Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes.

Size: px
Start display at page:

Download "Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes."

Transcription

1 Fourier series Fourier series of a periodic function f (t) with period T and corresponding angular frequency ω /T : f (t) a 0 + (a n cos(nωt) + b n sin(nωt)), n1 Fourier series is a linear sum of cosine and sine functions with discrete frequencies that are integer multiples of the frequency of f (t). This gives rise to a discrete frequency spectrum given by the Fourier coefficients (frequency amplitudes). Complex Fourier series Complex representation of Fourier series of a function f (t) with period T and corresponding angular frequency ω /T : f (t) n c n e inωt, where (a n ib n )/, n > 0, c n a 0 / n 0, (a n + ib n )/ n < 0 Note that the summation goes from to. Now have a negative frequencies as well. Positive and negative frequencies Positive frequencies (n > 0): e inωt cos(nωt) + i sin(nωt) Negative frequencies (n < 0): e i n ωt cos( n ωt) i sin( n ωt) Fourier series demonstration Applet for Fourier Series:

2 The Fourier transform For non-periodic (or periodic) functions f (t), we can define the Fourier transform Fourier transform F[f (t)] g(ω) 1 inverse transform F 1 [g(ω)] f (t) 1 g(ω)e iωt dω, where g(ω) corresponds to a continuous frequency spectrum. Properties of the Fourier transform Linearity F[f (t) + g(t)] F[f (t)] + F[g(t)] Shifting F[f (t t 0 )] e iωt0 g(ω) F 1 [g(ω ω 0 )] e iω0t f (t) Scaling F[f (αt)] 1 α g(ω/α) F 1 [g(βt)] 1 β f (t/β) Power spectrum F[f (t)] (F[f (t)]) F[f (t t 0 )] g(ω) cannot reconstruct f(t) from power spectrum since phase information is lost. Note: F[f (t t 0 )] F[f (t)] Parseval s theorem f (t) dt }{{} Power δ-function δ(x) 1 g(ω) }{{} Power spectrum eixt dt δ( x) δ(x) dω Fourier transform of a derivative Fourier transform can be used to solve differential equations. Consider F[f (t)] 1 + f (t)e iωt dt (1) where f (t) df /dt. Integrating by parts, we obtain F[f (t)] e iωt f (t) + iω + () Since f (t) vanishes as t ±, the first term vanishes and we have F[f (t)] iωf[f (t)] (3) Can show that for n th derivative F[f n (t)] (iω) n F[f (t)] The Fourier transform obeys certain symmetries. Consider the Fourier transform and its complex conjugate: g(ω) g (ω) f (t)e iωt dt If f (t) is real (f (t) f (t)), then g (ω) 1 f (t)e i( ω)t dt g( ω)

3 g (ω) g( ω) means the real part of the transform Re(g(ω)) is even, while Im(g(ω)) is odd: g(ω) Re(g(ω)) + iim(g(ω)) g( ω) Re(g( ω)) + iim(g( ω)) g (ω) Re(g(ω)) iim(g(ω)) Conversely, if f (t) is purely imaginary, then g (ω) 1 f (t)e i( ω)t dt g( ω) Hence, g( ω) g (ω), which means that Re(g(ω)) is odd, while Im(g(ω)) is even. Let f (t) be even: f ( t) f (t), then can use scaling property to show: But, F[f ( t)] F[f (( 1)t)] 1 1 g(ω/( 1)) g( ω) F[f ( t)] F[f (t)] g(ω) Therefore, g(ω) g( ω). The transform is even too. Similarly, can show that if f (t) is odd, then g(ω) is odd as well. The symmetry properties of the Fourier transform can be summarized as follows: f (t) real f (t) imaginary f (t) even f (t) odd f (t) real and even f (t) real and odd f (t) imaginary and even f (t) imaginary and odd Re(g(ω)) even and Im(g(ω)) odd Re(g(ω)) odd and Im(g(ω)) even g(ω) even g(ω) odd g(ω) real and even g(ω) imaginary and odd g(ω) imaginary and even g(ω) real and odd Fourier Series vs. Fourier transform Let s compare Fourier series, complex representation of Fourier series and Fourier transform: Consider f (t) sin(ωt), where ω /T. What are its real Fourier coefficients? f (t) a 0 + (a n cos(nωt) + b n sin(nωt)), (4) n1 By inspection, a n 0, b 1 1. b n 0 for n 1.

4 Now let s find the Fourier coeffcients of f (t) sin(ωt) for the complex representation of the Fourier series: f (t) c n e inωt, (5) where, c n 1 T Substituting f (t), we obtain c n 1 T 1 T T / T / T / T / n T / T / sin(ωt)(cos(nωt) i sin(nωt))dt sin(ωt) cos(nωt)dt } {{ } 0 f (t)e inωt dt (6) T / i T / sin(ωt) sin(nωt))dt π c n i sin(x) sin(nx)) dx π }{{} πδ 1n { i n 1 + i n 1 Hence, c 1 i/ and c 1 i/, all other c n are zero. Note: A single harmonic (sin or cos) is represented by two Fourier coefficients in the complex Fourier series. Now consider the Fourier transform of f (t) sin(ωt). Rewrite as f (t) eiωt e iωt i : g(ω) e iωt e iωt e iωt dt i i 1 e i(ω ω)t dt 1 e i(ω+ω)t dt }{{}}{{} δ(ω ω) δ( (Ω+ω))δ(Ω+ω) i (δ(ω + ω) δ(ω ω)) Note that δ(x) δ( x). Therefore, F[sin(Ωt)] i (δ(ω + ω) δ(ω ω)) yields two δ-function peaks at ω ±Ω with imaginary amplitudes. This is analogous to the two complex Fourier coefficients we obtained earlier. Similarly, one can obtain F[cos(Ωt)] (δ(ω + ω) + δ(ω ω))

5 What is the Fourier transform of a constant function f (t) C? g(ω) C 1 C δ(ω) Ce iωt dt e iωt dt } {{ } δ( ω)δ(ω) δ-function peak at ω 0. Zero frequency mode. Fourier transform of periodic functions Fourier transform can operate on non-periodic, but also periodic functions, which we can express in terms of Fourier series. Let f (t) be a periodic function with angular frequency Ω: f (t) a 0 + (a n cos(nωt) + b n sin(nωt)), n1 Therefore, [ a ] 0 F[f (t)] F + (a n cos(nωt) + b n sin(nωt)), n1 Now use linearity of transform F[f (t)] F[a 0 /] + (a n F[cos(nΩt)] + b n F[sin(nΩt)]) n1 Fourier transform of periodic functions F[f (t)] a 0 δ(ω) + a n (δ(nω + ω) + δ(nω ω)) + i n1 b n (δ(nω + ω) δ(nω ω)) n1 Therefore, Fourier transforms of periodic functions yield a sum of δ-functions located at integer multiples of the frequency Ω. Gaussian peak: f (t) e αt F[f (t)] 1 e ω 4α 1 α e ω 4α e αt e iωt dt ( e α t + iω iω t+( α α) ( α) iω ) dt iω α(t+ e α ) iω e α( α) dt e αx dx }{{} π/α

6 Table of common Fourier transforms f (t) g(ω) 1 δ(t) constant C C δ(ω) sin(ωt) i δ(ω+ω) δ(ω Ω) cos(ωt) δ(ω+ω)+δ(ω Ω) Gaussian (α > 0): e αt 1 α e ω /(4α) Exponential (α > 0): e α t α π α +ω

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation?

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? (A) 0 (B) 1 (C) 2 (D) more than 2 (E) it depends or don t know How many of

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

A1 Time-Frequency Analysis

A1 Time-Frequency Analysis A 20 / A Time-Frequency Analysis David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2tf Hilary 20 A 20 2 / Content 8 Lectures: 6 Topics... From Signals to Complex Fourier Series 2

More information

221B Lecture Notes on Resonances in Classical Mechanics

221B Lecture Notes on Resonances in Classical Mechanics 1B Lecture Notes on Resonances in Classical Mechanics 1 Harmonic Oscillators Harmonic oscillators appear in many different contexts in classical mechanics. Examples include: spring, pendulum (with a small

More information

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that Phys 531 Fourier Transforms In this handout, I will go through the derivations of some of the results I gave in class (Lecture 14, 1/11). I won t reintroduce the concepts though, so you ll want to refer

More information

23.6. The Complex Form. Introduction. Prerequisites. Learning Outcomes

23.6. The Complex Form. Introduction. Prerequisites. Learning Outcomes he Complex Form 3.6 Introduction In this Section we show how a Fourier series can be expressed more concisely if we introduce the complex number i where i =. By utilising the Euler relation: e iθ cos θ

More information

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that Phys 53 Fourier Transforms In this handout, I will go through the derivations of some of the results I gave in class (Lecture 4, /). I won t reintroduce the concepts though, so if you haven t seen the

More information

2 Fourier Transforms and Sampling

2 Fourier Transforms and Sampling 2 Fourier ransforms and Sampling 2.1 he Fourier ransform he Fourier ransform is an integral operator that transforms a continuous function into a continuous function H(ω) =F t ω [h(t)] := h(t)e iωt dt

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 24 g.s.mcdonald@salford.ac.uk 1. Theory

More information

Biomedical Engineering Image Formation II

Biomedical Engineering Image Formation II Biomedical Engineering Image Formation II PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Fourier Series - A Fourier series decomposes periodic functions or periodic

More information

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) R(x)

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Unstable Oscillations!

Unstable Oscillations! Unstable Oscillations X( t ) = [ A 0 + A( t ) ] sin( ω t + Φ 0 + Φ( t ) ) Amplitude modulation: A( t ) Phase modulation: Φ( t ) S(ω) S(ω) Special case: C(ω) Unstable oscillation has a broader periodogram

More information

( ) f (k) = FT (R(x)) = R(k)

( ) f (k) = FT (R(x)) = R(k) Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) = R(x)

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

Fourier Series and Transforms. Revision Lecture

Fourier Series and Transforms. Revision Lecture E. (5-6) : / 3 Periodic signals can be written as a sum of sine and cosine waves: u(t) u(t) = a + n= (a ncosπnft+b n sinπnft) T = + T/3 T/ T +.65sin(πFt) -.6sin(πFt) +.6sin(πFt) + -.3cos(πFt) + T/ Fundamental

More information

ENGIN 211, Engineering Math. Fourier Series and Transform

ENGIN 211, Engineering Math. Fourier Series and Transform ENGIN 11, Engineering Math Fourier Series and ransform 1 Periodic Functions and Harmonics f(t) Period: a a+ t Frequency: f = 1 Angular velocity (or angular frequency): ω = ππ = π Such a periodic function

More information

Fourier Series and Integrals

Fourier Series and Integrals Fourier Series and Integrals Fourier Series et f(x) beapiece-wiselinearfunctionon[, ] (Thismeansthatf(x) maypossessa finite number of finite discontinuities on the interval). Then f(x) canbeexpandedina

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Fourier Series & The Fourier Transform

Fourier Series & The Fourier Transform Fourier Series & The Fourier Transform What is the Fourier Transform? Anharmonic Waves Fourier Cosine Series for even functions Fourier Sine Series for odd functions The continuous limit: the Fourier transform

More information

Energy during a burst of deceleration

Energy during a burst of deceleration Problem 1. Energy during a burst of deceleration A particle of charge e moves at constant velocity, βc, for t < 0. During the short time interval, 0 < t < t its velocity remains in the same direction but

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Heisenberg's inequality for Fourier transform

Heisenberg's inequality for Fourier transform Heisenberg's inequality for Fourier transform Riccardo Pascuzzo Abstract In this paper, we prove the Heisenberg's inequality using the Fourier transform. Then we show that the equality holds for the Gaussian

More information

Lecture 34. Fourier Transforms

Lecture 34. Fourier Transforms Lecture 34 Fourier Transforms In this section, we introduce the Fourier transform, a method of analyzing the frequency content of functions that are no longer τ-periodic, but which are defined over the

More information

Time-Dependent Statistical Mechanics A1. The Fourier transform

Time-Dependent Statistical Mechanics A1. The Fourier transform Time-Dependent Statistical Mechanics A1. The Fourier transform c Hans C. Andersen November 5, 2009 1 Definition of the Fourier transform and its inverse. Suppose F (t) is some function of time. Then its

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

Vibrations and Waves MP205, Assignment 4 Solutions

Vibrations and Waves MP205, Assignment 4 Solutions Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives 77 6. More on Fourier series 6.. Harmonic response. One of the main uses of Fourier series is to express periodic system responses to general periodic signals. For example, if we drive an undamped spring

More information

1 (2n)! (-1)n (θ) 2n

1 (2n)! (-1)n (θ) 2n Complex Numbers and Algebra The real numbers are complete for the operations addition, subtraction, multiplication, and division, or more suggestively, for the operations of addition and multiplication

More information

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5 Signal and systems p. 1/5 Signal and systems Linear Systems Luigi Palopoli palopoli@dit.unitn.it Wrap-Up Signal and systems p. 2/5 Signal and systems p. 3/5 Fourier Series We have see that is a signal

More information

Forced Oscillation and Resonance

Forced Oscillation and Resonance Chapter Forced Oscillation and Resonance The forced oscillation problem will be crucial to our understanding of wave phenomena Complex exponentials are even more useful for the discussion of damping and

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

Fundamentals of the Discrete Fourier Transform

Fundamentals of the Discrete Fourier Transform Seminar presentation at the Politecnico di Milano, Como, November 12, 2012 Fundamentals of the Discrete Fourier Transform Michael G. Sideris sideris@ucalgary.ca Department of Geomatics Engineering University

More information

Representing a Signal

Representing a Signal The Fourier Series Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity and timeinvariance of the system and represents the

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

Physics 351 Monday, January 22, 2018

Physics 351 Monday, January 22, 2018 Physics 351 Monday, January 22, 2018 Phys 351 Work on this while you wait for your classmates to arrive: Show that the moment of inertia of a uniform solid sphere rotating about a diameter is I = 2 5 MR2.

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1)

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1) Ver 88 E. Fourier Series and Transforms 4 Key: [A] easy... [E]hard Questions from RBH textbook: 4., 4.8. E. Fourier Series and Transforms Problem Sheet Lecture. [B] Using the geometric progression formula,

More information

Amplitude and Phase A(0) 2. We start with the Fourier series representation of X(t) in real notation: n=1

Amplitude and Phase A(0) 2. We start with the Fourier series representation of X(t) in real notation: n=1 VI. Power Spectra Amplitude and Phase We start with the Fourier series representation of X(t) in real notation: A() X(t) = + [ A(n) cos(nωt) + B(n) sin(nωt)] 2 n=1 he waveform of the observed segment exactly

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : X(t) = µ + Asin(ω 0 t)+ Δ δ ( t t 0 ) ±σ N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Fourier Transforms - Lecture 9

Fourier Transforms - Lecture 9 1 Introduction Fourier Transforms - Lecture 9 Previously we used the complete set of harmonic functions to represent another function, f(x), within limits in a Cartesian coordinate space. This is because

More information

Mathematical Review for AC Circuits: Complex Number

Mathematical Review for AC Circuits: Complex Number Mathematical Review for AC Circuits: Complex Number 1 Notation When a number x is real, we write x R. When a number z is complex, we write z C. Complex conjugate of z is written as z here. Some books use

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform Wave Phenomena Physics 15c Lecture 10 Fourier ransform What We Did Last ime Reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical impedance is defined by For transverse/longitudinal

More information

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone Patrice Koehl Department of Biological Sciences National University of Singapore http://www.cs.ucdavis.edu/~koehl/teaching/bl5229 koehl@cs.ucdavis.edu Fourier analysis: the dial tone phone We use Fourier

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Wave Phenomena Physics 15c. Lecture 2 Damped Oscillators Driven Oscillators

Wave Phenomena Physics 15c. Lecture 2 Damped Oscillators Driven Oscillators Wave Phenomena Physics 15c Lecture Damped Oscillators Driven Oscillators What We Did Last Time Analyzed a simple harmonic oscillator The equation of motion: The general solution: Studied the solution m

More information

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012 Time dependent perturbation theory D. E. Soper University of Oregon May 0 offer here some background for Chapter 5 of J. J. Sakurai, Modern Quantum Mechanics. The problem Let the hamiltonian for a system

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

Unsteady Two-Dimensional Thin Airfoil Theory

Unsteady Two-Dimensional Thin Airfoil Theory Unsteady Two-Dimensional Thin Airfoil Theory General Formulation Consider a thin airfoil of infinite span and chord length c. The airfoil may have a small motion about its mean position. Let the x axis

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Phasor Young Won Lim 05/19/2015

Phasor Young Won Lim 05/19/2015 Phasor Copyright (c) 2009-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, Complex Numbers Complex Algebra The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, and (ii) complex multiplication, (x 1, y 1 )

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter VIII: The Fast Fourier Transform Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2008 Outline 1 The

More information

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example Introduction to Fourier ransforms Lecture 7 ELE 3: Signals and Systems Fourier transform as a limit of the Fourier series Inverse Fourier transform: he Fourier integral theorem Prof. Paul Cuff Princeton

More information

Fourier Transforms - Lecture 9

Fourier Transforms - Lecture 9 1 Introduction Fourier Transforms - Lecture 9 We have previously used the complete set of harmonic functions to represent another function, f(x), within limits in a Cartesian coordinate space. This is

More information

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University The Fourier Transform R. C. Trinity University Partial Differential Equations April 17, 214 The Fourier series representation For periodic functions Recall: If f is a 2p-periodic (piecewise smooth) function,

More information

4. Sinusoidal solutions

4. Sinusoidal solutions 16 4. Sinusoidal solutions Many things in nature are periodic, even sinusoidal. We will begin by reviewing terms surrounding periodic functions. If an LTI system is fed a periodic input signal, we have

More information

This is the number of cycles per unit time, and its units are, for example,

This is the number of cycles per unit time, and its units are, for example, 16 4. Sinusoidal solutions Many things in nature are periodic, even sinusoidal. We will begin by reviewing terms surrounding periodic functions. If an LTI system is fed a periodic input signal, we have

More information

Forced Response - Particular Solution x p (t)

Forced Response - Particular Solution x p (t) Governing Equation 1.003J/1.053J Dynamics and Control I, Spring 007 Proessor Peacoc 5/7/007 Lecture 1 Vibrations: Second Order Systems - Forced Response Governing Equation Figure 1: Cart attached to spring

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I NOTES FOR 8-79 LECTURES 3 and 4 Introduction to Discrete-Time Fourier Transforms (DTFTs Distributed: September 8, 2005 Notes: This handout contains in brief outline form the lecture notes used for 8-79

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

26. The Fourier Transform in optics

26. The Fourier Transform in optics 26. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as Chapter 2 Static and Dynamic Characteristics of Signals Signals Signals classified as. Analog continuous in time and takes on any magnitude in range of operations 2. Discrete Time measuring a continuous

More information

a k cos kω 0 t + b k sin kω 0 t (1) k=1

a k cos kω 0 t + b k sin kω 0 t (1) k=1 MOAC worksheet Fourier series, Fourier transform, & Sampling Working through the following exercises you will glean a quick overview/review of a few essential ideas that you will need in the moac course.

More information

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011.

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011. Lecture 7 3 Ordinary differential equations (ODEs) (continued) 6 Linear equations of second order 7 Systems of differential equations Please note Please note that there is no lecture on Tuesday, 15 November

More information

`an cos nπx. n 1. L `b

`an cos nπx. n 1. L `b 4 Fourier Series A periodic function on a range p,q may be decomposed into a sum of sinusoidal (sine or cosine) functions. This can be written as follows gpxq 1 2 a ` ř8 `b (4.1) The aim of this chapter

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis 2 requency-domain Analysis Electrical engineers live in the two worlds, so to speak, of time and frequency. requency-domain analysis is an extremely valuable tool to the communications engineer, more so

More information

Lecture 1: Simple Harmonic Oscillators

Lecture 1: Simple Harmonic Oscillators Matthew Schwartz Lecture 1: Simple Harmonic Oscillators 1 Introduction The simplest thing that can happen in the physical universe is nothing. The next simplest thing, which doesn t get too far away from

More information

X(t)e 2πi nt t dt + 1 T

X(t)e 2πi nt t dt + 1 T HOMEWORK 31 I) Use the Fourier-Euler formulae to show that, if X(t) is T -periodic function which admits a Fourier series decomposition X(t) = n= c n exp (πi n ) T t, then (1) if X(t) is even c n are all

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

f(x) cos dx L L f(x) sin L + b n sin a n cos

f(x) cos dx L L f(x) sin L + b n sin a n cos Chapter Fourier Series and Transforms. Fourier Series et f(x be an integrable functin on [, ]. Then the fourier co-ecients are dened as a n b n f(x cos f(x sin The claim is that the function f then can

More information

1 Simple Harmonic Oscillator

1 Simple Harmonic Oscillator Physics 1a Waves Lecture 3 Caltech, 10/09/18 1 Simple Harmonic Oscillator 1.4 General properties of Simple Harmonic Oscillator 1.4.4 Superposition of two independent SHO Suppose we have two SHOs described

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : ( ) ±σ X(t) = µ + Asin(ω 0 t)+ Δ δ t t 0 N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

The O () notation. Definition: Let f(n), g(n) be functions of the natural (or real)

The O () notation. Definition: Let f(n), g(n) be functions of the natural (or real) The O () notation When analyzing the runtime of an algorithm, we want to consider the time required for large n. We also want to ignore constant factors (which often stem from tricks and do not indicate

More information

27. The Fourier Transform in optics, II

27. The Fourier Transform in optics, II 27. The Fourier Transform in optics, II Parseval s Theorem The Shift theorem Convolutions and the Convolution Theorem Autocorrelations and the Autocorrelation Theorem The Shah Function in optics The Fourier

More information

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008 Signals and Systems Lecture (S) Orthogonal Functions and Fourier Series March 17, 008 Today s Topics 1. Analogy between functions of time and vectors. Fourier series Take Away Periodic complex exponentials

More information

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation,

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation, Chapter 6 Maxwell Equations 6.1 Maxwell equations So far we have derived two electrostatic equations and two magnetostatics equations E = ρ ɛ 0 (6.1) E = 0 (6.2) B = 0 (6.3) B = µ 0 J (6.4) which are to

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

EECS 20N: Midterm 2 Solutions

EECS 20N: Midterm 2 Solutions EECS 0N: Midterm Solutions (a) The LTI system is not causal because its impulse response isn t zero for all time less than zero. See Figure. Figure : The system s impulse response in (a). (b) Recall that

More information

Ch 4: The Continuous-Time Fourier Transform

Ch 4: The Continuous-Time Fourier Transform Ch 4: The Continuous-Time Fourier Transform Fourier Transform of x(t) Inverse Fourier Transform jt X ( j) x ( t ) e dt jt x ( t ) X ( j) e d 2 Ghulam Muhammad, King Saud University Continuous-time aperiodic

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

Lecture 1 January 5, 2016

Lecture 1 January 5, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture January 5, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long; Edited by E. Candes & E. Bates Outline

More information

Fourier transforms. Definition F(ω) = - should know these! f(t).e -jωt.dt. ω = 2πf. other definitions exist. f(t) = - F(ω).e jωt.

Fourier transforms. Definition F(ω) = - should know these! f(t).e -jωt.dt. ω = 2πf. other definitions exist. f(t) = - F(ω).e jωt. Fourier transforms This is intended to be a practical exposition, not fully mathematically rigorous ref The Fourier Transform and its Applications R. Bracewell (McGraw Hill) Definition F(ω) = - f(t).e

More information

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus Functions of a Complex Variable (S1) Lecture 11 VII. Integral Transforms An introduction to Fourier and Laplace transformations Integral transforms from application of complex calculus Properties of Fourier

More information

Math 241 Final Exam Spring 2013

Math 241 Final Exam Spring 2013 Name: Math 241 Final Exam Spring 213 1 Instructor (circle one): Epstein Hynd Wong Please turn off and put away all electronic devices. You may use both sides of a 3 5 card for handwritten notes while you

More information