TP 1: Euler s Algorithm-Air Resistance-Introduction to Fortran

Size: px
Start display at page:

Download "TP 1: Euler s Algorithm-Air Resistance-Introduction to Fortran"

Transcription

1 TP 1: Euler s Algorithm-Air Resistance-Introduction to Fortran December 10, References N.J.Giordano, Computational Physics. R.H.Landau, M.J.Paez, C.C.Bordeianu, Computational Physics. H.Gould, J.Tobochnick, D.Christian, An Introduction To Computer Simulation Methods. R.Fitzpatrick, Computational Physics. 2 Introduction Computational physics is a subfield of computational science/scientific computing. In computational physics we combine elements from physics (especially theoretical), elements from mathematics (in particular applied mathematics such as numerical analysis) and elements from computer science (programming) for the purpose of solving a physics problem. In physics there are traditionally two approaches. 1) The experimental approach and 2) The theoretical approach. Nowadays we also consider as a third approach in physics namely: The computational approach. It can even be argued that the computational approach is independent from the first two approaches and it is not just a bridge between them. The most important use of computers in physics is simulation. Simulations are suited for nonlinear problems which can not generally solved by analytical methods. The starting point of a simulation is an idealized model of a physical system of interest. We want to check whether or not the behaviour of this model is consistent with observation. We specify an algorithm for the implementation of the model on a computer. The execution of this implementation is a simulation. Simulations are therefore virtual experiments. The comparison between simulations and laboratory experiments goes as follows Laboratory experiment sample physical apparatus calibration measurement data analysis Simulation model computer program (the code) testing of code computation data analysis A crucial tool in computational physics is programming languages. In simulations as used by the majority of research physicists codes are written in a high-level compiled language such as Fortran and C/C++. In such simulations we also use calls to routine libraries such as LAPACK. In this course we follow a different path by writing all our codes in a high-level compiled language and not call any libraries. 1

2 The use of mathematical software packages such as MAPLE, MATHEMATICA and MATLAB is only suited for relatively small calculations. These packages are interpreted languages and thus the code they produce run generally far too slowly compared to compiled languages. As our programming language we will use Fortran 77 under the Linux operating system. We adopt the ubuntu distribution of Linux. We will use the Fortran compilers f77 and gfortran. As an editor we will use emacs and for graphics we will use gnuplot. 3 The Physics-Air Resistance We consider an athlete riding a bicycle moving on a flat terrain. The goal is to determine the velocity. Newton s second law is given by m dv = F. (1) F is the force exerted by the athlete on the bicycle. It is clearly very difficult to write down a precise expression for F. Formulating the problem in terms of the power generated by the athlete will avoid the use of an explicit formula for F. Multiplying the above equation by v we obtain de = P. (2) E is the kinetic energy E = 1 2 mv2 and P is the power P = Fv. Experimentaly we find that the output of well trained athletes is around P = 400 watts over periods of 1h. The above equation can also be rewritten as For P constant we get the solution dv 2 = 2P m. (3) v 2 = 2P m t + v2 0. (4) We remark the unphysical effect that v as t. This is due to the absence of the effect of friction and in particular air resistance. The most important form of friction is air resistance. The force due to air resistance (the drag force) is F drag = B 1 v B 2 v 2. (5) At small velocities the first term dominates whereas at large velocities it is the second term that dominates. For very small velocities the dependence on v given by F drag = B 1 v is known as Stockes law. For reasonable velocities the drag force is dominated by the second term, i.e it is given by F drag = B 2 v 2 for most objects. The coefficient B 2 can be calculated as follows. As the bicycle-rider combination moves with velocity v it pushes in a time a mass of air given by dm air = ρav where ρ is the air density and A is the frontal cross section. The corresponding kinetic energy is de air = dm air v 2 /2. This is equal to the work done by the drag force,i.e F drag v = de air. From this we get The drag coefficient is C = 1 2. The drag force becomes B 2 = CρA. (6) F drag = CρAv 2. (7) Taking into account the force due to air resistance we find that Newton s law becomes Equivalently m dv = F + F drag. (8) dv = P mv CρAv2 m. (9) 2

3 4 Another Example-Radioactive Decay In a spontaneous radioactive decay a particle with no external influence will decay into other particles. A typical example is the nuclear isotope uranium 235. The exact moment of decay of any one particle is random. This means that the number dn(t) = N(t) N(t + ) of nuclei which will decay during a time inetrval must be proportional to and to the number N(t) of particles present at time t. In other words the probability of decay per unit time given by ( dn(t)/n(t))/ is a constant which we denote 1/. (The minus sign is due to the fact that dn is negative since the number of particles decreases with time). We write dn(t) The solution of this first order differential equation is = N(t). (10) N(t) = N 0 exp( t/). (11) The number N 0 is the number of particles at time t = 0. The time is called the mean lifetime. It is the average time for decay. For the uranium 235 the mean lifetime is around 10 9 years. 5 Numerical Analysis-Euler s Algorithm The goal is to obtain an approximate numerical solution to the above problem which in this particular case can be compared to an exact solution given by the exponential decay law (11). We start from Taylor s expansion We get in the limit t 0 N(t + t) = N(t) + t dn ( t)2 d2 N +... (12) 2 dn = Lim N(t + t) N(t) t 0. (13) t We take t small but non zero. In this case we obtain the approximation Equivalently By using (10) we get dn + t) N(t) N(t. (14) t N(t + t) N(t) + t dn. (15) N(t + t) N(t) t N(t). (16) We will start from the number of particles at time t = 0 given by N(0) = N 0 N(1). We substitute t = 0 in (16) to obtain N( t) = N(2) as a function of N(1). Next the value N(2) can be used in equation (16) to get N(2 t) = N(3), etc. We are led to the time discretization t t(i) = (i 1) t, i = 1,..., L + 1. (17) The integer L determine the total time interval T = L t. The numerical solution (16) can be rewritten as (with N(t) = N(i 1)) This is Euler s algorithm. N(i 1) N(i) = N(i 1) t, i = 2,..., L + 1. (18) 3

4 6 Fortran Code The program, return and end statements: Any fortran program will begin with a program statement and will conclude with an end statement. The program statement allows us to give a name to the program. The end statement may be preceded by a return statement. This looks like program radioactivity c here is the code return end (19) We have chosen the name radioactivity for our program. The c in the second line indicates that the sentence here is the code is only a comment and not a part of the code. Variables,Declaration and Types: After the program statement come the declaration statements. We state the variables and their types which are used in the program. In Fortran we have the integer type for integer variables and the double precision type for real variables. In our case the variables N(i), t(i),, t, N 0 are real numbers while the variables i (which is the index of N(i) and t(i)) and L are integer numbers. Array: An array A of dimension K is an ordered list of K variables of a given type called the elements of the array and denoted A(1), A(2),...,A(K). In our example N(i) and t(i) are real arrays of dimension L + 1. In Fortran the default lower limit of the range of an array is 1 and not 0. In Fortran we declare that N(i) and t(i) are real for all i = 1,..., L + 1 by writing N(1 : L + 1) and t(1 : L + 1). The parameter statement: Since an array is declared at the begining of the program it must have a fixed size. In other words the upper limit must be a constant and not a variable. In Fortran a constant is declared in parameter statement. In our case the upper limit is L+1 and hence L must be declared in parameter statement. By putting all declarations together we get program radioactivity integer i, L parameter (L = 100) doubleprecision N(1 : L + 1), t(1 : L + 1), N 0, t, c here is the code return end (20) Input: The input parameters of the problems are N 0, and t. The do loop: For the radioactivity problem the main part of the corresponding code consists of equation (18). We start with the known quantities N(1) = N 0 at t(1) = 0 and generate via the successive use of (18) and (17) N(i) and t(i) for all i > 1. This will be coded using a do loop. It begins with a do statement and ends with an enddo statement. We may also indicate a step size. 4

5 The write statement: The output of the computation can be saved to a file using a write statement. In our case the output is the number of particles N(i) and the time t(i). Then the write statement will read write(10, )t(i), N(i). The data will be saved to a file called fort.10. The do loop with a write statement is done as follows N(1) = N 0 t(1) = 0 do i = 2, L + 1, 1 N(i) = N(i 1) ( t N(i 1))/ t(i) = (i 1) t write(10, )t(i), N(i) enddo (21) 5

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations In this lecture, we will look at different options for coding simple differential equations. Start by considering bicycle riding as an example. Why does a bicycle move forward?

More information

SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES

SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES by Mark H. Holmes Yuklun Au J. W. Stayman Department of Mathematical Sciences Rensselaer Polytechnic Institute, Troy, NY, 12180 Abstract

More information

Homework #5 Solution Due Thursday, December 01, 2011

Homework #5 Solution Due Thursday, December 01, 2011 12.010 Homework #5 Solution Due Thursday, December 01, 2011 Question (1): (25- points) (a) Write a Matlab M- file which generates a table of error function (erf) and its derivatives for real arguments

More information

Module III: Partial differential equations and optimization

Module III: Partial differential equations and optimization Module III: Partial differential equations and optimization Martin Berggren Department of Information Technology Uppsala University Optimization for differential equations Content Martin Berggren (UU)

More information

Vectors. Scalars & vectors Adding displacement vectors. What about adding other vectors - Vector equality Order does not matter: i resultant A B

Vectors. Scalars & vectors Adding displacement vectors. What about adding other vectors - Vector equality Order does not matter: i resultant A B Vectors Scalars & vectors Adding displacement vectors i resultant f What about adding other vectors - Vector equality Order does not matter: B C i A A f C B A B Vector addition I Graphical vector addition

More information

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 You can work this exercise in either matlab or mathematica. Your choice. A simple harmonic oscillator is constructed from a mass m and a spring

More information

Chapter 6: Force & Motion II. Lecture 13 9/23/09

Chapter 6: Force & Motion II. Lecture 13 9/23/09 Chapter 6: Force & Motion II Lecture 13 9/23/09 The Drag Force & The Centripetal Force Goals for this Lecture: Describe the drag force between two objects. Relate the rag force to the terminal speed of

More information

Binding Energy and Mass defect

Binding Energy and Mass defect Binding Energy and Mass defect Particle Relative Electric Charge Relative Mass Mass (kg) Charge (C) (u) Electron -1-1.60 x 10-19 5.485779 x 10-4 9.109390 x 10-31 Proton +1 +1.60 x 10-19 1.007276 1.672623

More information

Padé Laplace analysis of signal averaged voltage decays obtained from a simple circuit

Padé Laplace analysis of signal averaged voltage decays obtained from a simple circuit Padé Laplace analysis of signal averaged voltage decays obtained from a simple circuit Edward H. Hellen Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, North

More information

Radioactivity. Radioactivity

Radioactivity. Radioactivity The Law of Radioactive Decay. 72 The law of radioactive decay. It turns out that the probability per unit time for any radioactive nucleus to decay is a constant, called the decay constant, lambda, ".

More information

13.7 Power Applied by a Constant Force

13.7 Power Applied by a Constant Force 13.7 Power Applied by a Constant Force Suppose that an applied force F a acts on a body during a time interval Δt, and the displacement of the point of application of the force is in the x -direction by

More information

Boris Mantisi. Contents. Context 2. How to install APoGe 3. How APoGe works 4. Input File 5. Crystal File 8. How to use APoGe 10

Boris Mantisi. Contents. Context 2. How to install APoGe 3. How APoGe works 4. Input File 5. Crystal File 8. How to use APoGe 10 Boris Mantisi Contents Context 2 How to install APoGe 3 How APoGe works 4 Input File 5 Crystal File 8 How to use APoGe 10 Context Polycrystalline structure plays an important role in the macroscopic properties

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (25 points) A man bails out of an airplane at the altitute of 12,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s 2, taking

More information

Octave. Tutorial. Daniel Lamprecht. March 26, Graz University of Technology. Slides based on previous work by Ingo Holzmann

Octave. Tutorial. Daniel Lamprecht. March 26, Graz University of Technology. Slides based on previous work by Ingo Holzmann Tutorial Graz University of Technology March 26, 2012 Slides based on previous work by Ingo Holzmann Introduction What is? GNU is a high-level interactive language for numerical computations mostly compatible

More information

CSE 250a. Assignment Noisy-OR model. Out: Tue Oct 26 Due: Tue Nov 2

CSE 250a. Assignment Noisy-OR model. Out: Tue Oct 26 Due: Tue Nov 2 CSE 250a. Assignment 4 Out: Tue Oct 26 Due: Tue Nov 2 4.1 Noisy-OR model X 1 X 2 X 3... X d Y For the belief network of binary random variables shown above, consider the noisy-or conditional probability

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

COMS 6100 Class Notes

COMS 6100 Class Notes COMS 6100 Class Notes Daniel Solus September 20, 2016 1 General Remarks The Lecture notes submitted by the class have been very good. Integer division seemed to be a common oversight when working the Fortran

More information

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom.

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom. Chemistry Terms atomic number The atomic number of an element is the number of protons in the nucleus of each atom. chemical reaction A process in which atoms and molecules interact, resulting in the alteration

More information

Numerical differentiation

Numerical differentiation Chapter 3 Numerical differentiation 3.1 Introduction Numerical integration and differentiation are some of the most frequently needed methods in computational physics. Quite often we are confronted with

More information

An Introduction to Xcos

An Introduction to Xcos A. B. Raju Ph.D Professor and Head, Electrical and Electronics Engineering Department, B. V. B. College of Engineering and Technology, HUBLI-580 031, KARNATAKA abraju@bvb.edu 28 th September 2010 Outline

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (35 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s

More information

CGWAS 2013: Simulating Stellar Collapse

CGWAS 2013: Simulating Stellar Collapse CGWAS 2013: Simulating Stellar Collapse C. D. Ott July 22, 2013 1 Introduction In this exercise, we will be using the code GR1D by O Connor & Ott (2010) [1] to simulate stellar collapse to a neutron star

More information

PHYSICS 210 SOLUTION OF THE NONLINEAR PENDULUM EQUATION USING FDAS

PHYSICS 210 SOLUTION OF THE NONLINEAR PENDULUM EQUATION USING FDAS PHYSICS 210 SOLUTION OF THE NONLINEAR PENDULUM EQUATION USING FDAS 1. PHYSICAL & MATHEMATICAL FORMULATION O θ L r T m W 1 1.1 Derivation of the equation of motion O Consider idealized pendulum: Mass of

More information

CHAPTER 3. Mathematical Models and Numerical Methods Involving First-Order Equations

CHAPTER 3. Mathematical Models and Numerical Methods Involving First-Order Equations CHAPTER 3 Mathematical Models and Numerical Methods Involving First-Order Equations 2. Compartmental Analysis The asic one-compartment system consists of a function x(t) that represents the amount of a

More information

Physics 131- Fundamentals of Physics for Biologists I

Physics 131- Fundamentals of Physics for Biologists I Physics 131- Fundamentals of Physics for Biologists I Professor: Wolfgang Losert 11/6/01 wlosert@umd.edu Metabolism A biological example of energy transfer http://www.youtube.com/watch?v=1kgdxdlznji&feature=related

More information

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect

More information

cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO

cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO ROOTS OF EQUATIONS PT2.1 MOTIVATION Years ago, you learned to use the quadratic formula x = b ± b 2 4ac 2a to solve f(x) = ax 2 + bx + c = 0 (PT2.1) (PT2.2)

More information

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Problem Set 4 Momentum and Continuous Mass Flow Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall 2012 Problem Set 4 Momentum and Continuous Mass Flow Solutions Problem 1: a) Explain why the total force on a system of particles

More information

P.M. THURSDAY, 15 January hour

P.M. THURSDAY, 15 January hour Surname Centre Number Candidate Number Other Names 0 GCSE 4473/02 W15-4473-02 ADDITIONAL SCIENCE/PHYSICS PHYSICS 2 HIGHER TIER P.M. THURSDAY, 15 January 2015 1 hour For s use Question Maximum Mark 1. 15

More information

Excitation Optimization of a Standard LRC Circuit with Impulsive Forces Selected via Simulated Annealing

Excitation Optimization of a Standard LRC Circuit with Impulsive Forces Selected via Simulated Annealing Hamline University DigitalCommons@Hamline Departmental Honors Projects College of Liberal Arts Spring 2013 Excitation Optimization of a Standard LRC Circuit with Impulsive Forces Selected via Simulated

More information

First-Order Differential Equations

First-Order Differential Equations CHAPTER 1 First-Order Differential Equations 1. Diff Eqns and Math Models Know what it means for a function to be a solution to a differential equation. In order to figure out if y = y(x) is a solution

More information

PH 120 Project # 2: Pendulum and chaos

PH 120 Project # 2: Pendulum and chaos PH 120 Project # 2: Pendulum and chaos Due: Friday, January 16, 2004 In PH109, you studied a simple pendulum, which is an effectively massless rod of length l that is fixed at one end with a small mass

More information

100 Physics Facts. 1. The standard international unit (SI unit) for mass (m) is. kg (kilograms) s (seconds)

100 Physics Facts. 1. The standard international unit (SI unit) for mass (m) is. kg (kilograms) s (seconds) 100 Physics Facts 1. The standard international unit (SI unit) for mass (m) is. kg (kilograms) 2. The standard international unit (SI unit) for time (t) is. s (seconds) 3. The standard international unit

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Lecture 2: Computing functions of dense matrices

Lecture 2: Computing functions of dense matrices Lecture 2: Computing functions of dense matrices Paola Boito and Federico Poloni Università di Pisa Pisa - Hokkaido - Roma2 Summer School Pisa, August 27 - September 8, 2018 Introduction In this lecture

More information

9.1 Solving Differential Equations

9.1 Solving Differential Equations 9.1 Solving Differential Equations What is a differential equation? Real-world examples: The order of a differential equation is the order of the that occurs in the equation. A differential equation is

More information

FORCES. Force. Combining Forces

FORCES. Force. Combining Forces FORCES Force A force is a push or pull upon an object resulting from the object's interaction with another object. The unit of force is the newton (N) 1 newton is the force required to accelerate a mass

More information

A Taylor series solution of the reactor point kinetics equations

A Taylor series solution of the reactor point kinetics equations 1 A Taylor series solution of the reactor point kinetics equations David McMahon and Adam Pierson Department of Nuclear Safety Analysis,Sandia National Laboratories, Albuquerque, NM 87185-1141 E-mail address:

More information

Introduction to model potential Molecular Dynamics A3hourcourseatICTP

Introduction to model potential Molecular Dynamics A3hourcourseatICTP Introduction to model potential Molecular Dynamics A3hourcourseatICTP Alessandro Mattoni 1 1 Istituto Officina dei Materiali CNR-IOM Unità di Cagliari SLACS ICTP School on numerical methods for energy,

More information

Energy, Kinetic Energy, Work, Dot Product, and Power. 8.01t Oct 13, 2004

Energy, Kinetic Energy, Work, Dot Product, and Power. 8.01t Oct 13, 2004 Energy, Kinetic Energy, Work, Dot Product, and Power 8.01t Oct 13, 2004 Energy Transformations Falling water releases stored gravitational potential energy turning into a kinetic energy of motion. Human

More information

Reactor Operation Without Feedback Effects

Reactor Operation Without Feedback Effects 22.05 Reactor Physics - Part Twenty-Six Reactor Operation Without Feedback Effects 1. Reference Material: See pp. 363-368 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia of Electrical

More information

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015 Forces Newton s Three Laws of Motion Types of Forces Weight Friction Terminal Velocity Periodic Motion Forces Defined as a push or a pull Types of Forces 1) Gravitational - attractive force that exists

More information

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

Topics in Nuclear Astrophysics II. Stellar Reaction Rates Topics in Nuclear strophysics II Stellar Reaction Rates definition of a reaction rate Gamow window lifetimes of isotopes at stellar conditions nuclear energy production rate introduction to network simulations

More information

CHAPTER 1 INTRODUCTION TO NUMERICAL METHOD

CHAPTER 1 INTRODUCTION TO NUMERICAL METHOD CHAPTER 1 INTRODUCTION TO NUMERICAL METHOD Presenter: Dr. Zalilah Sharer 2018 School of Chemical and Energy Engineering Universiti Teknologi Malaysia 16 September 2018 Chemical Engineering, Computer &

More information

MATHCAD SOLUTIONS TO THE CHEMICAL ENGINEERING PROBLEM SET

MATHCAD SOLUTIONS TO THE CHEMICAL ENGINEERING PROBLEM SET MATHCA SOLUTIONS TO THE CHEMICAL ENGINEERING PROBLEM SET Mathematical Software Session John J. Hwalek, epartment of Chemical Engineering University of Maine, Orono, Me 4469-5737 (hwalek@maine.maine.edu)

More information

N1 Newton s Laws and N2 - Vector Calculus. General Physics Volume N 1

N1 Newton s Laws and N2 - Vector Calculus. General Physics Volume N 1 N1 Newton s Laws and N2 - Vector Calculus General Physics Volume N 1 Newton s First Law Total momentum of an isolated system is conserved. Mv CM = p r 1 + p r 2 +...+ p r N = p r tot In the absence of

More information

Alpha Decay. 1. Introduction. 2. Constants, Commands, and Functions. 2.1 Constants:

Alpha Decay. 1. Introduction. 2. Constants, Commands, and Functions. 2.1 Constants: 1. Introduction Alpha Decay One of the earliest and most convincing verifications of the validity of quantum mechanics was the resolution of the paradox of alpha decay observed in heavy nuclei. Gamow,

More information

Solution. Your sketch should show both x and y axes marked from 5 to 5 and circles of radius 1, 3, and 5 centered at the origin.

Solution. Your sketch should show both x and y axes marked from 5 to 5 and circles of radius 1, 3, and 5 centered at the origin. Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 208, Professor David Levermore () (a) Sketch the graph that would be produced by the following Matlab command. fplot(@(t) 2/t,

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

LineShapeKin NMR Line Shape Analysis Software for Studies of Protein-Ligand Interaction Kinetics

LineShapeKin NMR Line Shape Analysis Software for Studies of Protein-Ligand Interaction Kinetics LineShapeKin NMR Line Shape Analysis Software for Studies of Protein-Ligand Interaction Kinetics http://lineshapekin.net Spectral intensity Evgenii L. Kovrigin Department of Biochemistry, Medical College

More information

Spectral energy distribution fitting with MagPhys package

Spectral energy distribution fitting with MagPhys package Spectral energy distribution fitting with MagPhys package Nikola Baran 22 September 2015 Exercise Description The goal of this exercise is to introduce the student to one of the important techniques used

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

Matthew S. Norton PHY 112 Lab Report CL-4 Damped Oscillator: Feynman-Newton Method for Solving First-Order Differential Equations March 2, 2006

Matthew S. Norton PHY 112 Lab Report CL-4 Damped Oscillator: Feynman-Newton Method for Solving First-Order Differential Equations March 2, 2006 Matthew S. Norton PHY 112 Lab Report CL-4 Damped Oscillator: Feynman-Newton Method for Solving First-Order Differential Equations March 2, 2006 Norton 0 Norton 1 Abstract In this lab, I used the Feynman-Newton

More information

THE MAXIMUM VELOCITY OF A FALLING BODY

THE MAXIMUM VELOCITY OF A FALLING BODY IJAMES Vol. 9, No. 1, January-June 015, Pp. 1-31 Serials Publications New Delhi (India) THE MAXIMUM VELOCITY OF A FALLING BODY M. Rahman and D. Bhatta ABSTRACT: This paper is primarily concerned with a

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

Physics 750: Exercise 2 Tuesday, August 29, 2017

Physics 750: Exercise 2 Tuesday, August 29, 2017 Physics 750: Exercise 2 Tuesday, August 29, 207 Use the curl command to download from the class website everything you ll need for this exercise $ WEBPATH=http://wwwphyolemissedu/~kbeach/ $ curl $WEBPATH/courses/fall207/phys750/src/exercise2tgz

More information

Simulink Modeling Tutorial

Simulink Modeling Tutorial Simulink Modeling Tutorial Train system Free body diagram and Newton's law Model Construction Running the Model Obtaining MATLAB Model In Simulink, it is very straightforward to represent a physical system

More information

Physics 584 Computational Methods

Physics 584 Computational Methods Physics 584 Computational Methods Introduction to Matlab and Numerical Solutions to Ordinary Differential Equations Ryan Ogliore April 18 th, 2016 Lecture Outline Introduction to Matlab Numerical Solutions

More information

Supplement Nuclear Chemistry. 1. What is the missing particle in the reaction below that results in the formation of 14 C in the atmosphere?

Supplement Nuclear Chemistry. 1. What is the missing particle in the reaction below that results in the formation of 14 C in the atmosphere? Supplement Nuclear Chemistry Additional Practice Problems. What is the missing particle in the reaction below that results in the formation of 4 C in the atmosphere? 4 N +? C + p (a) α-particle (b) electron

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A, B, & C Final Exam Formulæ & Constants Spring 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all

More information

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics Matter, Models and Density What is a typical size of an atom? Choose from the following. 10 15 m 10 12 m 10 10 m Matter, Models and Density The size of an atom is of the order of 10 10 m. 1 1 Temperature

More information

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work falls into two categories: Work falls into two categories: work done against

More information

Foundation Year Programme

Foundation Year Programme Foundation Year Programme Entrance Tests PHYSICS SPECIFICATION Standard ATS sample material 2 3 Physics 1. Electricity 1.1 Electrostatics: a. charging of insulators by friction b. object gaining electrons

More information

Experiment 6. Rotational Motion

Experiment 6. Rotational Motion Experiment 6 Rotational Motion Goals 1. To understand the rotational motion o a rigid body. 2. To study dierent types o rictional losses in a rotating system that lead to decay. 3. To explore the use o

More information

ME 320L/354L Laboratory 3

ME 320L/354L Laboratory 3 ME 320L/354L Laboratory 3 Verification of numerical solution for transient conduction Introduction As we did last time around, we put on Fourier s hat, and his shoes for good measure, and pretend that

More information

PHYSICS 149: Lecture 7

PHYSICS 149: Lecture 7 PHYSICS 149: Lecture 7 Chapter 2 28Tension 2.8 2.9 Fundamental Forces Chapter 3 3.1 Position and Displacement Lecture 7 Purdue University, Physics 149 1 ILQ 1 Which statement about frictional forces is

More information

Technical aspects of road time trialing

Technical aspects of road time trialing Technical aspects of road time trialing Acknowledgements Andrew Coggan,, Ph.D. Kraig Willett, biketechreview.com cyclingnews.com North Chattanooga Cycle Club Excel Sports Cervélo HED Kestrel Litespeed

More information

Professor: Arpita Upadhyaya Physics 131

Professor: Arpita Upadhyaya Physics 131 Physics 131- Fundamentals of Physics for Biologists I Professor: Arpita Upadhyaya Energy Chemical bonding Intermolecular Interactions 1 Physics 131 Quiz 11 60 50 Q 1.1 11 40 30 20 10 0 A B C D 2 18 Q 1.2

More information

Recap I Lecture 41 Matthias Liepe, 2012

Recap I Lecture 41 Matthias Liepe, 2012 Recap I Lecture 41 Matthias Liepe, 01 Recap II Nuclear Physics The nucleus Radioactive decay Fission Fusion Particle Physics: What is the Higgs? Today: Nuclear Physics: The Nucleus Positive charge and

More information

Introduction to Heat Transfer Analysis

Introduction to Heat Transfer Analysis Introduction to Heat Transfer Analysis Thermal Network Solutions with TNSolver Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org ME 331 Introduction to Heat Transfer

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Preview of Period 5: Forces and Newton s Laws

Preview of Period 5: Forces and Newton s Laws Preview of Period 5: Forces and Newton s Laws 5.1 The Fundamental Forces of Nature What are the four fundamental forces of nature? How do we see their effects? 5.2 Forces and Newton s Laws What causes

More information

Lecture 9: Kinetic Energy and Work 1

Lecture 9: Kinetic Energy and Work 1 Lecture 9: Kinetic Energy and Work 1 CHAPTER 6: Work and Kinetic Energy The concept of WORK has a very precise definition in physics. Work is a physical quantity produced when a Force moves an object through

More information

Graphics Card Computing for Materials Modelling

Graphics Card Computing for Materials Modelling Graphics Card Computing for Materials Modelling Case study: Analytic Bond Order Potentials B. Seiser, T. Hammerschmidt, R. Drautz, D. Pettifor Funded by EPSRC within the collaborative multi-scale project

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University February 3-5, 2016 Outline 1 growth (doubling time) Suppose a single bacterium

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

Example 2. Example 1. Example 4. Example 3. Kinetic Energy. Kinetic Energy 11/19/15

Example 2. Example 1. Example 4. Example 3. Kinetic Energy. Kinetic Energy 11/19/15 A tugboat pulls a ship with a constant net horizontal force of 5.00 x 10 3 N and causes the ship to move through a harbor. How much work is done on the ship if it moves a distance of 3.00 km? Example A

More information

Small Signal Model. S. Sivasubramani EE101- Small Signal - Diode

Small Signal Model. S. Sivasubramani EE101- Small Signal - Diode Small Signal Model i v Small Signal Model i I D i d i D v d v D v V D Small Signal Model -Mathematical Analysis V D - DC value v d - ac signal v D - Total signal (DC ac signal) Diode current and voltage

More information

COSY INFINITY Version 7

COSY INFINITY Version 7 COSY INFINITY Version 7 Kyoko Makino and Martin Berz Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory Michigan State University, East Lansing, MI 48824 Abstract An

More information

Lecture 3 Radioactivity

Lecture 3 Radioactivity Objectives In this lecture you will learn the following We shall begin with a general discussion on the nucleus. Learn about some characteristics of nucleons. Understand some concepts on stability of a

More information

P.M. THURSDAY, 16 January hour

P.M. THURSDAY, 16 January hour Surname Centre Number Candidate Number Other Names GCSE 4473/1 ADDITIONAL SCIENCE/PHYSICS PHYSICS 2 FOUNDATION TIER P.M. THURSDAY, 16 January 214 1 hour For s use Question Maximum Mark 1. 6 Mark Awarded

More information

6.1 Simulation of Simple Systems

6.1 Simulation of Simple Systems LESSON 6.1: SIMULATION OF SIMPLE SYSTEMS 273 6.1 Simulation of Simple Systems In the previous lessons of Part II we looked at many simplified, yet realistic examples of dynamic systems. We have learned

More information

Problem Set Spring 2012

Problem Set Spring 2012 Problem Set 3 2.086 Spring 2012 Released: Tuesday, 13 March 2012 Due: Tuesday, 3 April, at 2:30 PM by hardcopy at the beginning of class. Note that no Matlab scripts need be uploaded to Stellar for this

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) 1 Computer Simulations Why is computation becoming so important in physics? One reason is that most of our analytical tools such as differential calculus are best

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.8 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially growing quantities. EXPONENTIAL

More information

Work, Power and Energy Worksheet

Work, Power and Energy Worksheet Work, Power and Energy Worksheet Name: 1. Which of the following statements are true about work? Include all that apply. a. Work is the transfer of energy into or out of a system by means of an external

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

OCR Physics Specification A - H156/H556

OCR Physics Specification A - H156/H556 OCR Physics Specification A - H156/H556 Module 3: Forces and Motion You should be able to demonstrate and show your understanding of: 3.1 Motion Displacement, instantaneous speed, average speed, velocity

More information

MASS ATTENUATION COEFFICIENT OF LEAD

MASS ATTENUATION COEFFICIENT OF LEAD OBJECTIVE MASS ATTENUATION COEFFICIENT OF LEAD The objective of this experiment is to measure the mass attenuation coefficient of lead by manipulating Beer-Lambert s law of attenuation. INTRODUCTION Background

More information

Modern Physics Laboratory Beta Spectroscopy Experiment

Modern Physics Laboratory Beta Spectroscopy Experiment Modern Physics Laboratory Beta Spectroscopy Experiment Josh Diamond and John Cummings Fall 2009 Abstract In this experiment, electrons emitted as a result of the radioactive beta decay of 137 55 Cs are

More information

Computation of photoelectron and Auger-electron diffraction III. Evaluation of angle-resolved intensities PAD3

Computation of photoelectron and Auger-electron diffraction III. Evaluation of angle-resolved intensities PAD3 Computer Physics Communications 112 (1998) 911101 Computation of photoelectron and Auger-electron diffraction III. Evaluation of angle-resolved intensities PAD3 X.Chen,G.R.Harp 1,Y.Ueda,D.K.Saldin 2 Department

More information

Chapter IV: Radioactive decay

Chapter IV: Radioactive decay Chapter IV: Radioactive decay 1 Summary 1. Law of radioactive decay 2. Decay chain/radioactive filiation 3. Quantum description 4. Types of radioactive decay 2 History Radioactivity was discover in 1896

More information

Computational Study of Chemical Kinetics (GIDES)

Computational Study of Chemical Kinetics (GIDES) Computational Study of Chemical Kinetics (GIDES) Software Introduction Berkeley Madonna (http://www.berkeleymadonna.com) is a dynamic modeling program in which relational diagrams are created using a graphical

More information

Surname Other Names Centre Number Candidate Number Candidate Signature. General Certificate of Secondary Education Higher Tier June 2014

Surname Other Names Centre Number Candidate Number Candidate Signature. General Certificate of Secondary Education Higher Tier June 2014 A Surname Other Names Centre Number Candidate Number Candidate Signature General Certificate of Secondary Education Higher Tier June 2014 Additional Science Unit Physics P2 Physics Unit Physics P2 PH2HP

More information

Differential Equations & Separation of Variables

Differential Equations & Separation of Variables Differential Equations & Separation of Variables SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 8. of the recommended textbook (or the equivalent

More information