Amplitude and Phase A(0) 2. We start with the Fourier series representation of X(t) in real notation: n=1

Size: px
Start display at page:

Download "Amplitude and Phase A(0) 2. We start with the Fourier series representation of X(t) in real notation: n=1"

Transcription

1 VI. Power Spectra

2 Amplitude and Phase We start with the Fourier series representation of X(t) in real notation: A() X(t) = + [ A(n) cos(nωt) + B(n) sin(nωt)] 2 n=1

3 he waveform of the observed segment exactly determines the values of the Fourier coefficients: 2 A(n) = X(t) cos(nω t)dt 2 B(n) = X(t) sin(nω t)dt and

4 As long as X(t) is continuous, the complete Fourier series obtained in this manner will reconstruct the original waveform without error. Once A(n) and B(n) have been determined in this way, they can be plotted as functions of frequency (nω ). hese spectra are defined only for integer values of n. For this reason, they are called discrete spectra or line spectra.

5 A(n) and B(n) both refer to the same frequency; together they are equivalent to the complex spectrum: Z(n) = A(n) - jb(n) 2

6 Z(n) is a complex number. he absolute value or amplitude of Z(n) is defined as: Z(n) = Z(n)Z(n) * = 2 2 A(n) + B(n) 2 he amplitude of Z(n) displayed as a function of n (or frequency) is referred to as the amplitude spectrum of x(t).

7 Consider the following trigonometric expression: F HG 2 2 A B Acos x + Bsin x = A + B cos x + sin x A + B A + B A Letting: cosθ = and sinθ = A + B A + B and letting x = nω, and using the following trigonometric expression: cos x cosθ + sin x sinθ = cos( x θ) B I KJ

8 We find that: cos( ω ) + sin( ω ) = cos ω θ A n n t B n n t A n B n n t n Notice that the amplitude is (A 2 + B 2 ) 1/2 rather than (A 2 + B 2 ) 1/2 / 2. his is because the expression is written in real notation, and the amplitude at n has equal contributions from the complex components at n and n.

9 Notice that tan(θ) = (B/A). From this, it follows that the angle θ, called the phase, is: θ(n) = arctan F H G B(n) A(n) I K J When displayed as a function of n (or frequency), θ yields the phase spectrum of X(t).

10 Power Z(n) 2 is referred to as power: Z n 2 = B( n) A n When displayed as a function of n or frequency, it becomes the power spectrum of X(t). he term power comes from the field of electrical engineering, where power dissipated in an electrical circuit is proportional to the mean square voltage applied. 4

11 he total power of a time series can be determined either directly from the time series or from its spectral components. In the time domain, power is defined as the mean square (ms) value: 1 2 ms = X t dt or its root : 1 2 rms = X t dt

12 Parseval s heorem Parseval's theorem relates the mean square value and the sum of spectral powers as: 2 n= - 1 X t dt = Z(n) 2 hus the total power of X(t) can be determined in the time domain as the mean square value, or in the frequency domain as the sum of spectral powers.

13 he complex spectrum is symmetric around ω =, so the complex components at n and n are equal. he total power at any frequency (in real notation) is equally divided between complex components at nω and -nω. 2 2 Z(n) = Z(-n) for n and otal Power at n = Z(n) + Z(-n) = 2 Z(n) for 1 n Nb: n is both negative and positive in complex notation; it is only non-negative in real notation.

14 An Example Now we consider a simple example in which we determine the total power for a cosine function with amplitude of 1 at an arbitrary frequency kω. For X(t)=cos(kω t): (1) Derive the values for A(n) and B(n) for all values of n. (2) Using A(n) and B(n), compute the total power of X(t).

15 First, solve for A(n): 2 2 A( n ) = X ( t ) cos( nω t ) dt = cos( kω t ) cos( nω t ) dt In the case where k n, we can use the following integral form: z cosax cos bx dx = b g sin a b x sin a+ b x b g + 2b g 2 a b a+ b b g with a = kω, b = nω, x = t (provided a b)

16 cos( ω ) cos( ω ) It follows that: ( k n) ( k+ n) ( k n) ( k+ n) 2 sin k n ωt sin k+ n ωt 2 k n ω 2 k+ n ω A n = k t n t dt = + sin k n 2π sin k+ n 2π sin k n sin k+ n = + 2 k n ω 2 k+ n ω 2 k n ω 2 k+ n ω = + = 2 ω 2 ω 2 ω 2 ω Conclusion: A(n) = for all n where k n.

17 Now consider the case where k = n. We can use the following integral form: 2 x sin 2ax cos ax dx = + 2 4a Again, we let a = kω, b = nω, x = t. hen: Conclusion: A(n) = 1 when k = n. ( 2kω t) 2 2 t sin A( k ) = cos( kωt) = + 2 4kω 2 2 sin( 2k 2π ) sin( 2k ) = + 2 4k 2 4k ω ω 2 sin( 2k 2π ) sin 2 = kω 4k = = ω 2

18 Next, solve for B(n): 2 2 B ( n ) = X( t) sin( nω t) dt = cos( kω t) sin( nω t) dt In the case where k n, we can use the following integral form: cos ax sin bx dx = ( + ) cos ( ) 2( a+ b) 2( b a) cos a b x b a x with a = kω, b = nω, x = t (provided a b)

19 cos( ω ) sin( ω ) It follows that: ( k+ n) ( n k) ( k+ n) ( n k) 2 cos k+ n ω t cos n k ω t B n = k t n t dt = 2 k+ n ω 2 n k ω cos k+ n 2π cos n k 2π cos k+ n cos n k = + 2 k+ n ω 2 n k ω 2 k+ n ω 2 n k ω = + = 2 ω 2 ω 2 ω 2 ω Conclusion: B(n) = for all n where k n.

20 Now consider the case where k = ± n. We can use the following integral form: cos 2ax sin ax cos ax dx = - 4a Again, we let a = kω, b = nω, x = t. hen: ( 2 2π ) cos( 2 ) Conclusion: B(n) = when k = n. ( 2kω t) 4kω 2 B ( k ) = cos( kω t ) sin( kω t ) dt = cos cos k k 1 1 = + = + = 4kω 4kω 4kω 4kω

21 Summary k A(n) B(n) n n 1

22 o solve for total power: bg 2 otal Power = Z n Z(k) + Z( k) = 2 [ A + B ] = n= 4 = 1 2

23 More Examples (1) wo time series may be very different and yet have identical power spectra. hey would necessarily have different phase spectra.

24 (2) Reconstruction of a time series using only the components having largest power yields a smoothed version of the time series.

25 (3) he power spectrum is useful for distinguishing between time series that may look alike bet are generated by very different processes, e.g. beat (2 close frequency components) vs amplitude modulation (1 component that changes amplitude over time).

26 (4) he power spectrum of the EEG is useful for distinguishing among different brain states, e.g. delta for deep sleep, alpha for resting awake, and broad-band for focused awake.

27 (5) he power spectrum of a time series only displays the average power over the length of the time series. wo very different time functions, e.g. low amplitude with persistent rhythmic activity vs irregularly occurring bursts of high amplitude rhythmic activity, will have the same power spectrum if their average power is the same.

28 Relation Between Power Spectrum and Autocovariance Remember that for a signal of length, the estimate of the autocovariance function for an aperiodic function is defined as: ˆ XX C ( τ ) = 1 τ X(t)X(t + τ )dt

29 We can now express X(t) and X(t+τ) as their Fourier series representations. X(t) = n= - m= - Z(n)e X(t + τ ) = Z(m)e jnω t jm ω (t+ τ )

30 We now substitute these Fourier series representations in the autocovariance equation: τ ˆ 1 jn t jm (t+ ) XX = ( n) e ω e ω τ τ n,m= - C ( Z )( Z(m) )dt 1 = Z(n)Z(m) n= - m= - τ jnω t jmω t jmωτ e e e Since τ is constant with respect to the integral: dt Cˆ XX τ 1 t = Z(n)Z(m) e dt n,m= - jmωτ j(n+m) ω ( τ ) e

31 Next, consider the expression within the [] in this equation. First of all, if (n+m), then the integral of the exponential in the [] is approximately equal to. It is exactly equal to when τ = since (n+m) is an integer multiplier of ω, and each sine and cosine component thus has an integer number of cycles in interval. For this reason, the integral over one period of a sine or cosine wave has positive and negative values that exactly cancel. When the interval is reduced to length -τ, the positive and negative values of the cosine terms will not exactly cancel, but the residual integral will still be close to. he result is that we need not consider values of the integral in the [] for which (n+m) since the contribution of these terms to the autocovariance function is negligible. Next, consider the situation where (n+m) =. In this case, the exponential inside the integral in [] is equal to 1, and the integral will equal the length over which the integration is performed. When τ =, this length is, and multiplication of the integral by 1/ causes the term in [] to exactly equal 1. When the length is -τ, division by 1/ yields terms that are negligibly less than 1. he result is that value of the integral in the [] needs only be considered in the case where (n+m) =, and the term in [] is approximately 1 in that case.

32 herefore, we conclude that: $C τ = Z(n)Z(m)e XX b g n,m= - jmω τ Since n + m =, m = n. We thus substitute n for m, giving: -jn C XX = Z(n)Z(-n)e n= - $ τ ω τ

33 We have already seen that Z(n) and Z(-n) are complex conjugates: Z(n) = Z(-n) = A(n) - jb(n) 2 A(n) + jb(n) 2

34 herefore, the product of Z(n) and Z(-n) is the power. hus: 2 2 Z(n)Z(-n) = A(n ) + B(n) 4 b g 2 -jnω τ C $ XX τ = Z(n) e n= - = Z(n) 2

35 Note that: < n< and b g b g 2 2 Z n = Z n b g herefore: 2 jn C XX = Z(n) e n= - $ τ ω τ his relation shows that the autocovariance function can be expressed as a complex Fourier series whose coefficients are the power values.

36 his means that the autocovariance and power spectrum form a Fourier transform pair, so that: Z(n) Cˆ XX 2 1 -jn Cˆ τ XX e ωτ = d and ( τ ) = Z(n) e n= - 2 jnω τ τ

37 Note that the Fourier transform of the autocovariance function is a real-valued function. his is because the products of all the sine terms of the exponential and C xx (τ) are zero. his results from the fact that C xx (τ) is symmetric around τ =, and the sine functions are all anti-symmetric. his confirms what we already know, namely that the power spectrum is a real function. It is also why the Fourier transform of C xx (τ) is called Fourier cosine transformation. Note also that, since real and imaginary terms have been combined in the power, it is not possible to determine phase from the Fourier representation of the autocovariance. Since the phase information is not available, it is not possible to deduce the original waveform of the time series from the autocovariance. Any number of time series with different phase structure could produce the same autocovariance function.

38 Finally, remember that C XX () is the variance of X(t). Assuming that the mean of X(t) is, the variance is equivalent to the mean square value. hen: 2 1 CXX = X t dt = Z(n) e = Z(n) 2 2 n= - n= - his proves Parseval s theorem.

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

Properties of Fourier Series - GATE Study Material in PDF

Properties of Fourier Series - GATE Study Material in PDF Properties of Fourier Series - GAE Study Material in PDF In the previous article, we learnt the Basics of Fourier Series, the different types and all about the different Fourier Series spectrums. Now,

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

VII. Bandwidth Limited Time Series

VII. Bandwidth Limited Time Series VII. Bandwidth Limited Time Series To summarize the discussion up to this point: (1) In the general case of the aperiodic time series, which is infinite in time and frequency, both the time series and

More information

X. Cross Spectral Analysis

X. Cross Spectral Analysis X. Cross Spectral Analysis Cross Spectrum We have already dealt with the crosscovariance function (ccvf): ˆ 1 C (k) = X(i)Y(i + k) N N k i= 0 The Fourier transform of the ccvf is called the cross spectrum.

More information

IB Paper 6: Signal and Data Analysis

IB Paper 6: Signal and Data Analysis IB Paper 6: Signal and Data Analysis Handout 2: Fourier Series S Godsill Signal Processing and Communications Group, Engineering Department, Cambridge, UK Lent 2015 1 / 1 Fourier Series Revision of Basics

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Fourier Analysis and Power Spectral Density

Fourier Analysis and Power Spectral Density Chapter 4 Fourier Analysis and Power Spectral Density 4. Fourier Series and ransforms Recall Fourier series for periodic functions for x(t + ) = x(t), where x(t) = 2 a + a = 2 a n = 2 b n = 2 n= a n cos

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MI OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSES INSIUE

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Lab10: FM Spectra and VCO

Lab10: FM Spectra and VCO Lab10: FM Spectra and VCO Prepared by: Keyur Desai Dept. of Electrical Engineering Michigan State University ECE458 Lab 10 What is FM? A type of analog modulation Remember a common strategy in analog modulation?

More information

23.6. The Complex Form. Introduction. Prerequisites. Learning Outcomes

23.6. The Complex Form. Introduction. Prerequisites. Learning Outcomes he Complex Form 3.6 Introduction In this Section we show how a Fourier series can be expressed more concisely if we introduce the complex number i where i =. By utilising the Euler relation: e iθ cos θ

More information

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30 Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8 Trigonometric Identities cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees) cos θ sin θ 0 0 1 0

More information

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation?

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? (A) 0 (B) 1 (C) 2 (D) more than 2 (E) it depends or don t know How many of

More information

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes.

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes. Fourier series Fourier series of a periodic function f (t) with period T and corresponding angular frequency ω /T : f (t) a 0 + (a n cos(nωt) + b n sin(nωt)), n1 Fourier series is a linear sum of cosine

More information

Assignment 3 Solutions

Assignment 3 Solutions Assignment Solutions Networks and systems August 8, 7. Consider an LTI system with transfer function H(jw) = input is sin(t + π 4 ), what is the output? +jw. If the Solution : C For an LTI system with

More information

(Refer Slide Time: 01:30)

(Refer Slide Time: 01:30) Networks and Systems Prof V.G K.Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 11 Fourier Series (5) Continuing our discussion of Fourier series today, we will

More information

I. Signals & Sinusoids

I. Signals & Sinusoids I. Signals & Sinusoids [p. 3] Signal definition Sinusoidal signal Plotting a sinusoid [p. 12] Signal operations Time shifting Time scaling Time reversal Combining time shifting & scaling [p. 17] Trigonometric

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as

Chapter 2. Signals. Static and Dynamic Characteristics of Signals. Signals classified as Chapter 2 Static and Dynamic Characteristics of Signals Signals Signals classified as. Analog continuous in time and takes on any magnitude in range of operations 2. Discrete Time measuring a continuous

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Mathematical Review for Signal and Systems

Mathematical Review for Signal and Systems Mathematical Review for Signal and Systems 1 Trigonometric Identities It will be useful to memorize sin θ, cos θ, tan θ values for θ = 0, π/3, π/4, π/ and π ±θ, π θ for the above values of θ. The following

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Representing a Signal

Representing a Signal The Fourier Series Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity and timeinvariance of the system and represents the

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

Fourier Series. Spectral Analysis of Periodic Signals

Fourier Series. Spectral Analysis of Periodic Signals Fourier Series. Spectral Analysis of Periodic Signals he response of continuous-time linear invariant systems to the complex exponential with unitary magnitude response of a continuous-time LI system at

More information

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6a. Dr David Corrigan 1. Electronic and Electrical Engineering Dept.

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6a. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. SIGNALS AND SYSTEMS: PAPER 3C HANDOUT 6a. Dr David Corrigan. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FOURIER SERIES Have seen how the behaviour of systems can

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

FOURIER ANALYSIS using Python

FOURIER ANALYSIS using Python (version September 5) FOURIER ANALYSIS using Python his practical introduces the following: Fourier analysis of both periodic and non-periodic signals (Fourier series, Fourier transform, discrete Fourier

More information

Spectra (2A) Young Won Lim 11/8/12

Spectra (2A) Young Won Lim 11/8/12 Spectra (A) /8/ Copyright (c) 0 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later version

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Each of these functions represents a signal in terms of its spectral components in the frequency domain.

Each of these functions represents a signal in terms of its spectral components in the frequency domain. N INTRODUCTION TO SPECTRL FUNCTIONS Revision B By Tom Irvine Email: tomirvine@aol.com March 3, 000 INTRODUCTION This tutorial presents the Fourier transform. It also discusses the power spectral density

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How a sinusoidal

More information

Signals, Systems, and Society. By: Carlos E. Davila

Signals, Systems, and Society. By: Carlos E. Davila Signals, Systems, and Society By: Carlos E. Davila Signals, Systems, and Society By: Carlos E. Davila Online: < http://cnx.org/content/col965/.5/ > C O N N E X I O N S Rice University, Houston, Texas

More information

A1 Time-Frequency Analysis

A1 Time-Frequency Analysis A 20 / A Time-Frequency Analysis David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2tf Hilary 20 A 20 2 / Content 8 Lectures: 6 Topics... From Signals to Complex Fourier Series 2

More information

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2]

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2] 4. he discrete Fourier transform (DF). Application goal We study the discrete Fourier transform (DF) and its applications: spectral analysis and linear operations as convolution and correlation. We use

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

Frequency- and Time-Domain Spectroscopy

Frequency- and Time-Domain Spectroscopy Frequency- and Time-Domain Spectroscopy We just showed that you could characterize a system by taking an absorption spectrum. We select a frequency component using a grating or prism, irradiate the sample,

More information

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/ Name (print): Lab (circle): W8 Th8 Th11 Th2 F8 Trigonometric Identities ( cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos θ π ) 2 Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees)

More information

Prof. Shayla Sawyer CP08 solution

Prof. Shayla Sawyer CP08 solution What does the time constant represent in an exponential function? How do you define a sinusoid? What is impedance? How is a capacitor affected by an input signal that changes over time? How is an inductor

More information

Part: Frequency and Time Domain

Part: Frequency and Time Domain Numerical Methods Fourier Transform Pair Part: Frequency and Time Domain For more details on this topic Go to Clic on eyword Clic on Fourier Transform Pair You are free to Share to copy, distribute, display

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Music 270a: Complex Exponentials and Spectrum Representation

Music 270a: Complex Exponentials and Spectrum Representation Music 270a: Complex Exponentials and Spectrum Representation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) October 24, 2016 1 Exponentials The exponential

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function

Fourier Transform. Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Objectives: Be able to Fourier Transform Find the Fourier series for a periodic waveform Determine the output of a filter when the input is a periodic function Filters with a Single Sinusoidal Input: Suppose

More information

Spectral Analysis of Random Processes

Spectral Analysis of Random Processes Spectral Analysis of Random Processes Spectral Analysis of Random Processes Generally, all properties of a random process should be defined by averaging over the ensemble of realizations. Generally, all

More information

Biological Signal Analysis Data acquisition and analysis for life scientists. Didier A Depireux

Biological Signal Analysis Data acquisition and analysis for life scientists. Didier A Depireux Biological Signal Analysis Data acquisition and analysis for life scientists Didier A Depireux October 23, 2011 2 This accompanies the teaching of NACS/MPHY 615 Biological Signal Analysis (3). The course

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 1-3 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model

More information

Mathematical Preliminaries and Review

Mathematical Preliminaries and Review Mathematical Preliminaries and Review Ruye Wang for E59 1 Complex Variables and Sinusoids AcomplexnumbercanberepresentedineitherCartesianorpolarcoordinatesystem: z = x + jy= z z = re jθ = r(cos θ + j sin

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

EE3210 Lab 3: Periodic Signal Representation by Fourier Series

EE3210 Lab 3: Periodic Signal Representation by Fourier Series City University of Hong Kong Department of Electronic Engineering EE321 Lab 3: Periodic Signal Representation by Fourier Series Prelab: Read the Background section. Complete Section 2.2(b), which asks

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

Fun With The Fourier Series

Fun With The Fourier Series oo = a Σ 0 + a n cos(2nπt/t) + b n sin(2nπt/t) n=1 Presented at: Santa Clara Valley Chapter IEEE EMC Society March 10, 1998 Franz Gisin Silicon Graphics Inc 2011 North Shoreline M/S 43L 946 Phone: (415)

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the

More information

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10 MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series ecture - 10 Fourier Series: Orthogonal Sets We begin our treatment with some observations: For m,n = 1,2,3,... cos

More information

Physics 351 Monday, January 22, 2018

Physics 351 Monday, January 22, 2018 Physics 351 Monday, January 22, 2018 Phys 351 Work on this while you wait for your classmates to arrive: Show that the moment of inertia of a uniform solid sphere rotating about a diameter is I = 2 5 MR2.

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

Branch: Name of the Student: Unit I (Fourier Series) Fourier Series in the interval (0,2 l) Engineering Mathematics Material SUBJECT NAME

Branch: Name of the Student: Unit I (Fourier Series) Fourier Series in the interval (0,2 l) Engineering Mathematics Material SUBJECT NAME 13 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE UPDATED ON : Transforms and Partial Differential Equation : MA11 : University Questions :SKMA13 : May June 13 Name of the Student: Branch: Unit

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing III. DSP - Digital Fourier Series and Transforms Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher:

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1)

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1) Ver 88 E. Fourier Series and Transforms 4 Key: [A] easy... [E]hard Questions from RBH textbook: 4., 4.8. E. Fourier Series and Transforms Problem Sheet Lecture. [B] Using the geometric progression formula,

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I NOTES FOR 8-79 LECTURES 3 and 4 Introduction to Discrete-Time Fourier Transforms (DTFTs Distributed: September 8, 2005 Notes: This handout contains in brief outline form the lecture notes used for 8-79

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2018

CS-9645 Introduction to Computer Vision Techniques Winter 2018 Table of Contents Spectral Analysis...1 Special Functions... 1 Properties of Dirac-delta Functions...1 Derivatives of the Dirac-delta Function... 2 General Dirac-delta Functions...2 Harmonic Analysis...

More information

a k cos kω 0 t + b k sin kω 0 t (1) k=1

a k cos kω 0 t + b k sin kω 0 t (1) k=1 MOAC worksheet Fourier series, Fourier transform, & Sampling Working through the following exercises you will glean a quick overview/review of a few essential ideas that you will need in the moac course.

More information

The Fourier series are applicable to periodic signals. They were discovered by the

The Fourier series are applicable to periodic signals. They were discovered by the 3.1 Fourier Series The Fourier series are applicable to periodic signals. They were discovered by the famous French mathematician Joseph Fourier in 1807. By using the Fourier series, a periodic signal

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes EAS 305 Random Processes Viewgraph 1 of 10 Definitions: Random Processes A random process is a family of random variables indexed by a parameter t T, where T is called the index set λ i Experiment outcome

More information

Discrete Simulation of Power Law Noise

Discrete Simulation of Power Law Noise Discrete Simulation of Power Law Noise Neil Ashby 1,2 1 University of Colorado, Boulder, CO 80309-0390 USA 2 National Institute of Standards and Technology, Boulder, CO 80305 USA ashby@boulder.nist.gov

More information

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12 Hilbert nner Product Space (2B) Copyright (c) 2009-2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

2 Fourier Transforms and Sampling

2 Fourier Transforms and Sampling 2 Fourier ransforms and Sampling 2.1 he Fourier ransform he Fourier ransform is an integral operator that transforms a continuous function into a continuous function H(ω) =F t ω [h(t)] := h(t)e iωt dt

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Alternating Current (AC) Circuits

Alternating Current (AC) Circuits Alternating Current (AC) Circuits We have been talking about DC circuits Constant currents and voltages Resistors Linear equations Now we introduce AC circuits Time-varying currents and voltages Resistors,

More information

Fourier Series and Transforms. Revision Lecture

Fourier Series and Transforms. Revision Lecture E. (5-6) : / 3 Periodic signals can be written as a sum of sine and cosine waves: u(t) u(t) = a + n= (a ncosπnft+b n sinπnft) T = + T/3 T/ T +.65sin(πFt) -.6sin(πFt) +.6sin(πFt) + -.3cos(πFt) + T/ Fundamental

More information