Mechanical characterization of visco termo elastic properties of a polymer interlayer by dynamic tests

Size: px
Start display at page:

Download "Mechanical characterization of visco termo elastic properties of a polymer interlayer by dynamic tests"

Transcription

1 Mechanical characterization of visco termo elastic properties of a polymer interlayer by dynamic tests Laura Andreozzi 1, Silvia Briccoli Bati 2, Mario Fagone 2 Giovanna Ranocchiai 2 Fabio Zulli 1 1 Department of Fisics Enrico Fermi, University of Pisa, Italy anreozz@df.unipi.it, fabio.zulli@df.unipi.it 2 Department of Costruzioni e Restauro, University of Florence, Italy silvia.briccolibati@unifi.it, mario.fagone@unifi.it, giovanna.ranocchiai@unifi.it, Keywords: Laminated glass, polymer, environmental degradation. SUMMARY. Experimental analysis of viscoelastic properties of materials is usually carried out with creep tests, relaxation tests (both addressed as transient tests) or periodic tests. The last method permits to perform the analysis of viscoelastic parameters at very short times, representing the effects of fast load conditions, usually hard to highligth by transient experiments. Moreover, experimental results of linear viscoelastic materials can be translated in the space of frequency and temperature, so to achieve information on material behaviour in a time domain wider than the experimental one. Here the first results are reported of an experimental analysis caried out with cyclic tests on composite glass specimens; some of them have been subjected to damage with exposure to solar radiation, moisture and thermal cycles. 1 INTRODUCTION Several kinds of polymers are employed as interlayers of laminated glass; these polymers are not crystalline, weakly cross-linked and consequently highly amorphous. Amorphous polymers are characterized by a slow transition from liquid to solid state passing through viscous behavior, without latent heat of phase transition. Viscoelastic behavior, that heavily depends on temperature, is typical of a specific temperature range that is called rubberlike domain. In composite glass, the interlayer exhibits rubberlike behaviour at room temperature, and, for this reason, in case of glass breakage it is able to produce a bridge ligament among glass fragments; in fact, glass fracture is not able to propagate within soft polymer interlayer, but deviates at the interface between glass and interlayer. Composite glass employed in architectural applications is subjected to various load conditions, which duration ranges from few seconds to several years; moreover, due to the great sensitivity from temperature, tests have to be performed at different temperatures in order to cover the possible climate range of the building life. Due to the variety of materials that progressively are entering the market, draft pren [1] provides an approximate method to account for the coupling capability of interlayer through a parameter that takes into account the stiffness of polymer as a function of time and temperature. Particularly, cyclic tests have been introduced in the draft rules, to evaluate the rheological properties of interlayer, which knowledge is necessary for the design of glass structures. In this paper, the results are reported of cyclic tests carried out on polymer interlayer

2 (polyvynil butyral) adhered to glass. The results are compared with those obtained on equal specimens previously damaged by environmental actions. 2 TERMO VISCO ELASTIC PROPERTIES OF INTERLAYER MATERIALS Polymers employed as interlayers are generally isotropic in the undeformed state; moreover, the viscous share of deformation is usually believed to be limited to the deviatoric part of strain. The Boltzmann superposition principle is generally accepted, that is the effects of mechanical history are linearly additive where the stress is described as a function of rate of strain history or, alternatively, the strain is described as a function of rate of stress history. This permits to assume constitutive equations of this kind: t t Jt t t dt (1a) t t Gt t γ t dt (1b) Generally, mechanical behaviours that depend on time are investigated by test methods that apply to specific ranges of load rates. A graph is reported in fig. 1 containing the different tests apt to catch the mechanical behaviour of a polymer in dependence of the load time you are interested at. As it is well known, the frequency scales of typical loads in engineering analysis range from 10-9 to 10-0 Hz. Higher frequencies are usefull in the study of impacts and explosions. forced vibrations resonance methods wave propagation transient experiments torsional pendulum f (Hz) Figure 1: Frequency scales for different mechanical experimental techniques. 2.1 Transient experiments Transient experiments are performed, for example, imposing a sudden stress and recording the resulting strain that represents the description of the creep function (according to eq. 1a). On the contrary, imposing a sudden strain and recording the resulting stress, the description of the relaxation function is obtained (according eq. 1b). G(t) and J(t) are not inverse functions, because they represnt the responce to different experimental time patterns. The time law by which stress or strain has been applied, disturbs the successive results in term of creep and relaxation functions, until such effects become negligible, after some time interval,

3 long compared to the load time. For this reason specific experiments are to be preferred in order to investigate rheological behaviour at short actions. 2.2 Periodic experiments If stress (or strain) is varied periodically on a linear viscoelastic material (usually with sinusoidal law), after some cycles, due to Boltzman superposition principle, the strain (or stress) will also alternate with the same law and frequency, but it will be out of phase with the stress (or strain). The linearity of mechanical response, at each load level, can so be checked through the experiment. For example, if a strain is imposed according to γ γ0 (2) sin ωt it can be easely shown that the stress can be represented as: G ω and ω γ 0 G sin ωt G cos ωt (3) G are functions of frequencies and represent the shear storage modulus where and the shear loss modulus; G ω is the ratio of the stress in phase with the strain, to the strain and is proportional to the average storage of energy in a cycle of deformation; G ω is the ratio of the stress /2 out of phase with the strain, to the strain, and is proportional to the average dissipation of energy in a cycle of deformation. Periodic experiments are carried out imposing forced vibrations to specimens of various shape and subjected to various stress states [2] UNI EN ISO The method of reduced variables G ω and ω Given a certain frequency, different values of G can be found if periodic tests are performed at different temperatures. It was observed that, if one represents G() in a logaritmic scale, the experimental points obtained at a given temperature may be shifted to superimpose to experimental points obtained at different temperature [3]. The effect of a change from T to T 0 is to multiply G by T 0 0 /T and the frequency scale by a given constant a T. If a shift value log a T can be found that depends only on the temperature change, for all the viscoelastic variables a single composite curve can be obtained which represents the frequency dependence that would have been obtained over a much wider frequency range, at a single temperature (reference temperature). A general form for the description of a T as a function of (T-T 0 ), commonly accepted in the analysis of polymers, was proposed by William, Landel and Ferry (WLF equation): log a T c T T0 c T T Once the mathematical constants c 1 0 e c 2 0 have been determined, as to obtain superposition of experimental points determined at various temperatures, it is possible to build the master curve at the reference temperature T 0 for all the viscoelastic constants and, with simple algebra, to represent master curves for different reference temperatures. 0 (4)

4 However, caution should be exercised in using a reduced viscoelastic function to predict properties at frequencies or times many decades removed from the range of experimental measurements, because of the accumulation of experimental errors and, also, because chemical changes may occur over long periods. 3 EXPERIMENTAL ANALYSIS Dynamic tests were carried out on composite glass specimens with PVB interlayer. MCR 301 rheometer Anton Paar was used to perform oscillatory rotational dynamic tests on composite glass. The rheometer is able to produce an oscillatory rotation on a specimen of various shapes, both in displacement and force control, and to record torque with a resolution of 0.1 nnm, and angular rotation with a resolution of 0.01rad. The specimen is contained in an environmental chamber able to keep the temperature constant during the test, and increase it. The application software supplied is able to perform all the necessary graphic and numerical processing of experimental data. Two composite glass plies 400 x 300 mm were laminated with PVB interlayer (Trosifol BG R20) by Roberglass (Calci, Pisa), with thickness mm and mm respectively. Cylindrical specimens ( button specimens ) with diameter mm were drilled by a grass core bit. Some of them were intended for environmental damage. Particularly, some specimens were subjected to moisture action keeping them suspended over a covered thermostatic bath at the temperature of 50 [4] for 33 days (about 100% R.H.). Cylindrical specimens were glued to the rheometer accessoires, intended to be the load plates, with Vitralit 6128 Panacol-Elosol GmbH, and sinusoidal angular oscillation was produced of mrad (Figure 2). Temperature and frequency of the tests are reported in tab. 1, 2, 3 and 4. 4 ANALYSIS OF DATA 4.1 Correction factor for specimens geometry For every frequency and test temperature, after reaching stationarity of dynamic response, the rheometer returns the values of torque, of phase angle and of the calculated G() and G(). These were calculated according to the procedure reported in par. 2.2, assuming uniform strain distribution and a radial linear stress distribution according to Coulomb theory of torsion of a cylindrical elastic solid, and assuming for the cylinder the height of the specimen and the base equal to the bottom load plate. The composite glass specimens were not homogeneous and the strain can be considered to be concentrated in the PVB interlayer only; for this reason, the values of G() and G(), computed by the software, were adapted to the real diameter of the button and to the effective width of interlayer by a geometric factor. 4.2 Master-curve The corrected values of G() and G() were calculated as a function of angular frequency and of test temperature. After that, the graphs were shifted on the logaritmic axe of G and G according to the parameter T 0 0 /T then the graphs were shifted on the logaritmic axe of frequency as to obtain superposition of adjoining edges, on the graph corresponding to the reference temperature of 30 C. In Figure 3 the master-curves are reported for 0.76 specimens and for 1.52 specimens.

5 1.52 interlayer Temperature ( C) Frequency (Hz) Table 1: Temperatures and frequencies for PVB specimens Moisture interlayer (U7B) Temperature Frequency ( C) (Hz) Table 2: Temperatures and frequencies for PVB subjected to moisture interlayer Temperature ( C) Frequency (Hz) Table 3: Temperatures and frequencies for PVB Moisture interlayer (U6A) Temperature Frequency ( C) (Hz) Table 1: Temperatures and frequencies for PVB subjected to moisture. Figure 2: A specimen in the test machine. Figure 3: Master-curves for 0.76 and 1.52 specimens.

6 4.3 WLF equation In order to determine the coefficients of WLF equation (eq.4) for the reference temperature of 30 C, the values of -(T-T 0 )/log a T, employed to obtain the master curves reported in Figure 3, were represented as a function of the corresponding (T-T 0 ), as reported in Figure 4. The slope and the constant term of the regression line enabled to determine the c 1 0 and c 2 0 constants of eq. 4. In Figure 4 the linear fit of the points and the values of a T are reported for 0.76 and 1.52 experiments, as a function of (T-T 0 ). The values of WLF equation coefficients determined in this way for the reference temperature T 0 = 30, are c 1 0 = and c 2 0 = for 0.76 mm interlayer and c 1 0 = and c 2 0 = for 1.52 mm interlayer. (a) (b) Figure 4: Evaluation of WLF coefficients via linear fit of experimental shift values (a) and comparison of experimental points with WLF equation (b). 4.4 Damaged specimens Two of the specimens subjected to moisture action (U6A and U7B) were intended to dynamic tests according to the procedure applied to the other specimens. Specimen U6A is characterized by 0.76 mm polymer interlayer and U7B is characterized by 1.52 mm polymer interlayer. After both specimens were subjected to the action of moisture (being suspended over a covered thermostatic bath at the temperature of 50 C for 33 days) they were submitted to a visual observation. The polymer interlayer was no more transparent as it was at the beginning of the moisture action, but it was getting opaque from the edge towards the center of the specimens (Figure 5). After the realization of dynamic tests, the master curves of the shear storage modulus and the shear loss modulus at the reference temperatures of 30 were realized and represented in Figure 6 as a comparison. Although the reading of G values on the logaritmic scale is quite difficult, it can be noted that the damaged specimens exhibit a quite higher value of the shear modulus, both on U6A and U7B specimens.

7 Figure 5: Specimen U6A before moisture action (above) and after moisture action (below). Figure 6: Comparison between untreated specimens and specimens subjected to moisture action (U6A and U6B).

8 5 REMARKS AND CONCLUSIONS Dynamic tests are a useful tool able to determine the visco termo elastic properties of interlayer. The use of reduced variables permits to extend the information obtained through a definite range of time scale and temperature, as to cover a wide range of time scale at a reference temperature and, vice versa, to have at disposal elastic properties at temperature different from the experimental one. The small button specimen, moreover, can be extracted as a sample of large laminated glass sheets devoted to the architectural applications, or it can be estracted from a laminated glass sheet subjected to the same lamination procedure. In so doing, the mechanical tests are able to ensure, as well, a control on the lamination procedure. Particular attention must be devoted to the evaluation of the distance of load plates (gap); in fact, it has been noted that the authomatic evaluation of this measure is affected by observational error that can produce, after the geometric correction of G values, up to 10% uncertanty. The procedure proposed in pren vwxyz Glass in building Laminted glass and laminated safety glass Determination of interlayer shear transfer coefficient [5], to which pren refers, requires the preparation of prismatic interlayer test specimens produced under normal manufacturing conditions, but not adhered to glass. Tensile modulus is then determined on such test specimens with various test temperature and at different frequencies ranging from 1 to 400 Hz. In so doing the production of test specimen is more complicated and the specimen is different from the real laminated interlayer. Moreover, further uncertainty is induced in calculating the shear modulus from the tensile modulus; this is usually made assuming a constant value of Poisson coefficient ( = 0.45) and introducing the hypothesis of linear isotropic elasticity. Transient experiments, moreover, are significantly useful to investigate polymer behaviour for engineering application, because the experimental time scales are more suited to structural life time and load duration. Obviously, processing tests results is necessary as to integrate transient and dynamic experiments and to obtain the maximum reliability of data. As for moisture damage, the very few specimens that were analized highlighted an increase in shear modulus of about 70%. Even if the tests are still inadequate, moisture seems to clearly modify both the transparency and the elastic properties of interlayer. These transformations can be due to structural modifications of the polymer and they can produce, as a consequence, variations of the thermal response and of the adhesion properties. References [1] pren Glass in building - Design of glass panes - Part 3: General basis of design, design of glass by calculation for non-fenestration use and design of glass by testing for any use, (2007). [2] UNI EN ISO Plastics - Determination of dynamic mechanical properties, General principles, (2003). [3] Ferry, J.D., Viscoelastic properties of polymers, John Wiley & Sons, New York (1980). [4] UNI EN ISO Glass in building - Laminated glass and laminated safety glass, Test methods for durability, (2000). [5] pren vwxyz Glass in building Laminted glass and laminated safety glass Determination of interlayer shear transfer coefficient (2008)

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer Physics 2015 Matilda Larsson Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer & Materials Chemistry Introduction Two common instruments for dynamic mechanical thermal analysis

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

Delamination in fractured laminated glass

Delamination in fractured laminated glass Delamination in fractured laminated glass Caroline BUTCHART*, Mauro OVEREND a * Department of Engineering, University of Cambridge Trumpington Street, Cambridge, CB2 1PZ, UK cvb25@cam.ac.uk a Department

More information

The elastic behavior of a rubber-like material for composite glass

The elastic behavior of a rubber-like material for composite glass The elastic behavior of a rubber-like material for composite glass Silvia Briccoli Bati 1, Mario Fagone 1, Giovanna Ranocchiai 1 1 Department of Costruzioni, University of Florence, Italy E-mail: silvia.briccolibati@unifi.it

More information

Predeformation and frequency-dependence : Experiment and FE analysis

Predeformation and frequency-dependence : Experiment and FE analysis Predeformation and frequency-dependence : Experiment and FE analysis Nidhal Jridi 1,2,*, Michelle Salvia 2, Adel Hamdi 1, Olivier Bareille 2, Makrem Arfaoui 1, Mohammed Ichchou 2, Jalel Ben Abdallah 1

More information

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany Nadine Feldmann 1, Fabian Bause 1, Bernd Henning 1 1 Measurement Engineering Group, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany feldmann@emt.uni-paderborn.de Abstract The present

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION Dr. Laura Yao, Senior Research Chemist, Scapa North America, Windsor, CT Robert Braiewa, Research Chemist, Scapa North America, Windsor,

More information

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1*

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1* 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1* 1 Composites Group, Dept. of Materials

More information

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX 66 6th RILEM Symposium PTEBM'03, Zurich, 2003 DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX L. Zanzotto, O.J. Vacin and J. Stastna University of Calgary, Canada Abstract: A commercially

More information

Comments on Use of Reference Fluid to Verify DSR

Comments on Use of Reference Fluid to Verify DSR Comments on Use of Reference Fluid to Verify DSR David Anderson Professor Emeritus Penn State FHWA Asphalt Binder Expert Task Group Baton Rouge, LA September 16-17, 2014 Reference fluid how and why? Used

More information

HOT MIX ASPHALT CYCLIC TORQUE TESTS FOR VISCOELASTIC BULK SHEAR BEHAVIOUR

HOT MIX ASPHALT CYCLIC TORQUE TESTS FOR VISCOELASTIC BULK SHEAR BEHAVIOUR 1 1 1 1 1 1 1 1 0 1 0 1 0 HOT MIX ASPHALT CYCLIC TORQUE TESTS FOR VISCOELASTIC BULK SHEAR BEHAVIOUR Petit Christophe 1, Allou Fatima 1, Millien Anne 1, Fakhari Terhani Fateh, Dopeux Jérome 1 ( 1 Laboratoire

More information

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics R. Carbone 1* 1 Dipartimento di Ingegneria dei Materiali e della Produzione sez. Tecnologie

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation

Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation By Jennifer Hay, Nanomechanics, Inc. Abstract This application note teaches the theory and practice of measuring the complex modulus

More information

Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep

Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep Standard Method of Test for Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep AASHTO Designation: TP 101-14 American Association of State Highway and Transportation Officials

More information

Long-term behaviour of GRP pipes

Long-term behaviour of GRP pipes Long-term behaviour of GRP pipes H. Faria ( 1 ), A.Vieira ( 1 ), J. Reis ( 1 ), A. T. Marques ( 2 ), R. M. Guedes ( 2 ), A. J. M. Ferreira ( 2 ) 1 INEGI - Instituto de Engenharia Mecânica e Gestão Industrial,

More information

The mechanical behaviour of poly(vinyl butyral) at different

The mechanical behaviour of poly(vinyl butyral) at different *Manuscript Click here to download Manuscript: jmatsci_paper.tex Click here to view linked References 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 Journal of Materials Science manuscript No. (will be inserted by the

More information

Testing Elastomers and Plastics for Marc Material Models

Testing Elastomers and Plastics for Marc Material Models Testing Elastomers and Plastics for Marc Material Models Presented by: Kurt Miller Axel Products, Inc. axelproducts.com We Measure Structural Properties Stress Strain Time-Temperature Test Combinations

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London

Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London Deformation of Polymers Version 2.1 Boban Tanovic, MATTER David Dunning, University of North London Assumed Pre-knowledge It is assumed that the user is familiar with the terms elasticity, stress, strain,

More information

Experimental Research on the Shear Behavior of Laminated Glass with PVB Film Under Different Temperature

Experimental Research on the Shear Behavior of Laminated Glass with PVB Film Under Different Temperature 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 Experimental Research on the Shear Behavior of Laminated Glass with PVB Film Under Different Temperature Qing

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at  ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 146 151 6th International Building Physics Conference, IBPC 2015 A combined experimental and analytical approach for the

More information

Testing and Analysis

Testing and Analysis Testing and Analysis Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis 2.6 2.4 2.2 2.0 1.8 1.6 1.4 Biaxial Extension Simple Tension Figure 1, A Typical Final Data Set for Input

More information

Improved stress prediction in adhesive bonded optical components

Improved stress prediction in adhesive bonded optical components Improved stress prediction in adhesive bonded optical components J. de Vreugd 1a, M.J.A. te Voert a, J.R. Nijenhuis a, J.A.C.M. Pijnenburg a, E. Tabak a a TNO optomechatronics, Stieltjesweg 1, 2628 CK,

More information

Estimating Fatigue Resistance Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep

Estimating Fatigue Resistance Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep Standard Method of Test for Estimating Fatigue Resistance Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep AASHTO Designation: TP 2b xx (LAST)101-1214 American Association of State

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance All Attendees Are Muted Questions and Answers Please type your questions into your webinar control panel We will read your questions out loud, and

More information

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading Mechanics and Mechanical Engineering Vol. 21, No. 1 (2017) 157 170 c Lodz University of Technology The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials

More information

STRATEGIES FOR RHEOLOGICAL EVALUATION OF PRESSURE SENSITIVE ADHESIVES

STRATEGIES FOR RHEOLOGICAL EVALUATION OF PRESSURE SENSITIVE ADHESIVES STRATEGIES FOR RHEOLOGICAL EVALUATION OF PRESSURE SENSITIVE ADHESIVES Tianhong T. Chen, Sr. Applications Scientist, TA Instruments Waters LLC, 59 Lukens Drive, New Castle, DE 9720 Abstract Pressure sensitive

More information

Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen

Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen F. Khodary Department of Civil Engineering, Institute of traffic and transport, section of road and pavement engineering,

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D

D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D Sujan E. Bin Wadud TA Instruments 9 Lukens Drive, New

More information

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS MTS ADHESIVES PROGRAMME 1996-1999 PERFORMANCE OF ADHESIVE JOINTS Project: PAJ1; Failure Criteria and their Application to Visco-Elastic/Visco-Plastic Materials Report 2 A CRITERION OF TENSILE FAILURE FOR

More information

PART A. CONSTITUTIVE EQUATIONS OF MATERIALS

PART A. CONSTITUTIVE EQUATIONS OF MATERIALS Preface... xix Acknowledgements... xxix PART A. CONSTITUTIVE EQUATIONS OF MATERIALS.... 1 Chapter 1. Elements of Anisotropic Elasticity and Complements on Previsional Calculations... 3 Yvon CHEVALIER 1.1.

More information

Practical 2P11 Mechanical properties of polymers

Practical 2P11 Mechanical properties of polymers Practical 2P11 Mechanical properties of polymers What you should learn from this practical Science This practical will help you to understand two of the most important concepts in applied polymer science:

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

Figure 1. Dimension of PSA in face paper laminate

Figure 1. Dimension of PSA in face paper laminate EVALUATION OF DYNAMIC MECHANICAL PROPERTIES OF PRESSURE SENSITIVE ADHESIVE IN PAPER LANIMATES FOR POSTAGE STAMP APPLICATION: METHOD DEVELOPMENT AND ADHESIVE CHARACTERIZATION Hailing Yang, Graduate Student,

More information

Stress and strain dependence of bituminous materials viscoelastic properties

Stress and strain dependence of bituminous materials viscoelastic properties 1 1 1 1 1 1 1 1 0 1 0 1 0 1 Stress and strain dependence of bituminous materials viscoelastic properties Lucas Babadopulos 1,, Gabriel Orozco 1, Salvatore Mangiafico 1, Cédric Sauzéat 1, Hervé Di Benedetto

More information

The Effect of Aging on Binder Properties of Porous Asphalt Concrete

The Effect of Aging on Binder Properties of Porous Asphalt Concrete The Effect of Aging on Binder Properties of Porous Asphalt Concrete Eyassu T. Hagos Raveling Supervisors: Prof. Dr. Ir. A.A.A. Molenaar Assoc. Prof. Ir. M.F.C. van de Ven Porous Asphalt layer March 27,

More information

MSC Elastomers Seminar Some Things About Elastomers

MSC Elastomers Seminar Some Things About Elastomers MSC Elastomers Seminar Some Things About Elastomers Kurt Miller, Axel Products, Inc. www.axelproducts.com Visit us at: axelproducts.com 2 Your Presenter Kurt Miller Founded Axel Products 1994 Instron Corporation,

More information

Thermal Analysis of Polysaccharides Mechanical Methods

Thermal Analysis of Polysaccharides Mechanical Methods Biopolymer Solutions Thermal Analysis of Polysaccharides Mechanical Methods John Mitchell John.Mitchell@biopolymersolutions.co.uk 1 Topics Covered Introduction to polymer viscoelasticity Examples Thermal

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS

SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS 1 INTRODUCTION TA Instruments Rheology Advantage spectral analysis and interconversion software was developed in collaboration

More information

Lecture #2: Split Hopkinson Bar Systems

Lecture #2: Split Hopkinson Bar Systems Lecture #2: Split Hopkinson Bar Systems by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Uniaxial Compression

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

Lab Exercise #3: Torsion

Lab Exercise #3: Torsion Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

More information

Determination of Activation Energy for Glass Transition of an Epoxy Adhesive Using Dynamic Mechanical Analysis

Determination of Activation Energy for Glass Transition of an Epoxy Adhesive Using Dynamic Mechanical Analysis See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51099575 Determination of Activation Energy for Glass Transition of an Epoxy Adhesive Using

More information

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Coupling of plasticity and damage in glass fibre reinforced polymer composites EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki

More information

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

More information

Material Testing Overview (THERMOPLASTICS)

Material Testing Overview (THERMOPLASTICS) Material Testing Overview (THERMOPLASTICS) Table of Contents Thermal Conductivity... 3 Specific Heat... 4 Transition Temperature and Ejection Temperature... 5 Shear Viscosity... 7 Pressure-Volume-Temperature

More information

Guideline for Rheological Measurements

Guideline for Rheological Measurements Guideline for Rheological Measurements Typical Measurements, Diagrams and Analyses in Rheology www.anton-paar.com General Information: = Measurement = Diagram = Analysis Important Rheological Variables:

More information

Estimation of damping capacity of rubber vibration isolators under harmonic excitation

Estimation of damping capacity of rubber vibration isolators under harmonic excitation Estimation of damping capacity of rubber vibration isolators under harmonic excitation Svetlana Polukoshko Ventspils University College, Engineering Research Institute VSRC, Ventspils, Latvia E-mail: pol.svet@inbox.lv

More information

Mechanics of Viscoelastic Solids

Mechanics of Viscoelastic Solids Mechanics of Viscoelastic Solids Aleksey D. Drozdov Institute for Industrial Mathematics, Beersheba, Israel JOHN WILEY & SONS Chichester New York Weinheim Brisbane Toronto Singapore Contents Preface xi

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids

On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids Morehead Electronic Journal of Applicable Mathematics Issue 1 CHEM-2000-01 Copyright c 2001 On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids G. T. Helleloid University

More information

EFFECT OF SOY PROTEIN AND CARBOHYDRATE RATIO ON THE VISCOELASTIC PROPERTIES OF STYRENE-BUTADIENE COMPOSITES

EFFECT OF SOY PROTEIN AND CARBOHYDRATE RATIO ON THE VISCOELASTIC PROPERTIES OF STYRENE-BUTADIENE COMPOSITES EFFECT OF SOY PROTEIN AND CARBOHYDRATE RATIO ON THE VISCOELASTIC PROPERTIES OF STYRENE-BUTADIENE COMPOSITES Lei Jong Department of Agriculture, National Center for Agricultural Utilization Research 1815

More information

Rheology and Viscoelasticity

Rheology and Viscoelasticity Rheology and Viscoelasticity Key learning outcomes Viscoelasticity, elastic and viscous materials Storage (E ) modulus curve Basic concepts of viscosity and deformation Stress-strain curve Newtonian, dilatant,

More information

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration JongHun Kang 1, Junwoo Bae 2, Seungkeun Jeong 3, SooKeun Park 4 and Hyoung Woo Lee 1 # 1 Department of Mechatronics

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

CIRCUIT RACING, TRACK TEXTURE, TEMPERATURE AND RUBBER FRICTION. Robin Sharp, Patrick Gruber and Ernesto Fina

CIRCUIT RACING, TRACK TEXTURE, TEMPERATURE AND RUBBER FRICTION. Robin Sharp, Patrick Gruber and Ernesto Fina CIRCUIT RACING, TRACK TEXTURE, TEMPERATURE AND RUBBER FRICTION Robin Sharp, Patrick Gruber and Ernesto Fina Outline General observations Grosch's experiments Interpretation of Grosch s results Rubber properties

More information

HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS

HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 746 HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS Luis DORFMANN, Maria Gabriella CASTELLANO 2, Stefan L. BURTSCHER,

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Notes about this lecture:

Notes about this lecture: Notes about this lecture: There is a lot of stuff on the following slides!!! Make sure you can explain what the following mean: Viscous material and elastic material; viscoelastic Flow curve Newtonian

More information

The 2S2P1D: An Excellent Linear Viscoelastic Model

The 2S2P1D: An Excellent Linear Viscoelastic Model The 2S2P1D: An Excellent Linear Viscoelastic Model Md. Yusoff 1, N. I., Monieur, D. 2, Airey, G. D. 1 Abstract An experimental campaign has been carried out on five different unaged and five aged penetration

More information

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology Application All domains dealing with soft materials (emulsions, suspensions, gels, foams, polymers, etc ) Objective

More information

::: Application Report

::: Application Report Interfacial Shear Rheology of Coffee Samples Explore the secrets of a perfect crema! This application report presents typical measurements on the film formation and on the interfacial rheological properties

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

TRANSIENT RESPONSE OF SANDWICH AND LAMINATED COMPOSITES WITH DAMPING UNDER IMPULSE LOADING

TRANSIENT RESPONSE OF SANDWICH AND LAMINATED COMPOSITES WITH DAMPING UNDER IMPULSE LOADING TRANSIENT RESPONSE OF SANDWICH AND LAMINATED COMPOSITES WITH DAMPING UNDER IMPULSE LOADING Evgeny Barkanov, Andris Chate and Rolands Rikards Institute of Computer Analysis of Structures, Riga Technical

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Physica MCR. The modular rheometer series. ::: Intelligence in Rheometry

Physica MCR. The modular rheometer series. ::: Intelligence in Rheometry Physica MCR The modular rheometer series ::: Intelligence in Rheometry Physica MCR Modular Compact Rheometer The idea Measure, what is measurable. Make measurable what is not. Galileo Galilei s idea is

More information

MDR 3000 Professional Professional Moving Die Rheometer. Testing instruments. Laboratory Equipment. Software systems. Service.

MDR 3000 Professional Professional Moving Die Rheometer. Testing instruments. Laboratory Equipment. Software systems. Service. Testing instruments Laboratory Equipment Software systems Service Consulting Contents MDR 3000 Professional 3 Overview 4 System description 5 Test chamber system 6 Test programs 8 Determinable measurements

More information

Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties

Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties A.Q. Bhatti National University of Sciences and Technology (NUST),

More information

Characterization of the structure at rest in foods (Example: Ketchup)

Characterization of the structure at rest in foods (Example: Ketchup) Characteriszation of the structure at rest / page 1 Characterization of the structure at rest in foods (Example: Ketchup) by Thomas Mezger, Physica Messtechnik GmbH, Ostfildern (Stuttgart), Germany Overview

More information

RELIABILITY OF RHEOMETRIC MEASUREMENTS IN BITUMENS BY MEANS OF DYNAMIC SHEAR RHEOMETERS

RELIABILITY OF RHEOMETRIC MEASUREMENTS IN BITUMENS BY MEANS OF DYNAMIC SHEAR RHEOMETERS RELIABILITY OF RHEOMETRIC MEASUREMENTS IN BITUMENS BY MEANS OF DYNAMIC SHEAR RHEOMETERS Antonio MONTEPARA, University of Parma, Parma, Italy Felice GIULIANI, University of Parma, Parma, Italy 1. INTRODUCTION

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

2 Experiment of GFRP bolt

2 Experiment of GFRP bolt 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE EVALUATION OF BOLT MADE OF WOVEN FABRIC FRP Takeshi INOUE*, Hiroaki NAKAI**, Tetsusei KURASHIKI**, Masaru ZAKO**, Yuji KOMETANI*** *Graduate

More information

Experimental investigation of the local bridging behaviour of the interlayer in broken laminated glass

Experimental investigation of the local bridging behaviour of the interlayer in broken laminated glass Experimental investigation of the local bridging behaviour of the interlayer in broken laminated glass Didier DELINCÉ Assistant Dieter CALLEWAERT PhD. Researcher Delphine SONCK Civil Engineer Rudy VAN

More information

What we should know about mechanics of materials

What we should know about mechanics of materials What we should know about mechanics of materials 0 John Maloney Van Vliet Group / Laboratory for Material Chemomechanics Department of Materials Science and Engineering Massachusetts Institute of Technology

More information

Earthquake and Volcano Deformation

Earthquake and Volcano Deformation Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Measuring the anisotropy of the cerebrum in the linear regime

Measuring the anisotropy of the cerebrum in the linear regime Measuring the anisotropy of the cerebrum in the linear regime L. Tang MT 06.26 Coaches: Dr.Ir. J.A.W. van Dommelen Ing. M. Hrapko June 20, 2006 2 Abstract In this report the anisotropy is measured of the

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

In-Plane Shear Characterisation of Uni-Directionally Reinforced Thermoplastic Melts

In-Plane Shear Characterisation of Uni-Directionally Reinforced Thermoplastic Melts In-Plane Shear Characterisation of Uni-Directionally Reinforced Thermoplastic Melts S.P. Haanappel, R. ten Thije, U. Sachs, A.D. Rietman and R. Akkerman, Thermoplastic Composite Research Centre, University

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

Modelling Rubber Bushings Using the Parallel Rheological Framework

Modelling Rubber Bushings Using the Parallel Rheological Framework Modelling Rubber Bushings Using the Parallel Rheological Framework Javier Rodríguez 1, Francisco Riera 1, and Jon Plaza 2 1 Principia, Spain; 2 Cikatek, Spain Abstract: Bushings are anti vibration components

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

The Rheology Handbook

The Rheology Handbook Thomas G. Mezger The Rheology Handbook For users of rotational and oscillatory rheometers 2nd revised edition 10 Contents Contents 1 Introduction 16 1.1 Rheology, rheometry and viscoelasticity 16 1.2 Deformation

More information

VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS

VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS Mechanical Engineering Department, Indian Institute of Technology, New Delhi 110 016, India (Received 22 January 1992,

More information

Fundamentals of Polymer Rheology. Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC

Fundamentals of Polymer Rheology. Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC Fundamentals of Polymer Rheology Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC Rheology: An Introduction Rheology: The study of stress-deformation relationships =Viscosity =Modulus

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information