n has Wishart distribution W p (n 1, Σ) Q R p p full rank, Y W p (n, Σ), then QYQ T W p (n, QΣQ T ) So taking Q = Σ 1/2, then W n 1 := n Σ 1/2 S n Σ 1/2 has standard Wishart distribution W p (n 1, I p ) Hence: Note: P(Σ 2Sn ) = P(2S n Σ 0) = P(2(Σ ) 1/2 S n (Σ ) 1/2 I p 0) = P(W n 1 n 2 I p 0) = P(λ min (W n 1 ) > n/2) P(Σ 2Sn ) does not depend on Σ Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

11 Minimum eigenvalue of Wishart matrix What is known about the distribution of λ min (W n )? R. Muirhead, Aspects of Multivariate Statistical Theory (1982): Distribution of λ min (W n ) is known but expressed in terms of complicated functions that are hard to evaluate Approximating the integral P(λ min (W n ) > n/2) is hard Convergence to the asymptotic distribution (for n ) is very slow However: Recent development in random matrix theory: Asymptotic distribution of λ min (W n ) as n, p and n/p γ > 1 is given by Tracy-Widom distribution with convergence rate O(min(n, p) 3/2 ) (Ma, 2012) Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

12 Approximating P(Σ 2Sn ) for small p and n p=10 p=5 Frequency Simulated probability T W approximation 0.95 line Frequency Simulated probability T W approximation 0.95 line Frequency Simulated probability T W approximation 0.95 line Sample size Sample size Sample size (a) p = 3 (b) p = 5 (c) p = 10 In each plot, p {3, 5, 10} is fixed and n varies between p and 20p For n > 14 p it holds with probability 0.95 that Σ 2Sn Above curves converge to the graph f : (1, ) [0, 1] with f (n/p) = 1(n/p ), where Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

13 Conclusions and Discussion Likelihood function for linear Gaussian covariance models is, in general, multimodal However, multimodality is relevant only if sample size is not sufficiently large to compensate for model dimension Derived asymptotic conditions which guarantee when Σ, ˆΣ and Σ are contained in the convex region 2Sn Our results provide lower bounds on the probabilities that maximum likelihood estimation problem for linear Gaussian covariance models is well behaved 2Sn is contained in larger region over which likelihood function is strictly concave, and this region is contained in even larger region over which likelihood function is unimodal We are studying these regions and working on extensions to learning the model Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

14 -.*3'9%'"$=*9&*%270%#%*(0F'(0G996*')"0%2"094*04*32#))024*;$2:G0 Reference 96'()*>G9:'&#((=*94*"G'*2$H01*<=*!#462=E G246$2)'F2$245*!G2G5*,-*?)=%:"9"08)*9&*%270%#%*(0F'(0G996* Zwiernik, Uhler & Richards: Maximum likelihood estimation for linear )"0%2"094*04*32#))024*8=8(')*>04*:$9;$'))E Gaussian covariance models (arxiv: )!"#$%&'()* Caroline Uhler (IST Austria) Linear Gaussian covariance models Berkeley, December / 14

arxiv: v1 [math.st] 24 Aug 2014

arxiv: v1 [math.st] 24 Aug 2014 MAXIMUM LIKELIHOOD ESTIMATION FOR LINEAR GAUSSIAN COVARIANCE MODELS arxiv:1408.5604v1 [math.st] 24 Aug 2014 By Piotr Zwiernik, Caroline Uhler, and Donald Richards University of California, Berkeley, IST

More information

An Algebraic and Geometric Perspective on Exponential Families

An Algebraic and Geometric Perspective on Exponential Families An Algebraic and Geometric Perspective on Exponential Families Caroline Uhler (IST Austria) Based on two papers: with Mateusz Micha lek, Bernd Sturmfels, and Piotr Zwiernik, and with Liam Solus and Ruriko

More information

Lecture 3 September 1

Lecture 3 September 1 STAT 383C: Statistical Modeling I Fall 2016 Lecture 3 September 1 Lecturer: Purnamrita Sarkar Scribe: Giorgio Paulon, Carlos Zanini Disclaimer: These scribe notes have been slightly proofread and may have

More information

Lecture 4 September 15

Lecture 4 September 15 IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 4 September 15 Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu 4.1 Maximum Likelihood principle Given a parametric

More information

Total positivity in Markov structures

Total positivity in Markov structures 1 based on joint work with Shaun Fallat, Kayvan Sadeghi, Caroline Uhler, Nanny Wermuth, and Piotr Zwiernik (arxiv:1510.01290) Faculty of Science Total positivity in Markov structures Steffen Lauritzen

More information

The Geometry of Semidefinite Programming. Bernd Sturmfels UC Berkeley

The Geometry of Semidefinite Programming. Bernd Sturmfels UC Berkeley The Geometry of Semidefinite Programming Bernd Sturmfels UC Berkeley Positive Semidefinite Matrices For a real symmetric n n-matrix A the following are equivalent: All n eigenvalues of A are positive real

More information

Finite Singular Multivariate Gaussian Mixture

Finite Singular Multivariate Gaussian Mixture 21/06/2016 Plan 1 Basic definitions Singular Multivariate Normal Distribution 2 3 Plan Singular Multivariate Normal Distribution 1 Basic definitions Singular Multivariate Normal Distribution 2 3 Multivariate

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.)

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) 1/12 MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) Dominique Guillot Departments of Mathematical Sciences University of Delaware May 6, 2016

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Gaussian Graphical Models: An Algebraic and Geometric Perspective

Gaussian Graphical Models: An Algebraic and Geometric Perspective Gaussian Graphical Models: An Algebraic and Geometric Perspective Caroline Uhler arxiv:707.04345v [math.st] 3 Jul 07 Abstract Gaussian graphical models are used throughout the natural sciences, social

More information

Graphical Gaussian models and their groups

Graphical Gaussian models and their groups Piotr Zwiernik TU Eindhoven (j.w. Jan Draisma, Sonja Kuhnt) Workshop on Graphical Models, Fields Institute, Toronto, 16 Apr 2012 1 / 23 Outline and references Outline: 1. Invariance of statistical models

More information

Maximum likelihood estimation

Maximum likelihood estimation Maximum likelihood estimation Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Maximum likelihood estimation 1/26 Outline 1 Statistical concepts 2 A short review of convex analysis and optimization

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Multivariate Gaussian Analysis

Multivariate Gaussian Analysis BS2 Statistical Inference, Lecture 7, Hilary Term 2009 February 13, 2009 Marginal and conditional distributions For a positive definite covariance matrix Σ, the multivariate Gaussian distribution has density

More information

Multivariate Analysis and Likelihood Inference

Multivariate Analysis and Likelihood Inference Multivariate Analysis and Likelihood Inference Outline 1 Joint Distribution of Random Variables 2 Principal Component Analysis (PCA) 3 Multivariate Normal Distribution 4 Likelihood Inference Joint density

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

Decomposable and Directed Graphical Gaussian Models

Decomposable and Directed Graphical Gaussian Models Decomposable Decomposable and Directed Graphical Gaussian Models Graphical Models and Inference, Lecture 13, Michaelmas Term 2009 November 26, 2009 Decomposable Definition Basic properties Wishart density

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Estimation of large dimensional sparse covariance matrices

Estimation of large dimensional sparse covariance matrices Estimation of large dimensional sparse covariance matrices Department of Statistics UC, Berkeley May 5, 2009 Sample covariance matrix and its eigenvalues Data: n p matrix X n (independent identically distributed)

More information

Geodesic Convexity and Regularized Scatter Estimation

Geodesic Convexity and Regularized Scatter Estimation Geodesic Convexity and Regularized Scatter Estimation Lutz Duembgen (Bern) David Tyler (Rutgers) Klaus Nordhausen (Turku/Vienna), Heike Schuhmacher (Bern) Markus Pauly (Ulm), Thomas Schweizer (Bern) Düsseldorf,

More information

Computing the MLE and the EM Algorithm

Computing the MLE and the EM Algorithm ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Computing the MLE and the EM Algorithm If X p(x θ), θ Θ, then the MLE is the solution to the equations logp(x θ) θ 0. Sometimes these equations

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Assume X P θ, θ Θ, with joint pdf (or pmf) f(x θ). Suppose we observe X = x. The Likelihood function is L(θ x) = f(x θ) as a function of θ (with the data x held fixed). The

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Sample Geometry. Edps/Soc 584, Psych 594. Carolyn J. Anderson

Sample Geometry. Edps/Soc 584, Psych 594. Carolyn J. Anderson Sample Geometry Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois Spring

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Graduate Econometrics I: Maximum Likelihood I

Graduate Econometrics I: Maximum Likelihood I Graduate Econometrics I: Maximum Likelihood I Yves Dominicy Université libre de Bruxelles Solvay Brussels School of Economics and Management ECARES Yves Dominicy Graduate Econometrics I: Maximum Likelihood

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Decomposable Graphical Gaussian Models

Decomposable Graphical Gaussian Models CIMPA Summerschool, Hammamet 2011, Tunisia September 12, 2011 Basic algorithm This simple algorithm has complexity O( V + E ): 1. Choose v 0 V arbitrary and let v 0 = 1; 2. When vertices {1, 2,..., j}

More information

ECE 275B Homework #2 Due Thursday MIDTERM is Scheduled for Tuesday, February 21, 2012

ECE 275B Homework #2 Due Thursday MIDTERM is Scheduled for Tuesday, February 21, 2012 Reading ECE 275B Homework #2 Due Thursday 2-16-12 MIDTERM is Scheduled for Tuesday, February 21, 2012 Read and understand the Newton-Raphson and Method of Scores MLE procedures given in Kay, Example 7.11,

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry

Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry Ann Inst Stat Math (2010) 62:603 638 DOI 10.1007/s10463-010-0295-4 Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry Bernd Sturmfels Caroline Uhler Received: 15 June

More information

Statistical Inference with Monotone Incomplete Multivariate Normal Data

Statistical Inference with Monotone Incomplete Multivariate Normal Data Statistical Inference with Monotone Incomplete Multivariate Normal Data p. 1/4 Statistical Inference with Monotone Incomplete Multivariate Normal Data This talk is based on joint work with my wonderful

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

DS-GA 1002 Lecture notes 12 Fall Linear regression

DS-GA 1002 Lecture notes 12 Fall Linear regression DS-GA Lecture notes 1 Fall 16 1 Linear models Linear regression In statistics, regression consists of learning a function relating a certain quantity of interest y, the response or dependent variable,

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models

MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models 1/13 MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models Dominique Guillot Departments of Mathematical Sciences University of Delaware May 4, 2016 Recall

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Estimators based on non-convex programs: Statistical and computational guarantees

Estimators based on non-convex programs: Statistical and computational guarantees Estimators based on non-convex programs: Statistical and computational guarantees Martin Wainwright UC Berkeley Statistics and EECS Based on joint work with: Po-Ling Loh (UC Berkeley) Martin Wainwright

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 3. Factor Models and Their Estimation Steve Yang Stevens Institute of Technology 09/12/2012 Outline 1 The Notion of Factors 2 Factor Analysis via Maximum Likelihood

More information

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine CS295: Convex Optimization Xiaohui Xie Department of Computer Science University of California, Irvine Course information Prerequisites: multivariate calculus and linear algebra Textbook: Convex Optimization

More information

On the smallest eigenvalues of covariance matrices of multivariate spatial processes

On the smallest eigenvalues of covariance matrices of multivariate spatial processes On the smallest eigenvalues of covariance matrices of multivariate spatial processes François Bachoc, Reinhard Furrer Toulouse Mathematics Institute, University Paul Sabatier, France Institute of Mathematics

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Likelihood Analysis of Gaussian Graphical Models

Likelihood Analysis of Gaussian Graphical Models Faculty of Science Likelihood Analysis of Gaussian Graphical Models Ste en Lauritzen Department of Mathematical Sciences Minikurs TUM 2016 Lecture 2 Slide 1/43 Overview of lectures Lecture 1 Markov Properties

More information

Open Problems in Algebraic Statistics

Open Problems in Algebraic Statistics Open Problems inalgebraic Statistics p. Open Problems in Algebraic Statistics BERND STURMFELS UNIVERSITY OF CALIFORNIA, BERKELEY and TECHNISCHE UNIVERSITÄT BERLIN Advertisement Oberwolfach Seminar Algebraic

More information

Differentiation of functions of covariance

Differentiation of functions of covariance Differentiation of log X May 5, 2005 1 Differentiation of functions of covariance matrices or: Why you can forget you ever read this Richard Turner Covariance matrices are symmetric, but we often conveniently

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

Linear-Time Inverse Covariance Matrix Estimation in Gaussian Processes

Linear-Time Inverse Covariance Matrix Estimation in Gaussian Processes Linear-Time Inverse Covariance Matrix Estimation in Gaussian Processes Joseph Gonzalez Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 jegonzal@cs.cmu.edu Sue Ann Hong Computer

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Random matrices: Distribution of the least singular value (via Property Testing)

Random matrices: Distribution of the least singular value (via Property Testing) Random matrices: Distribution of the least singular value (via Property Testing) Van H. Vu Department of Mathematics Rutgers vanvu@math.rutgers.edu (joint work with T. Tao, UCLA) 1 Let ξ be a real or complex-valued

More information

1.1 Basis of Statistical Decision Theory

1.1 Basis of Statistical Decision Theory ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 1: Introduction Lecturer: Yihong Wu Scribe: AmirEmad Ghassami, Jan 21, 2016 [Ed. Jan 31] Outline: Introduction of

More information

Biostat 2065 Analysis of Incomplete Data

Biostat 2065 Analysis of Incomplete Data Biostat 2065 Analysis of Incomplete Data Gong Tang Dept of Biostatistics University of Pittsburgh October 20, 2005 1. Large-sample inference based on ML Let θ is the MLE, then the large-sample theory implies

More information

EUSIPCO

EUSIPCO EUSIPCO 03 56974375 ON THE RESOLUTION PROBABILITY OF CONDITIONAL AND UNCONDITIONAL MAXIMUM LIKELIHOOD DOA ESTIMATION Xavier Mestre, Pascal Vallet, Philippe Loubaton 3, Centre Tecnològic de Telecomunicacions

More information

Chapter 4: Asymptotic Properties of the MLE (Part 2)

Chapter 4: Asymptotic Properties of the MLE (Part 2) Chapter 4: Asymptotic Properties of the MLE (Part 2) Daniel O. Scharfstein 09/24/13 1 / 1 Example Let {(R i, X i ) : i = 1,..., n} be an i.i.d. sample of n random vectors (R, X ). Here R is a response

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

CMPE 58K Bayesian Statistics and Machine Learning Lecture 5

CMPE 58K Bayesian Statistics and Machine Learning Lecture 5 CMPE 58K Bayesian Statistics and Machine Learning Lecture 5 Multivariate distributions: Gaussian, Bernoulli, Probability tables Department of Computer Engineering, Boğaziçi University, Istanbul, Turkey

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

Sparse Permutation Invariant Covariance Estimation: Motivation, Background and Key Results

Sparse Permutation Invariant Covariance Estimation: Motivation, Background and Key Results Sparse Permutation Invariant Covariance Estimation: Motivation, Background and Key Results David Prince Biostat 572 dprince3@uw.edu April 19, 2012 David Prince (UW) SPICE April 19, 2012 1 / 11 Electronic

More information

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Jérôme Thai 1 Timothy Hunter 1 Anayo Akametalu 1 Claire Tomlin 1 Alex Bayen 1,2 1 Department of Electrical Engineering

More information

High Dimensional Covariance and Precision Matrix Estimation

High Dimensional Covariance and Precision Matrix Estimation High Dimensional Covariance and Precision Matrix Estimation Wei Wang Washington University in St. Louis Thursday 23 rd February, 2017 Wei Wang (Washington University in St. Louis) High Dimensional Covariance

More information

MIMO Capacities : Eigenvalue Computation through Representation Theory

MIMO Capacities : Eigenvalue Computation through Representation Theory MIMO Capacities : Eigenvalue Computation through Representation Theory Jayanta Kumar Pal, Donald Richards SAMSI Multivariate distributions working group Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Random Matrices and Multivariate Statistical Analysis

Random Matrices and Multivariate Statistical Analysis Random Matrices and Multivariate Statistical Analysis Iain Johnstone, Statistics, Stanford imj@stanford.edu SEA 06@MIT p.1 Agenda Classical multivariate techniques Principal Component Analysis Canonical

More information

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that 1 More examples 1.1 Exponential families under conditioning Exponential families also behave nicely under conditioning. Specifically, suppose we write η = η 1, η 2 R k R p k so that dp η dm 0 = e ηt 1

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

A tailor made nonparametric density estimate

A tailor made nonparametric density estimate A tailor made nonparametric density estimate Daniel Carando 1, Ricardo Fraiman 2 and Pablo Groisman 1 1 Universidad de Buenos Aires 2 Universidad de San Andrés School and Workshop on Probability Theory

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Linear regression. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Linear regression. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Linear regression DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Linear models Least-squares estimation Overfitting Example:

More information

The Maximum Likelihood Threshold of a Graph

The Maximum Likelihood Threshold of a Graph The Maximum Likelihood Threshold of a Graph Elizabeth Gross and Seth Sullivant San Jose State University, North Carolina State University August 28, 2014 Seth Sullivant (NCSU) Maximum Likelihood Threshold

More information

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Mathurin Massias https://mathurinm.github.io INRIA Saclay Joint work with: Olivier Fercoq (Télécom ParisTech) Alexandre Gramfort

More information

Structure estimation for Gaussian graphical models

Structure estimation for Gaussian graphical models Faculty of Science Structure estimation for Gaussian graphical models Steffen Lauritzen, University of Copenhagen Department of Mathematical Sciences Minikurs TUM 2016 Lecture 3 Slide 1/48 Overview of

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information