Fourier Transform for Continuous Functions

Size: px
Start display at page:

Download "Fourier Transform for Continuous Functions"

Transcription

1 Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum of periodic functions. How to define the frequency or spectrum for general continuous-time signals?

2 From Periodic to Non-Periodic Fourier series transforms a periodic continuous signal into the frequency domain. What will happen when the continuous signal is not periodic? Consider the period of a signal with the fundamental frequency 0. T 0 specifies the fundamental period, T w f 0

3 Review of Fourier Series Fourier series representation of a periodic signal x T0 (t) can be given by the pair of equations Forward Transform Integrals over a period [0,T 0 ] and [-T 0 /2, T 0 /2] are the same Inverse Transform where ω 0 = 2π T 0

4 Imaging T 0 A non-periodic signal can be conceptually thought of as a periodic signal whose fundamental period T 0 is infinite long, T 0. In this case, the fundamental frequency 0 0. Remember that the spectrum (in the frequency domain) of a periodic continuous signal is discrete, specified by k 0 (k is an integer). Therefore, the interval between adjacent frequencies is just 0.

5 Extreme Case of Fourier Series: T 0 Let us re-denote f(t) = x T0 t, and rewrite the forward transform of Fourier series as 1 T 0 jkw0t a x t e dt k T0 T 0 /2 0 T /2 w 0 2 / w 0 / w 0 0 f t e dt jkw t

6 Extreme Case of Fourier Series Further changing the notation: Let b kω0 = a k, the forward transform becomes w / w 0 0 jkw0t b f t e dt k 0 2 / w The inverse transform becomes 0 f () t b e k k 0 jkw t 0

7 Extreme Case of Fourier Series When 0 0, we can image that the frequency becomes continuous: The interval 0 becomes d Let = k 0. Then, when 0 0, the forward transform approaches dw ( ) jw t b w f t e dt 2

8 Extreme Case of Fourier Series Combining with the inverse transform, we have f ( t ) b( w ) e k dw jw t f t f t e dt e 2 b(ω) when 0 0, where the summation in the inverse transform becomes integral. jw t jw t

9 It becomes: Continuous Fourier Transform Consider the above recovering equation of f(t). Let us decompose the equation into forward transform and inverse transform: 1 jw t jw t f t f t e dt e dw 2 Forward Transform of f(t) to the frequency domain F(w) Inverse Transform of F(w) to the time domain f(t)

10 Continuous Fourier Transform a.k.a. Continuous-time Fourier Transform Forward Transform F Inverse Transform f jw f t 1 Remark: in the continuous domain, e jt (R) still form a set of orthogonal bases, no matter whether is a multiple of an integer or not. e t F jw 2 jwt e dt jwt dw

11 Continuous Fourier Transform Both time and frequency domains in continuous Fourier transform are continuous. The frequency waveform is also referred to as the spectrum. Continuous Fourier transform is the most general Fourier transform. We will see later that other Fourier transforms (including Fourier series) are its special cases. It is also the most standard Fourier transform. When there is no specification, we usually referred to Fourier Transform as this type.

12 Illustration Example: from Fourier Series to Continuous Fourier Transform We present an example to illustrate the approaching from Fourier series to continuous F. T. Consider a finite-duration signal x(t) that is nonperiodic. Therefore, it does not have a Fourier series representation. Despite using a finite-duration signal as an example for illustration in the following, the argument in previous slides is not restricted to the case of finite-duration signals.

13 Illustration Example: from Fourier Series to Continuous Fourier Transform Let us use x(t) to define one period of a periodic function as long as the period (T 0 ) is longer than the duration, T 0 >T. We can form a periodic function with period T 0 by repeating copies of x(t) every T 0 seconds.

14 Illustration Example: from Fourier Series to Continuous Fourier Transform A convenient way to express this periodic replication process is to write an infinite sum of time-shifted copies of x(t) From the figure illustration, it can be seen that the periodical signal becomes the original x(t) when T 0.

15 Illustration Example: from Fourier Series to Continuous Fourier Transform By forward transform of the Fourier series, the integral of a single period T 0 is as follows:

16 Spectra by Fourier series of the periodic signal formed by the finite duration signal x(t). (a) T 0 = 2T (b)t 0 = 4T (c) T 0 = 8T.

17 When T 0, Illustration Example This is just the continuous F. T. of the finite duration signal x(t), Note that the function of the form sin(x)/ x or sin(x)/ ( x) is called the sinc function, which plays an important role in sampling a continuous signal which will be introduced later.

18 Continuous Fourier Transform Pair Transform pair F Forward jw f t Sometimes also written as e Backward 1 jwt dt f t F jw e 2 jwt dw F jw 1 f t e dt 2 jw t depending on how we decompose the normalization constant 1/2. 1 jw t f t F jw e dw 2

19 There are Many Variations of the Forms of Continuous F. T. (from Kuhn s slides 2005)

20 Symmetry between Time and Frequency of Continuous Fourier Transform Unlike Fourier series, the continuous Fourier transform has very similar forward and inverse transforms. Except to the normalization constant, the only difference is that the forward uses j and the inverse uses j in the complex exponential basis. This suggests that the roles of time and frequency can be exchanged, and some properties are symmetric to each other.

21 Existence and Convergence of Fourier Transform We have derived continuous Fourier transform as an extreme extension of Fourier series. To ensure the existence of continuous Fourier transform, we should consider the conditions whhere the integrals exist. A sufficient condition is

22 Rational Hence, if x t dt <, or equivalently, the integral is bounded, then the continuous Fourier transform is also bounded.

23 Existence and Convergence of Fourier Transform The above is only a sufficient condition but not a necessary condition. We will see many examples of functions that do not satisfy the above condition for which we can still obtain a useful Fourier transform representation. Particularly, if we are willing to allow impulse signals (which are not well-behaved functions in the time and frequency domain representation). The impulse signals will be introduced later. In engineering, we usually do not care much about the exact necessary and sufficient conditions, despite there are mathematically rigorous ways to specify these conditions.

24 What is the continuous Fourier transform of a periodic signal? In the above, we extend the Fourier series when the period T 0 for a periodical signal. What happens when we substitute a periodic signal into the continuous Fourier transform? By doing so, assume that f(t) is a periodic signal with period T 0. From Fourier series, we know that f(t) can be represented as jw t F jw f t e dt jkw 0 t, f t a e w 0 k k 2 T 0

25 Preliminary Property When 0, the integral of e jt over the whole range is zero: e jw t dt 0 It is because that jw t k ( 2 / w)( k1) ( 2 / w) k jw t e dt e dt k 1 jw e jw t t ( 2 / w )( k 1) t ( 2 / w ) k 0

26 What is the continuous Fourier transform of a periodic signal? The continuous Fourier transform of a periodic signal becomes 0 k k jkw t jkw t jw t j ( kw w ) t 0 0 a e e dt a e dt k k k 0, w kw 0 0, w a 1 dt, w kw, w k 0 jw t F jw a e e dt k kw kw 0 0

27 Continuous Fourier Transform of a Periodic Signal That is, we can see that when is a integer multiple of the fundamental frequency 0 (i.e., =k 0, k is an integer), the continuous F. T. becomes infinity. Rigorously speaking, the continuous F. T. doesn t exist. So, what can we do? Should we separate the signals into two types, one is periodic and the other is non-periodic? When we encounter a periodic signal, are we only allowed to use Fourier series? Moreover, even for very simple signals such as f(t)=1, its continuous F. T. doesn t exist either according to the same argument.

28 Impulse Function To overcome this difficulty, and also to make continuous F. T. more applicable, the Dirac s delta function (or unit impulse function) is introduced. The impulse time-domain signal is the most concentrated time signal that we can have. Using an arrow to indicate it

29 What is it mathematically? Dirac s delta function can be thought of as the limit of function sequence such as The delta (or unit impulse) function is mathematically speaking not a function, but a distribution, that is in an expression that is only defined when integrated. In engineering, we don t care about many of the possible ways for its rigorous definition. We only care its property when computing integrals.

30 Some properties of Delta (Unit Impulse) (1) Function (2) So, the Fourier transform pair of delta function is

31 Further properties Since the time domain and the frequency domain are symmetric in continuous Fourier transform, we also have jw t e dt ( w ) Another property: the integral of unit impulse over the whole range is 1:

32 Continuous Fourier Transform of a Periodic Signal By introducing the impulse function, let s go back to see the continuous Fourier transform of a periodic signal. Now, 0 jkw t j ( kw0 w ) t a e dt a ( w kw ) k k 0 k k Remark: the unit-impulse function is allowed to be multiplied by a constant (here, a k ) to reflect the magnitude of an impulse. k jw t F jw a e e dt k

33 Continuous Fourier Transform of a Periodic Signal Hence, the continuous Fourier transform of a periodic signal is an impulse train, with each unit impulse weighted by a k. F(jw) a 0 a 1 a 2 a 3 0 w 0 2w 0 3w 0 w Note that a k is just the spectrum of Fourier series. Hence, the magnitudes of the impulse functions are proportional to those computed from the discrete Fourier series.

34 Continuous Fourier Transform A general Fourier Transform for Spectrum Representation With the unit-impulse function incorporated, the continuous Fourier transform can represent a broad range of continuous-time signals. It is the most general F. T. as mentioned before, including Fourier series as its special case. It can also take discrete-time signal as input. We will investigate it later. It provides a unified and general definition of spectrum. When mention the spectrum of a signal, it usually means the continuous Fourier transform of the signal.

35 Examples of Fourier Transform Pairs Rectangular function (rectangular pulse signal) Derivation of its continuous F. T.

36 Fourier transform of rectangular function Rectangular function can also be represented by the unit-pulse function u(t) as T T u ( t ) u ( t ) 2 2 where the unit-step function is u() t 1, t 0 0, t 0 Hence, we have the Fourier transform pair: A real function in frequency domain

37

38 Time and Frequency domains are dual

39 Fourier transform of right-sided real-exponential signal A complex function in frequency domain Since The real and imaginary parts are

40

41 Impulse in Time and Frequency Derivation:

42

43 Impulse in Time and Frequency By the duality (or symmetry) between time and frequency domain Intuitive interpretation: the constant signal x(t)=1 for all t has only one frequency, namely DC, and we see that its transform is an impulse concentrated at =0.

44 Complex Exponential It says that a complex exponential signal of frequency 0 has a Fourier transform that is nonzero only the frequency 0. Linear Property:

45 Sinusoids Derivation: Since By the linear property, we have

46

47 Periodic Signals Example: time domain a periodic square wave

48 Frequency domain of squared wave

49 Impulse Train Derivation: because p(t) is a periodic signal, it can be expressed by Fourier series: where

50 Impulse Train To determine the coefficients a k of Fourier series, we must evaluate the Fourier series integral over one period, i.e.,

51 Impulse Train Since the continuous Fourier transform of a periodic signal is in general of the form of sum of delta functions centered at integer multiples of s : Hence, the Fourier transform of the impulse train p(t) is another impulse train

52

53 Properties of Fourier Transform Pairs Scaling Property

54 Properties of Fourier Transform Pairs Flip Property Derivation: from the scaling property, we have

55 Properties of Fourier Transform Pairs Time delay property Differentiation property

56 Symmetry Properties of Fourier Transform Pairs If we take complex conjugate of the spectrum, we obtain Hence, X*(-jw) is the Fourier transform of x*(t)

57 Symmetry Properties of Fourier Transform Pairs Therefore, if x(t) is a real function, x(t)=x*(t), the above property reveals that X(jw) = X*(-jw). Hence, we have Then, we can conduct that Re{X(jw)} is an even function Im{X(jw)} is a even function

58 Symmetry Properties of Fourier Transform Pairs In other words, when x(t) is real, the real part of its Fourier transform X(jw) is even, and the imaginary part is odd. Similarly, we also have a symmetric property for magnitude (amplitude) and phase in polar form when x(t) is real That is, the magnitude spectrum of real signal is even, and the phase spectrum is odd.

59 Example: magnitude and phase spectra of a real signal Even function Odd function

60 Summary of Fourier transform symmetries

61 Multiplication in the frequency domain When multiplying two signals in the frequency domain, what will be obtained in the time domain? Convolution: a moving average operation: Convolution of two continuous-time signals x(t) and h(t) is defined as t x ht It can be written in short by Convolution is commutative y d ( ) ( ) y t x t h t x ( t ) h ( t ) x h t d h s x t s ds h ( t ) x ( t )

62 Illustration example of convolution

63 Animation example of convolution

64 Animation example of convolution

65 From Kuhn D continuous convolution: optics example

66 Convolution in time domain Derivation

67 Convolution Property Interchange the order of integrals Let

68 Convolution Property By substitution back, Convolution property is one of the most important properties in Fourier transform.

69 Convolution Property Due to the duality of frequency and time domains, we also have the property that multiplication in the time domain corresponds to the convolution in the frequency domain: That is

70 Example: AM Time domain multiplication Frequency domain convolution

71 Basic Fourier Transform Pairs

72 Basic Fourier Transform Pairs

73 Basic Fourier Transform Properties

74 Basic Fourier Transform Properties

75 Fourier Transform of Discrete-time Signals From Fourier Series: time domain is periodic, then frequency domain is discrete Remember that the continuous Fourier transform has similar forms of forward and inverse transforms. Question: When time domain is discrete, what happens in the frequency domain? The frequency domain is periodic Discrete time Fourier transform: dealing with the case where time domain is a discrete-time signal, x[-2t], x[-t], x[0], x[t], x[2t], (T is the time step)

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

Chapter 8 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform Chapter 8 The Discrete Fourier Transform Introduction Representation of periodic sequences: the discrete Fourier series Properties of the DFS The Fourier transform of periodic signals Sampling the Fourier

More information

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n].

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n]. ELEC 36 LECURE NOES WEEK 9: Chapters 7&9 Chapter 7 (cont d) Discrete-ime Processing of Continuous-ime Signals It is often advantageous to convert a continuous-time signal into a discrete-time signal so

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

Lecture 28 Continuous-Time Fourier Transform 2

Lecture 28 Continuous-Time Fourier Transform 2 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental

More information

The Discrete-time Fourier Transform

The Discrete-time Fourier Transform The Discrete-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals: The

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Continuous-Time Fourier Transform

Continuous-Time Fourier Transform Signals and Systems Continuous-Time Fourier Transform Chang-Su Kim continuous time discrete time periodic (series) CTFS DTFS aperiodic (transform) CTFT DTFT Lowpass Filtering Blurring or Smoothing Original

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Fourier Series and Fourier Transforms 1 Why

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Continuous Fourier transform of a Gaussian Function

Continuous Fourier transform of a Gaussian Function Continuous Fourier transform of a Gaussian Function Gaussian function: e t2 /(2σ 2 ) The CFT of a Gaussian function is also a Gaussian function (i.e., time domain is Gaussian, then the frequency domain

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Interchange of Filtering and Downsampling/Upsampling

Interchange of Filtering and Downsampling/Upsampling Interchange of Filtering and Downsampling/Upsampling Downsampling and upsampling are linear systems, but not LTI systems. They cannot be implemented by difference equations, and so we cannot apply z-transform

More information

ECE 301: Signals and Systems Homework Assignment #5

ECE 301: Signals and Systems Homework Assignment #5 ECE 30: Signals and Systems Homework Assignment #5 Due on November, 205 Professor: Aly El Gamal TA: Xianglun Mao Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem Problem Compute

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

The Continuous Time Fourier Transform

The Continuous Time Fourier Transform COMM 401: Signals & Systems Theory Lecture 8 The Continuous Time Fourier Transform Fourier Transform Continuous time CT signals Discrete time DT signals Aperiodic signals nonperiodic periodic signals Aperiodic

More information

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes Chapter 5.1 Fourier Representation for four Signal Classes 5.1.1Mathematical Development of Fourier Transform If the period is stretched without limit, the periodic signal no longer remains periodic but

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

Ch 4: The Continuous-Time Fourier Transform

Ch 4: The Continuous-Time Fourier Transform Ch 4: The Continuous-Time Fourier Transform Fourier Transform of x(t) Inverse Fourier Transform jt X ( j) x ( t ) e dt jt x ( t ) X ( j) e d 2 Ghulam Muhammad, King Saud University Continuous-time aperiodic

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

1 Signals and systems

1 Signals and systems 978--52-5688-4 - Introduction to Orthogonal Transforms: With Applications in Data Processing and Analysis Signals and systems In the first two chapters we will consider some basic concepts and ideas as

More information

Module 1: Signals & System

Module 1: Signals & System Module 1: Signals & System Lecture 6: Basic Signals in Detail Basic Signals in detail We now introduce formally some of the basic signals namely 1) The Unit Impulse function. 2) The Unit Step function

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Homework 5 EE235, Summer 2013 Solution

Homework 5 EE235, Summer 2013 Solution Homework 5 EE235, Summer 23 Solution. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a f(t 2 cos(3πt + sin(πt + π 3 w π f(t e j3πt + e j3πt + j2

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Linear Convolution Using FFT

Linear Convolution Using FFT Linear Convolution Using FFT Another useful property is that we can perform circular convolution and see how many points remain the same as those of linear convolution. When P < L and an L-point circular

More information

Summary of Fourier Transform Properties

Summary of Fourier Transform Properties Summary of Fourier ransform Properties Frank R. Kschischang he Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of oronto January 7, 207 Definition and Some echnicalities

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Brief Review of Signals and Systems My subject for today s discussion

More information

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10)

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) What we have seen in the previous lectures, is first

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding LINEAR SYSTEMS Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

27. The pole diagram and the Laplace transform

27. The pole diagram and the Laplace transform 124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

Fourier Series and Transforms. Revision Lecture

Fourier Series and Transforms. Revision Lecture E. (5-6) : / 3 Periodic signals can be written as a sum of sine and cosine waves: u(t) u(t) = a + n= (a ncosπnft+b n sinπnft) T = + T/3 T/ T +.65sin(πFt) -.6sin(πFt) +.6sin(πFt) + -.3cos(πFt) + T/ Fundamental

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example Introduction to Fourier ransforms Lecture 7 ELE 3: Signals and Systems Fourier transform as a limit of the Fourier series Inverse Fourier transform: he Fourier integral theorem Prof. Paul Cuff Princeton

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

Representation of Signals and Systems. Lecturer: David Shiung

Representation of Signals and Systems. Lecturer: David Shiung Representation of Signals and Systems Lecturer: David Shiung 1 Abstract (1/2) Fourier analysis Properties of the Fourier transform Dirac delta function Fourier transform of periodic signals Fourier-transform

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Lecture 1 From Continuous-Time to Discrete-Time

Lecture 1 From Continuous-Time to Discrete-Time Lecture From Continuous-Time to Discrete-Time Outline. Continuous and Discrete-Time Signals and Systems................. What is a signal?................................2 What is a system?.............................

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Signal Processing and Linear Systems1 Lecture 4: Characterizing Systems

Signal Processing and Linear Systems1 Lecture 4: Characterizing Systems Signal Processing and Linear Systems Lecture : Characterizing Systems Nicholas Dwork www.stanford.edu/~ndwork Our goal will be to develop a way to learn how the system behaves. In general, this is a very

More information

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems 3. Frequency-Domain Analysis of Continuous- ime Signals and Systems 3.. Definition of Continuous-ime Fourier Series (3.3-3.4) 3.2. Properties of Continuous-ime Fourier Series (3.5) 3.3. Definition of Continuous-ime

More information

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series Fourier series Electrical Circuits Lecture - Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform - Fourier

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008 Signals and Systems Lecture (S) Orthogonal Functions and Fourier Series March 17, 008 Today s Topics 1. Analogy between functions of time and vectors. Fourier series Take Away Periodic complex exponentials

More information

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid.

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid. Sampling and Discrete Time Discrete-Time Signal Description Sampling is the acquisition of the values of a continuous-time signal at discrete points in time. x t discrete-time signal. ( ) is a continuous-time

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Review of Linear System Theory

Review of Linear System Theory Review of Linear System Theory The following is a (very) brief review of linear system theory and Fourier analysis. I work primarily with discrete signals. I assume the reader is familiar with linear algebra

More information

ESS Dirac Comb and Flavors of Fourier Transforms

ESS Dirac Comb and Flavors of Fourier Transforms 6. Dirac Comb and Flavors of Fourier ransforms Consider a periodic function that comprises pulses of amplitude A and duration τ spaced a time apart. We can define it over one period as y(t) = A, τ / 2

More information

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at Chapter 2 FOURIER TRANSFORMS 2.1 Introduction The Fourier series expresses any periodic function into a sum of sinusoids. The Fourier transform is the extension of this idea to non-periodic functions by

More information

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis University of Connecticut Lecture Notes for ME557 Fall 24 Engineering Analysis I Part III: Fourier Analysis Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

The Discrete Fourier Transform. Signal Processing PSYCH 711/712 Lecture 3

The Discrete Fourier Transform. Signal Processing PSYCH 711/712 Lecture 3 The Discrete Fourier Transform Signal Processing PSYCH 711/712 Lecture 3 DFT Properties symmetry linearity shifting scaling Symmetry x(n) -1.0-0.5 0.0 0.5 1.0 X(m) -10-5 0 5 10 0 5 10 15 0 5 10 15 n m

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis 2 requency-domain Analysis Electrical engineers live in the two worlds, so to speak, of time and frequency. requency-domain analysis is an extremely valuable tool to the communications engineer, more so

More information

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Fourier transform Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 27 28 Function transforms Sometimes, operating on a class of functions

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

Introduction to DFT. Deployment of Telecommunication Infrastructures. Azadeh Faridi DTIC UPF, Spring 2009

Introduction to DFT. Deployment of Telecommunication Infrastructures. Azadeh Faridi DTIC UPF, Spring 2009 Introduction to DFT Deployment of Telecommunication Infrastructures Azadeh Faridi DTIC UPF, Spring 2009 1 Review of Fourier Transform Many signals can be represented by a fourier integral of the following

More information

Line Spectra and their Applications

Line Spectra and their Applications In [ ]: cd matlab pwd Line Spectra and their Applications Scope and Background Reading This session concludes our introduction to Fourier Series. Last time (http://nbviewer.jupyter.org/github/cpjobling/eg-47-

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, Prof. Young-Chai Ko

Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, Prof. Young-Chai Ko Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, 20 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Fourier transform Properties Fourier transform of special function Fourier

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Department of Electrical Engineering University of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Introduction Fourier Transform Properties of Fourier

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

1. SINGULARITY FUNCTIONS

1. SINGULARITY FUNCTIONS 1. SINGULARITY FUNCTIONS 1.0 INTRODUCTION Singularity functions are discontinuous functions or their derivatives are discontinuous. A singularity is a point at which a function does not possess a derivative.

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Continuous-time Signals. (AKA analog signals)

Continuous-time Signals. (AKA analog signals) Continuous-time Signals (AKA analog signals) I. Analog* Signals review Goals: - Common test signals used in system analysis - Signal operations and properties: scaling, shifting, periodicity, energy and

More information

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential

More information

20. The pole diagram and the Laplace transform

20. The pole diagram and the Laplace transform 95 0. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

ECE 301: Signals and Systems Homework Assignment #7

ECE 301: Signals and Systems Homework Assignment #7 ECE 301: Signals and Systems Homework Assignment #7 Due on December 11, 2015 Professor: Aly El Gamal TA: Xianglun Mao 1 Aly El Gamal ECE 301: Signals and Systems Homework Assignment #7 Problem 1 Note:

More information