Wave Phenomena Physics 15c. Lecture 11 Dispersion

Size: px
Start display at page:

Download "Wave Phenomena Physics 15c. Lecture 11 Dispersion"

Transcription

1 Wave Phenomena Physics 15c Lecture 11 Dispersion

2 What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed pulses and wave packets Time resolution Δt and bandwidth Δω related by Can be proven for arbitrary waveform Rate of information transmission bandwidth Dirac s δ(t) a limiting case of infinitely fast pulse δ(t) = 1 2π e iωt dω f (t)e iωt dt ΔtΔω 1 2

3 Goals For Today Discuss dispersive waves When velocity is not constant for different ω Waveform changes as it travels Dispersion relation: dependence of k on ω Define group velocity How fast can you send signals if the wave velocity is not constant?

4 Mass-Spring Transmission Line In Lecture #4, we had ξ n-1 ξ n ξ n+1 m d 2 dt 2 ξ n = k s (ξ n ξ n 1 ) k s (ξ n ξ n+1 ) We ignored the gravity by making the strings very long mg L ξ n L 0 What if we didn t make this approximation?

5 Wave Equation Equations of motion is now Usual Taylor-expansion trick Divide by Δx Wave equation: m d 2 dt 2 ξ n = k s (ξ n ξ n 1 ) k s (ξ n ξ n+1 ) mg L ξ n m 2 ξ(x,t) t 2 ρ l 2 ξ(x,t) t 2 = k s 2 ξ(x,t) x 2 2 ξ(x,t) t 2 = K 2 ξ(x,t) x 2 (Δx) 2 mg L ξ(x,t) ρ l g L ξ(x,t) 2 2 ξ(x,t) = ω 2 x 2 0 ξ(x,t) Natural frequency of pendulum = ω 0 = K ρ l g L

6 Solution 2 ξ(x,t) t ξ(x,t) = ω 2 x 2 0 ξ(x,t) Assume Wave eqn. ξ(x,t) = a(x)e iωt ω 2 a(x)e iωt = 2 d 2 a(x) dx 2 e iωt ω 0 2 a(x)e iωt d 2 a(x) = ω 2 ω 0 a(x) dx 2 2 SHO-like if ω 2 ω 2 c 0 > 0 w As before, we can write the solution as but the wavenumber k is given by 2 k = ω 2 ω 0 2 ξ(x,t) = Ae i(kx±ωt ) No longer proportional to ω We have dispersive waves

7 Dispersion Relation Normal-mode solutions are still ξ(x,t) = e i(kx±ωt ) What changed is the relationship between k and ω a.k.a. dispersion relation k(ω) = ω Non-dispersive waves k(ω) = ω 2 2 ω 0 Dispersive waves NB: there are different types of dispersive waves We are looking at just one example here Dispersion relation determines how the waves propagate in time and space

8 Phase Velocity To calculate the propagation velocity of ξ(x,t) = ξ 0 e i(kx±ωt ) we follow the point where the phase kx ± ω t is constant kx ± ωt = C x = C ωt k Phase velocity is the velocity of pure sine waves dx dt = ω k Easily calculated from the dispersion relation Phase velocity c p Nondispersive k(ω) = ω c p (ω) = = const. k(ω) = ω 2 2 ω Dispersive 0 ω c p (ω) = ω 2 ω 0 2 No longer constant!

9 Dispersing Pulses Imagine a pulse being sent over a distance On non-dispersive medium, the pulse shape is unchanged That was because all normal modes had the same c p On dispersive medium, the pulse shape must change The pulse gets dispersed Hence the name: dispersion Dispersion makes poor media for communication

10 Dispersion Relation k k = ω c p c p = ω ω 2 ω 0 2 k = ω 2 ω 0 2 ω 0 ω ω 0 ω Dispersive waves have no solution for ω < ω 0 It has a low frequency cut-off at ω 0 Phase velocity goes to infinity at cut-off Wait! What happened to Relativity?

11 Special Relativity Nothing travels faster than the speed of light, with the possible exception of bad news, which obeys its own set of laws. Douglas Adams Special Relativity does not allow anything to travel faster than the speed of light c What, exactly? Lorentz transformation would lead to problems with causality if signals can be transmitted faster than c Signals = Information Relativity forbids superluminal transfer of information

12 Finite-Length Signal Phase velocity c p is the speed of pure sine waves But pure sine waves don t carry information Let s think about a finite-length pulse from last lecture f (t) F(ω) t T Problem: this medium can t carry waves with 0 ω < ω 0 We need to make a pulse that does not contain frequencies below the cut-off Solution: wave packet

13 General Wave Packet Consider a wave packet Modulate carrier wave with a pulse f(t) e iω c t g(t) = f (t)e iω c t Fourier transform of such wave packet is G(ω) = 1 f (t)e iω c t e iωt dt = F(ω ω 2π c ) where F(ω) is the Fourier transform of f(t) F(ω) = 1 f (t)e iωt dt 2π G(ω) G(ω ) has the same shape as F(ω ), but centered around ω c Now we examine how g(t) travels in space f (t) ω c g(t) ω t

14 Making a Wave Packet g(t) = f (t)e iω c t Forward-going wave packet is generated at x = 0 as ξ(0,t) = g(t) = G(ω)e iωt dω We know how each normal mode travels The total waves should travel as e iωt at x = 0 e i(kx ωt ) ξ(x,t) = G(ω)e i(kx ωt ) dω G(ω ) 0 only near ω c

15 Traveling Wave Packet Recall that k is a function of ω ξ(x,t) = + ω c + Δω ω c Δω i( k(ω )x ωt) G(ω)e dω = F(ω ω c )e + Δω = F( ω )e i k c + Δω = e i ( k c x ω c t ) + Δω Δω i( k(ω )x ωt) dω dk dω ω x (ω c + ω )t F( ω )e i ω = e i ( k c x ω c t ) f (t dk x) dω dk dω x t d ω d ω ω = ω c + ω k c k(ω c ) Taylor expansion of k(ω ) around ω c Carrier waves Shape of the wave packet

16 Traveling Wave Packet f (t dk t dω x) ξ (x, t) e i ( k c x ω c t )

17 Group Velocity Wave packet travels as Velocity is given by t x dk dω = C ω =ω c f t dk dω x ω =ω c dx dt = dω dk ω =ω c We call it the group velocity c g Now we have two definitions of propagation velocity Phase velocity c p for sine waves Group velocity c g for wave packets How do they change with frequency? c p = ω k c g = dω dk

18 Phase and Group Velocities ω(k) = ω k 2 c p = ω k = c 2 + ω 2 0 w k 2 c g = dω dk = k k ω 0 2 k 2 Slope = c p Slope = c g c g remains less than for the wave packet Information never travels faster than light

19 Beats Consider beats between two cosine waves ξ(x,t) = cos(k 1 x ω 1 t) + cos(k 2 x ω 2 t) Frequencies ω 1 and ω 2 are close to each other So are the wavenumbers k 1 and k 2 ξ(x,t) = 2cos k + k x ω 1 + ω 2 2 = 2cos(kx ωt)cos(δkx Δωt) t cos k k x ω 1 ω 2 2 t Carrier waves with average frequency Beats move with Shape of the beats Δω Δk dω dk = c g

20 Quantum Mechanics Already mentioned that momentum p is related to k p = k Similarly, energy E is related to ω as E = ω Consider a moving object of mass m and velocity v p = k = mv E = ω = 1 2 mv 2 eliminate v ω = k 2 From this dispersion relation, 2m c g = dω dk = k m = v In QM, objects are wave packets Classical velocity is given by the group velocity of the waves

21 Cut-Off Frequency Waves can t exist below the cut-off frequency ω 0 Exactly what is happening there? Look at the wave equation Substitute We can t have solutions that goes to infinity at This leaves us with ξ(x,t) = a(x)e iω 0 t ω 0 2 a(x)e iω 0 t = 2 d 2 a(x) dx 2 e iω 0t 2 ξ(x,t) t 2 ω 0 2 a(x)e iω 0 t ξ(x,t) = Ae iω 0 t 2 2 ξ(x,t) = ω 2 x 2 0 ξ(x,t) solution x ± No x dependence a(x) = A + Bx

22 Below Cut-Off Frequency Waves can t exist below the cut-off frequency ω 0 But we can attach a motor and run it at any frequency ξ(0,t) = re iωt ω < ω 0 What happens? As usual, we write the solution as ξ(x,t) = re i(kx ωt ) Wave equation We find imaginary k ω 2 re iωt = 2 k 2 re iωt ω 0 2 re iω 0 t k = ± ω 2 2 ω 0 = ±i ω 0 2 ω 2 = ±iγ Γ > 0 What is the physical meaning?

23 Below Cut-Off Frequency We have found k = ±i Γ where The solution becomes Since e +Γx diverges to, we can only take e Γx i.e., the solution shrinks exponentially with x Our waves never go much further than 1 Γ = We have covered all bases Γ = ω 2 ω 2 0 ξ(x,t) = re i(kx ωt ) = re Γx e iωt ω > ω 0 Traveling waves described by dispersion relation ω = ω 0 Uniform oscillation over entire space ω < ω 0 Exponentially attenuating with distance ω 0 2 ω 2

24 Summary Discussed dispersive waves Dispersion relation = dependence between k and ω Determines how the waves are transmitted Normal modes propagate with different velocities Waveforms are not conserved Defined group velocity Velocity of wave packets Represents how fast information can travel in space Never faster than light c g = dω dk Next: multi-dimensional waves

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform Wave Phenomena Physics 15c Lecture 10 Fourier ransform What We Did Last ime Reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical impedance is defined by For transverse/longitudinal

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

= k, (2) p = h λ. x o = f1/2 o a. +vt (4)

= k, (2) p = h λ. x o = f1/2 o a. +vt (4) Traveling Functions, Traveling Waves, and the Uncertainty Principle R.M. Suter Department of Physics, Carnegie Mellon University Experimental observations have indicated that all quanta have a wave-like

More information

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation?

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? (A) 0 (B) 1 (C) 2 (D) more than 2 (E) it depends or don t know How many of

More information

LECTURE 4 WAVE PACKETS

LECTURE 4 WAVE PACKETS LECTURE 4 WAVE PACKETS. Comparison between QM and Classical Electrons Classical physics (particle) Quantum mechanics (wave) electron is a point particle electron is wavelike motion described by * * F ma

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes.

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes. Fourier series Fourier series of a periodic function f (t) with period T and corresponding angular frequency ω /T : f (t) a 0 + (a n cos(nωt) + b n sin(nωt)), n1 Fourier series is a linear sum of cosine

More information

Signals and Fourier Analysis

Signals and Fourier Analysis Chapter 10 Signals and Fourier Analysis Traveling waves with a definite frequency carry energy but no information They are just there, always have been and always will be To send information, we must send

More information

221B Lecture Notes on Resonances in Classical Mechanics

221B Lecture Notes on Resonances in Classical Mechanics 1B Lecture Notes on Resonances in Classical Mechanics 1 Harmonic Oscillators Harmonic oscillators appear in many different contexts in classical mechanics. Examples include: spring, pendulum (with a small

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

Figure 1: Surface waves

Figure 1: Surface waves 4 Surface Waves on Liquids 1 4 Surface Waves on Liquids 4.1 Introduction We consider waves on the surface of liquids, e.g. waves on the sea or a lake or a river. These can be generated by the wind, by

More information

Lecture 4: Oscillators to Waves

Lecture 4: Oscillators to Waves Matthew Schwartz Lecture 4: Oscillators to Waves Review two masses Last time we studied how two coupled masses on springs move If we take κ=k for simplicity, the two normal modes correspond to ( ) ( )

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that Phys 531 Fourier Transforms In this handout, I will go through the derivations of some of the results I gave in class (Lecture 14, 1/11). I won t reintroduce the concepts though, so you ll want to refer

More information

Continuum Limit and Fourier Series

Continuum Limit and Fourier Series Chapter 6 Continuum Limit and Fourier Series Continuous is in the eye of the beholder Most systems that we think of as continuous are actually made up of discrete pieces In this chapter, we show that a

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory

More information

Quantum Physics Lecture 3

Quantum Physics Lecture 3 Quantum Physics Lecture 3 If light (waves) are particle-like, are particles wave-like? Electron diffraction - Davisson & Germer Experiment Particle in a box -Quantisation of energy Wave Particle?? Wave

More information

WAVES CP4 REVISION LECTURE ON. The wave equation. Traveling waves. Standing waves. Dispersion. Phase and group velocities.

WAVES CP4 REVISION LECTURE ON. The wave equation. Traveling waves. Standing waves. Dispersion. Phase and group velocities. CP4 REVISION LECTURE ON WAVES The wave equation. Traveling waves. Standing waves. Dispersion. Phase and group velocities. Boundary effects. Reflection and transmission of waves. !"#$%&''(%)*%+,-.%/%+,01%

More information

The Basic Properties of Surface Waves

The Basic Properties of Surface Waves The Basic Properties of Surface Waves Lapo Boschi lapo@erdw.ethz.ch April 24, 202 Love and Rayleigh Waves Whenever an elastic medium is bounded by a free surface, coherent waves arise that travel along

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

The above dispersion relation results when a plane wave Ψ ( r,t

The above dispersion relation results when a plane wave Ψ ( r,t Lecture 31: Introduction to Klein-Gordon Equation Physics 452 Justin Peatross 31.1 Review of De Broglie - Schrödinger From the de Broglie relation, it is possible to derive the Schrödinger equation, at

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Causality. but that does not mean it is local in time, for = 1. Let us write ɛ(ω) = ɛ 0 [1 + χ e (ω)] in terms of the electric susceptibility.

Causality. but that does not mean it is local in time, for = 1. Let us write ɛ(ω) = ɛ 0 [1 + χ e (ω)] in terms of the electric susceptibility. We have seen that the issue of how ɛ, µ n depend on ω raises questions about causality: Can signals travel faster than c, or even backwards in time? It is very often useful to assume that polarization

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Group Velocity and Phase Velocity

Group Velocity and Phase Velocity Group Velocity and Phase Velocity Tuesday, 10/31/2006 Physics 158 Peter Beyersdorf Document info 14. 1 Class Outline Meanings of wave velocity Group Velocity Phase Velocity Fourier Analysis Spectral density

More information

LINEAR DISPERSIVE WAVES

LINEAR DISPERSIVE WAVES LINEAR DISPERSIVE WAVES Nathaniel Egwu December 16, 2009 Outline 1 INTRODUCTION Dispersion Relations Definition of Dispersive Waves 2 SOLUTION AND ASYMPTOTIC ANALYSIS The Beam Equation General Solution

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

13.42 LECTURE 2: REVIEW OF LINEAR WAVES

13.42 LECTURE 2: REVIEW OF LINEAR WAVES 13.42 LECTURE 2: REVIEW OF LINEAR WAVES SPRING 2003 c A.H. TECHET & M.S. TRIANTAFYLLOU 1. Basic Water Waves Laplace Equation 2 φ = 0 Free surface elevation: z = η(x, t) No vertical velocity at the bottom

More information

Basics of Radiation Fields

Basics of Radiation Fields Basics of Radiation Fields Initial questions: How could you estimate the distance to a radio source in our galaxy if you don t have a parallax? We are now going to shift gears a bit. In order to understand

More information

Bound and Scattering Solutions for a Delta Potential

Bound and Scattering Solutions for a Delta Potential Physics 342 Lecture 11 Bound and Scattering Solutions for a Delta Potential Lecture 11 Physics 342 Quantum Mechanics I Wednesday, February 20th, 2008 We understand that free particle solutions are meant

More information

Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation

Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation 22.101 Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation References -- R. M. Eisberg, Fundamentals of Modern Physics (Wiley & Sons, New York, 1961). R. L. Liboff, Introductory

More information

Electromagnetic Waves

Electromagnetic Waves Physics 8 Electromagnetic Waves Overview. The most remarkable conclusion of Maxwell s work on electromagnetism in the 860 s was that waves could exist in the fields themselves, traveling with the speed

More information

WAVE PACKETS & SUPERPOSITION

WAVE PACKETS & SUPERPOSITION 1 WAVE PACKETS & SUPERPOSITION Reading: Main 9. PH41 Fourier notes 1 x k Non dispersive wave equation x ψ (x,t) = 1 v t ψ (x,t) So far, we know that this equation results from application of Newton s law

More information

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat Superposition of waves (review PHYS 58 Fourier optics SJSU Spring Eradat Superposition of waves Superposition of waves is the common conceptual basis for some optical phenomena such as: Polarization Interference

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics Kevin S. Huang Contents 1 The Wave Function 1 1.1 The Schrodinger Equation............................ 1 1. Probability.................................... 1.3 Normalization...................................

More information

Problem 1. Part a. Part b. Wayne Witzke ProblemSet #4 PHY ! iθ7 7! Complex numbers, circular, and hyperbolic functions. = r (cos θ + i sin θ)

Problem 1. Part a. Part b. Wayne Witzke ProblemSet #4 PHY ! iθ7 7! Complex numbers, circular, and hyperbolic functions. = r (cos θ + i sin θ) Problem Part a Complex numbers, circular, and hyperbolic functions. Use the power series of e x, sin (θ), cos (θ) to prove Euler s identity e iθ cos θ + i sin θ. The power series of e x, sin (θ), cos (θ)

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

Dispersion relations, linearization and linearized dynamics in PDE models

Dispersion relations, linearization and linearized dynamics in PDE models Dispersion relations, linearization and linearized dynamics in PDE models 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient

More information

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that

e iωt dt and explained why δ(ω) = 0 for ω 0 but δ(0) =. A crucial property of the delta function, however, is that Phys 53 Fourier Transforms In this handout, I will go through the derivations of some of the results I gave in class (Lecture 4, /). I won t reintroduce the concepts though, so if you haven t seen the

More information

Simple Harmonic Motion Concept Questions

Simple Harmonic Motion Concept Questions Simple Harmonic Motion Concept Questions Question 1 Which of the following functions x(t) has a second derivative which is proportional to the negative of the function d x! " x? dt 1 1. x( t ) = at. x(

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1. Lecture 7 B. Zwiebach February 8, 06 Contents Wavepackets and Uncertainty Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 Wavepackets and Uncertainty A wavepacket is a superposition

More information

A second look at waves

A second look at waves A second loo at waves ravelling waves A first loo at Amplitude Modulation (AM) Stationary and reflected waves Lossy waves: dispersion & evanescence I thin this is the MOS IMPORAN of my eight lectures,

More information

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS For 1st-Year

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 24 g.s.mcdonald@salford.ac.uk 1. Theory

More information

Fourier Series and Integrals

Fourier Series and Integrals Fourier Series and Integrals Fourier Series et f(x) beapiece-wiselinearfunctionon[, ] (Thismeansthatf(x) maypossessa finite number of finite discontinuities on the interval). Then f(x) canbeexpandedina

More information

Drude theory & linear response

Drude theory & linear response DRAFT: run through L A TEX on 9 May 16 at 13:51 Drude theory & linear response 1 Static conductivity According to classical mechanics, the motion of a free electron in a constant E field obeys the Newton

More information

Wave Phenomena Physics 15c. Lecture 2 Damped Oscillators Driven Oscillators

Wave Phenomena Physics 15c. Lecture 2 Damped Oscillators Driven Oscillators Wave Phenomena Physics 15c Lecture Damped Oscillators Driven Oscillators What We Did Last Time Analyzed a simple harmonic oscillator The equation of motion: The general solution: Studied the solution m

More information

Wave Phenomena Physics 15c. Masahiro Morii

Wave Phenomena Physics 15c. Masahiro Morii Wave Phenomena Physics 15c Masahiro Morii Teaching Staff! Masahiro Morii gives the lectures.! Tuesday and Thursday @ 1:00 :30.! Thomas Hayes supervises the lab.! 3 hours/week. Date & time to be decided.!

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Dispersion Introduction - An electromagnetic wave with an arbitrary wave-shape

More information

The Generation of Ultrashort Laser Pulses II

The Generation of Ultrashort Laser Pulses II The Generation of Ultrashort Laser Pulses II The phase condition Trains of pulses the Shah function Laser modes and mode locking 1 There are 3 conditions for steady-state laser operation. Amplitude condition

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Waves Primer II Basic wave form. Waves are: 1. Important 2. Easy 3. Neat

Waves Primer II Basic wave form. Waves are: 1. Important 2. Easy 3. Neat Waves Primer II Waves are: 1. Important 2. Easy 3. Neat 23.1 Basic wave form The wave form that you will almost always use is a = Re[A c e i(kx+ly ωt) ] (23.1) Where a variable A c waveamplitude(complexinthiscase)

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

The Wave Function. Chapter The Harmonic Wave Function

The Wave Function. Chapter The Harmonic Wave Function Chapter 3 The Wave Function On the basis of the assumption that the de Broglie relations give the frequency and wavelength of some kind of wave to be associated with a particle, plus the assumption that

More information

Evidence that x-rays are wave-like

Evidence that x-rays are wave-like Evidence that x-rays are wave-like After their discovery in 1895 by Roentgen, their spectrum (including characteristic x-rays) was probed and their penetrating ability was exploited, but it was difficult

More information

Joel A. Shapiro January 20, 2011

Joel A. Shapiro January 20, 2011 Joel A. shapiro@physics.rutgers.edu January 20, 2011 Course Information Instructor: Joel Serin 325 5-5500 X 3886, shapiro@physics Book: Jackson: Classical Electrodynamics (3rd Ed.) Web home page: www.physics.rutgers.edu/grad/504

More information

Group & Phase Velocities (2A)

Group & Phase Velocities (2A) (2A) 1-D Copyright (c) 2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Rapid Review of Early Quantum Mechanics

Rapid Review of Early Quantum Mechanics Rapid Review of Early Quantum Mechanics 8/9/07 (Note: This is stuff you already know from an undergraduate Modern Physics course. We re going through it quickly just to remind you: more details are to

More information

Lecture 34. Fourier Transforms

Lecture 34. Fourier Transforms Lecture 34 Fourier Transforms In this section, we introduce the Fourier transform, a method of analyzing the frequency content of functions that are no longer τ-periodic, but which are defined over the

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

Wave Phenomena Physics 15c. Lecture 9 Wave Reflection Standing Waves

Wave Phenomena Physics 15c. Lecture 9 Wave Reflection Standing Waves Wave Phenomena Physics 15c Lecture 9 Wave Reflection Standing Waves What We Did Last Time Energy and momentum in LC transmission lines Transfer rates for normal modes: and The energy is carried by the

More information

Wavenumber-Frequency Space

Wavenumber-Frequency Space Wavenumber-Frequency Space ECE 6279: Spatial Array Processing Spring 2011 Lecture 3 Prof. Aaron D. Lanterman School of Electrical & Computer Engineering Georgia Institute of Technology AL: 404-385-2548

More information

1 Simple Harmonic Oscillator

1 Simple Harmonic Oscillator Physics 1a Waves Lecture 3 Caltech, 10/09/18 1 Simple Harmonic Oscillator 1.4 General properties of Simple Harmonic Oscillator 1.4.4 Superposition of two independent SHO Suppose we have two SHOs described

More information

Introductory Physics. Week 2015/05/29

Introductory Physics. Week 2015/05/29 2015/05/29 Part I Summary of week 6 Summary of week 6 We studied the motion of a projectile under uniform gravity, and constrained rectilinear motion, introducing the concept of constraint force. Then

More information

Physics 106a/196a Problem Set 7 Due Dec 2, 2005

Physics 106a/196a Problem Set 7 Due Dec 2, 2005 Physics 06a/96a Problem Set 7 Due Dec, 005 Version 3, Nov 7, 005 In this set we finish up the SHO and study coupled oscillations/normal modes and waves. Problems,, and 3 are for 06a students only, 4, 5,

More information

1 (2n)! (-1)n (θ) 2n

1 (2n)! (-1)n (θ) 2n Complex Numbers and Algebra The real numbers are complete for the operations addition, subtraction, multiplication, and division, or more suggestively, for the operations of addition and multiplication

More information

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Vibrations and waves: revision. Martin Dove Queen Mary University of London Vibrations and waves: revision Martin Dove Queen Mary University of London Form of the examination Part A = 50%, 10 short questions, no options Part B = 50%, Answer questions from a choice of 4 Total exam

More information

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015.

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. PHYS 408, Optics Problem Set 1 - Spring 2016 Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. 1. An electric field in vacuum has the wave equation, Let us consider the solution, 2 E 1 c 2 2 E =

More information

Wave Phenomena Physics 15c. Lecture 17 EM Waves in Matter

Wave Phenomena Physics 15c. Lecture 17 EM Waves in Matter Wave Phenomena Physics 15c Lecture 17 EM Waves in Matter What We Did Last Time Reviewed reflection and refraction Total internal reflection is more subtle than it looks Imaginary waves extend a few beyond

More information

Chapter. 5 Bound States: Simple Case

Chapter. 5 Bound States: Simple Case Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 12 HW3 (due 3/2) 13, 15, 20, 31, 36, 41, 48, 53, 63, 66 ***** Exam: 3/12 Ch.2, 3, 4, 5 Feb. 26, 2015 Physics

More information

Frequency and time... dispersion-cancellation, etc.

Frequency and time... dispersion-cancellation, etc. Frequency and time... dispersion-cancellation, etc. (AKA: An old experiment of mine whose interpretation helps illustrate this collapse-vs-correlation business, and which will serve as a segué into time

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

THE KRAMERS-KRONIG RELATIONS FOR LIGHT MOVING BACKWARDS IN TIME. Evangelos Chaliasos. 365 Thebes Street. GR Aegaleo.

THE KRAMERS-KRONIG RELATIONS FOR LIGHT MOVING BACKWARDS IN TIME. Evangelos Chaliasos. 365 Thebes Street. GR Aegaleo. THE KRAMERS-KRONI RELATIONS FOR LIHT MOVIN BACKWARDS IN TIME Evangelos Chaliasos 365 Thebes Street R-12241 Aegaleo Athens, reece Abstract The recent discovery of light moving backwards in time, when it

More information

The Wave Function. Chapter The Harmonic Wave Function

The Wave Function. Chapter The Harmonic Wave Function Chapter 3 The Wave Function On the basis of the assumption that the de Broglie relations give the frequency and wavelength of some kind of wave to be associated with a particle, plus the assumption that

More information

Causality in Classical Physics

Causality in Classical Physics GENERAL ARTICLE Causality in Classical Physics Asrarul Haque Classical physics encompasses the study of physical phenomena which range from local (a point) to nonlocal (a region) in space and/or time.

More information

Concepts from linear theory Extra Lecture

Concepts from linear theory Extra Lecture Concepts from linear theory Extra Lecture Ship waves from WW II battleships and a toy boat. Kelvin s (1887) method of stationary phase predicts both. Concepts from linear theory A. Linearize the nonlinear

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6)

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6) I WAVES (ENGEL & REID, 13., 13.3 AND 1.6) I.1 Introduction A significant part of the lecture From Quantum to Matter is devoted to developing the basic concepts of quantum mechanics. This is not possible

More information

Lecture 14: Superposition & Time-Dependent Quantum States

Lecture 14: Superposition & Time-Dependent Quantum States Lecture 14: Superposition & Time-Dependent Quantum States U= y(x,t=0) 2 U= U= y(x,t 0 ) 2 U= x 0 x L 0 x L Lecture 14, p 1 Last Week Time-independent Schrodinger s Equation (SEQ): 2 2m d y ( x) U ( x)

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H =

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H = To review, in our original presentation of Maxwell s equations, ρ all J all represented all charges, both free bound. Upon separating them, free from bound, we have (dropping quadripole terms): For the

More information

CHM 532 Notes on Wavefunctions and the Schrödinger Equation

CHM 532 Notes on Wavefunctions and the Schrödinger Equation CHM 532 Notes on Wavefunctions and the Schrödinger Equation In class we have discussed a thought experiment 1 that contrasts the behavior of classical particles, classical waves and quantum particles.

More information

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation,

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation, Chapter 6 Maxwell Equations 6.1 Maxwell equations So far we have derived two electrostatic equations and two magnetostatics equations E = ρ ɛ 0 (6.1) E = 0 (6.2) B = 0 (6.3) B = µ 0 J (6.4) which are to

More information

Mechanical Waves. 3: Mechanical Waves (Chapter 16) Waves: Space and Time

Mechanical Waves. 3: Mechanical Waves (Chapter 16) Waves: Space and Time 3: Mechanical Waves (Chapter 6) Phys3, A Dr. Robert MacDonald Mechanical Waves A mechanical wave is a travelling disturbance in a medium (like water, string, earth, Slinky, etc). Move some part of the

More information

26. The Fourier Transform in optics

26. The Fourier Transform in optics 26. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) R(x)

More information

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

More information

Electrodynamics HW Problems 06 EM Waves

Electrodynamics HW Problems 06 EM Waves Electrodynamics HW Problems 06 EM Waves 1. Energy in a wave on a string 2. Traveling wave on a string 3. Standing wave 4. Spherical traveling wave 5. Traveling EM wave 6. 3- D electromagnetic plane wave

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Vibrations and Waves Physics Year 1. Handout 1: Course Details Vibrations and Waves Jan-Feb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office

More information