Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Size: px
Start display at page:

Download "Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0"

Transcription

1 Math 2250 Lab 4 Name/Unid: 1. (25 points) A man bails out of an airplane at the altitute of 12,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s 2, taking ρ=0.2 without the parachute and ρ= 2 with the parachute. (a) Write down the ODE that describes the velocity v before he opens the parachute. (b) Find the velocity at time 3 s and the velocity when he just opens the parachute. (c) Find the height when he opens the parachute. (d) Write down the ODE describing the velocity after he opens the parachute. (e) Write down the equation for the height depending of time. (f) How long will it take him to reach the ground (from the moment he bails out of the plane)? Solution: (a) Before opening the parachute, the differential equation is given by: dv dt = v v(0) = 0 (b) Solving the ODE by integrating factor and using the initial condition, we get: v(t) = 160(e 0.2t 1) Then, we can evaluate v(t) at time t=3 and t=20 (20s is when the man opens the parachute) v(3) = ft/s, v(20) = ft/s (c) For finding the height, integrate v(t) so we get: y(t) = 800e 0.2t 160t + c Using the initial condition y(0)=12,000 ft. c= 12,800. Thus He opens the parachute at t=20s y(t) = 800e 0.2t 160t + 12, 800

2 y(20) = ft (d) After opening the parachute, the differential equation change to: dv = v dt v(0) = (e) Solving again by integrating factor and using the initial condition, we get: Integrating v(t) for getting the height, v(t) = 16e 2t y(t) = 8e 0.2t t + c Using the initial condition y(0) = , the equation for the height is: y(t) = 8e 0.2t 16t (f) To reach the ground means y = 0 Thus solving the last equation for t, y = 0 when t = s The total of time descending is t = = s. Page 2

3 2. (35 points) For the problem 1, apply the following methods to the initial value problem. Use step size h=1 on the time interval [0,3]. You have to compute this by hand (using calculator, not programming) (a) Euler Method. (b) Improved Euler Method. (c) Runge Kutta Method. (d) Compare these solutions with the exact solution (part b, problem 1) and comment your results. Solution: h=1, time interval [0,3], v(0) = 0 (a) Euler Method, v n+1 = v n + h f(t n, v n ) v 1 = 32 v 2 = 57.6 v 3 = (b) Improved Euler. n = 0 k 1 = f(t 0, v 0 ) = f(v 0 ) = 32 u 1 = v 0 + h k 1 = 32 k 2 = f(u 1 ) = 25.6 v 1 = v h(k 1 + k 2 ) = n = 1 k 1 = f(v 1 ) = u 2 = v 1 + h k 1 = k 2 = f(u 2 ) = v 2 = v h(k 1 + k 2 ) = n = 2 k 1 = f(v 2 ) = u 3 = v 2 + h k 1 = k 2 = f(u 3 ) = v 3 = v h(k 1 + k 2 ) = Page 3

4 (c) R K Method k 1 = f(x n, y n ) k 2 = f(x n + h 2, y n + h 2 k 1) k 3 = f(x n + h 2, y n + h 2 k 2) k 4 = f(x n+1, y n + hk 3 ) v n+1 = v n + h 6 (k 1 + k 2 + k 3 + k 4 ) n = 0 k 1 = 32 k 2 = k 3 = k 4 = v 1 = n = 1 k 1 = k 2 = k 3 = k 4 = v 1 = n = 2 k 1 = k 2 = k 3 = k 4 = v 1 = Page 4

5 (d) Results: We can compare the three methods with the answer on problem 1, part b), the exact solution is v(3)= Which Euler gives us v(3)= with error e=5.8899, Improved Euler v(3)= with error e=0.409 and Runge Kutta is v(3)= with error e= So clearly the best approximation is given by Runge Kutta method, being Euler Method the least accurate. Page 5

6 3. (40 points) If we drop a package from a helicopter with a parachute attached, the wind resistance provided by the parachute is not really linear, assume for a certain type of parachute the acceleration equation is modeled by (Assume velocity in ft/s) v (t) = v 0.15v 1.5 v(0) = 0 (a) What is the terminal velocity in this model? Notice that the slope function v 0.15v 1.5 is decreasing function of v for v > 0 that its value is 32 when v=0, and that its limit as v is. Thus the slope function has exactly one root and you can find it with the Matlab (or other software) solve command. (b) This is a differential equation which does NOT have an elementary solution. Use numerics.m to estimate the solution values at t=2 and t=5 seconds with the methods Euler, Improved Euler and Runge Kutta with step sizes h=0.2 and h=0.02. Write the approximate solution for each method with each h and each time t=2 and t=5. Plot your result and comment about the accuracy of all the methods. Which of the values of h you think is better, why? (c) Numerical Observations: What does the asymptote on the plot mean? What happen if you change the initial condition to v(0)= 5 and v(0)= 40? Plot these two different initial value problem for all the methods on the same plot.(you can use h=0.2 and work on the time interval [0,6]) What difference do you see on the plots of those initial value problems? What do you think is the reason of the difference on the plots? Solution: (a) The terminal velocity is found by calculating the root of the right hand side (acceleration equals to zero), using a software (Matlab) which is giving you ft/s (b) Plot of the methods: Euler, Improved Euler and RK for h=0.2 Page 6

7 35 30 Euler Heun RK y x For h=0.2 the values of v on t=2 are the following: Euler v(2)= Improved Euler v(2)= RK v(2)= For h=0.2 the values of v on t=5 are the following: Euler v(5)= Improved Euler v(5)= RK v(5)= Plot of the methods: Euler, Improved Euler and RK for h= Euler Heun RK y x Page 7

8 For h=0.02 the values of v on t=2 are the following: Euler v(2)= Improved Euler v(2)= RK v(2)= For h=0.2 the values of v on t=5 are the following: Euler v(5)= Improved Euler v(5)= RK v(5)= We can see that on our second graph the three methods give us similar numerical solutions. So h=0.02 is a better option than h=0.2 Page 8

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (35 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

CHAPTER 1 INTRODUCTION TO NUMERICAL METHOD

CHAPTER 1 INTRODUCTION TO NUMERICAL METHOD CHAPTER 1 INTRODUCTION TO NUMERICAL METHOD Presenter: Dr. Zalilah Sharer 2018 School of Chemical and Energy Engineering Universiti Teknologi Malaysia 16 September 2018 Chemical Engineering, Computer &

More information

Section 7.4 Runge-Kutta Methods

Section 7.4 Runge-Kutta Methods Section 7.4 Runge-Kutta Methods Key terms: Taylor methods Taylor series Runge-Kutta; methods linear combinations of function values at intermediate points Alternatives to second order Taylor methods Fourth

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Chap. 20: Initial-Value Problems

Chap. 20: Initial-Value Problems Chap. 20: Initial-Value Problems Ordinary Differential Equations Goal: to solve differential equations of the form: dy dt f t, y The methods in this chapter are all one-step methods and have the general

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

Math Lecture 9

Math Lecture 9 Math 2280 - Lecture 9 Dylan Zwick Fall 2013 In the last two lectures we ve talked about differential equations for modeling populations Today we ll return to the theme we touched upon in our second lecture,

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Vector Fields and Solutions to Ordinary Differential Equations using Octave

Vector Fields and Solutions to Ordinary Differential Equations using Octave Vector Fields and Solutions to Ordinary Differential Equations using Andreas Stahel 6th December 29 Contents Vector fields. Vector field for the logistic equation...............................2 Solutions

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method)

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method) Section 2.7 Euler s Method (Computer Approximation) Key Terms/ Ideas: Numerical method for approximating the solution of an IVP Linear Approximation; Tangent Line Euler Algorithm (the simplest approximation

More information

MTH 452/552 Homework 3

MTH 452/552 Homework 3 MTH 452/552 Homework 3 Do either 1 or 2. 1. (40 points) [Use of ode113 and ode45] This problem can be solved by a modifying the m-files odesample.m and odesampletest.m available from the author s webpage.

More information

Simple ODE Solvers - Derivation

Simple ODE Solvers - Derivation Simple ODE Solvers - Derivation These notes provide derivations of some simple algorithms for generating, numerically, approximate solutions to the initial value problem y (t =f ( t, y(t y(t 0 =y 0 Here

More information

KINEMATICS IN ONE DIMENSION p. 1

KINEMATICS IN ONE DIMENSION p. 1 KINEMATICS IN ONE DIMENSION p. 1 Motion involves a change in position. Position can be indicated by an x-coordinate on a number line. ex/ A bumblebee flies along a number line... x = 2 when t = 1 sec 2

More information

Lecture 17: Ordinary Differential Equation II. First Order (continued)

Lecture 17: Ordinary Differential Equation II. First Order (continued) Lecture 17: Ordinary Differential Equation II. First Order (continued) 1. Key points Maple commands dsolve dsolve[interactive] dsolve(numeric) 2. Linear first order ODE: y' = q(x) - p(x) y In general,

More information

CHAPTER 80 NUMERICAL METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS

CHAPTER 80 NUMERICAL METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS CHAPTER 8 NUMERICAL METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS EXERCISE 33 Page 834. Use Euler s method to obtain a numerical solution of the differential equation d d 3, with the initial conditions

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

Math 116 Second Midterm March 19, 2012

Math 116 Second Midterm March 19, 2012 Math 6 Second Midterm March 9, 202 Name: Instructor: Section:. Do not open this exam until you are told to do so. 2. This exam has pages including this cover. There are 9 problems. Note that the problems

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

Solution. Your sketch should show both x and y axes marked from 5 to 5 and circles of radius 1, 3, and 5 centered at the origin.

Solution. Your sketch should show both x and y axes marked from 5 to 5 and circles of radius 1, 3, and 5 centered at the origin. Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 208, Professor David Levermore () (a) Sketch the graph that would be produced by the following Matlab command. fplot(@(t) 2/t,

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for solving higher order ODEs and

More information

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise:

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise: Math 2250-004 Week 4 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

Math 307 A - Spring 2015 Final Exam June 10, 2015

Math 307 A - Spring 2015 Final Exam June 10, 2015 Name: Math 307 A - Spring 2015 Final Exam June 10, 2015 Student ID Number: There are 8 pages of questions. In addition, the last page is the basic Laplace transform table. Make sure your exam contains

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 5 Chapter 21 Numerical Differentiation PowerPoints organized by Dr. Michael R. Gustafson II, Duke University 1 All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Mathematics 22: Lecture 11

Mathematics 22: Lecture 11 Mathematics 22: Lecture 11 Runge-Kutta Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 11 January 25, 2008 1 / 11 Order of approximations One

More information

ODE Runge-Kutta methods

ODE Runge-Kutta methods ODE Runge-Kutta methods The theory (very short excerpts from lectures) First-order initial value problem We want to approximate the solution Y(x) of a system of first-order ordinary differential equations

More information

2.1 Differential Equations and Solutions. Blerina Xhabli

2.1 Differential Equations and Solutions. Blerina Xhabli 2.1 Math 3331 Differential Equations 2.1 Differential Equations and Solutions Blerina Xhabli Department of Mathematics, University of Houston blerina@math.uh.edu math.uh.edu/ blerina/teaching.html Blerina

More information

Initial Value Problems

Initial Value Problems Numerical Analysis, lecture 13: Initial Value Problems (textbook sections 10.1-4, 10.7) differential equations standard form existence & uniqueness y 0 y 2 solution methods x 0 x 1 h h x 2 y1 Euler, Heun,

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 75 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP. Use MATLAB solvers for solving higher order ODEs and systems

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

INTRODUCTION TO COMPUTER METHODS FOR O.D.E.

INTRODUCTION TO COMPUTER METHODS FOR O.D.E. INTRODUCTION TO COMPUTER METHODS FOR O.D.E. 0. Introduction. The goal of this handout is to introduce some of the ideas behind the basic computer algorithms to approximate solutions to differential equations.

More information

Math Lecture 9

Math Lecture 9 Math 2280 - Lecture 9 Dylan Zwick Spring 2013 In the last two lectures we ve talked about differential equations for modeling populations. Today we ll return to the theme we touched upon in our second

More information

First-Order Differential Equations

First-Order Differential Equations CHAPTER 1 First-Order Differential Equations 1. Diff Eqns and Math Models Know what it means for a function to be a solution to a differential equation. In order to figure out if y = y(x) is a solution

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) NRiC Chapter 16. ODEs involve derivatives wrt one independent variable, e.g. time t. ODEs can always be reduced to a set of firstorder equations (involving only first

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Improved Calculus for the Life Sciences ntial Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

Multistep Methods for IVPs. t 0 < t < T

Multistep Methods for IVPs. t 0 < t < T Multistep Methods for IVPs We are still considering the IVP dy dt = f(t,y) t 0 < t < T y(t 0 ) = y 0 So far we have looked at Euler s method, which was a first order method and Runge Kutta (RK) methods

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

Numerical Methods for Initial Value Problems; Harmonic Oscillators

Numerical Methods for Initial Value Problems; Harmonic Oscillators Lab 1 Numerical Methods for Initial Value Problems; Harmonic Oscillators Lab Objective: Implement several basic numerical methods for initial value problems (IVPs), and use them to study harmonic oscillators.

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

Dynamics and Numerical Integration

Dynamics and Numerical Integration Dynamics and Numerical Integration EECS 398 Intro. to Autonomous Robotics autorob.org ME/EECS 567 ROB 510 Robot Modeling and Control Fall 2018 1687 2012 http://drawception.com/viewgame/azf19y6c8s/edible-science/

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 2017, Professor David Levermore

Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 2017, Professor David Levermore Solutions of the Sample Problems for the First In-Class Exam Math 246, Fall 207, Professor David Levermore () (a) Give the integral being evaluated by the following Matlab command. int( x/(+xˆ4), x,0,inf)

More information

1. Consider the initial value problem: find y(t) such that. y = y 2 t, y(0) = 1.

1. Consider the initial value problem: find y(t) such that. y = y 2 t, y(0) = 1. Engineering Mathematics CHEN30101 solutions to sheet 3 1. Consider the initial value problem: find y(t) such that y = y 2 t, y(0) = 1. Take a step size h = 0.1 and verify that the forward Euler approximation

More information

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture. Math 1431 DAY 14 BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Be considerate

More information

Runge Kutta Behavior in the Presence of a Jump Discontinuity

Runge Kutta Behavior in the Presence of a Jump Discontinuity Runge Kutta Behavior in the Presence of a Jump Discontinuity Allen Back July, 5 The graphs below appear to show motion at constant speed v = 4 along a straight line They were generated by numerical integration

More information

Math 2250 Lab 3 Due Date : 2/2/2017

Math 2250 Lab 3 Due Date : 2/2/2017 Math 2250 Lab Due Date : 2/2/2017 Name: UID: Unless stated otherwise, show all your work and explain your reasoning. You are allowed to use any results from lecture or the text as long as they are referenced

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MATLAB sessions: Laboratory 4 MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture. Math 1431 DAY 14 BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Be considerate

More information

Numerical Methods - Initial Value Problems for ODEs

Numerical Methods - Initial Value Problems for ODEs Numerical Methods - Initial Value Problems for ODEs Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Initial Value Problems for ODEs 2013 1 / 43 Outline 1 Initial Value

More information

1 Implicit Differentiation

1 Implicit Differentiation 1 Implicit Differentiation In logarithmic differentiation, we begin with an equation y = f(x) and then take the logarithm of both sides to get ln y = ln f(x). In this equation, y is not explicitly expressed

More information

Fundamentals Physics

Fundamentals Physics Fundamentals Physics And Differential Equations 1 Dynamics Dynamics of a material point Ideal case, but often sufficient Dynamics of a solid Including rotation, torques 2 Position, Velocity, Acceleration

More information

Numerical Methods for Initial Value Problems; Harmonic Oscillators

Numerical Methods for Initial Value Problems; Harmonic Oscillators 1 Numerical Methods for Initial Value Problems; Harmonic Oscillators Lab Objective: Implement several basic numerical methods for initial value problems (IVPs), and use them to study harmonic oscillators.

More information

Math 128A Spring 2003 Week 12 Solutions

Math 128A Spring 2003 Week 12 Solutions Math 128A Spring 2003 Week 12 Solutions Burden & Faires 5.9: 1b, 2b, 3, 5, 6, 7 Burden & Faires 5.10: 4, 5, 8 Burden & Faires 5.11: 1c, 2, 5, 6, 8 Burden & Faires 5.9. Higher-Order Equations and Systems

More information

Variable Step Size Differential Equation Solvers

Variable Step Size Differential Equation Solvers Math55: Differential Equations 1/30 Variable Step Size Differential Equation Solvers Jason Brewer and George Little Introduction The purpose of developing numerical methods is to approximate the solution

More information

EXPERIMENT 2: FREE FALL

EXPERIMENT 2: FREE FALL LAB SECTION: NAME: EXPERIMENT : FREE FALL Introduction: In this lab, you will measure the acceleration of an object as it falls toward the earth s surface. Air resistance should not be a factor, so the

More information

Mini project ODE, TANA22

Mini project ODE, TANA22 Mini project ODE, TANA22 Filip Berglund (filbe882) Linh Nguyen (linng299) Amanda Åkesson (amaak531) October 2018 1 1 Introduction Carl David Tohmé Runge (1856 1927) was a German mathematician and a prominent

More information

Two applications of macros in PSTricks

Two applications of macros in PSTricks Two applications of macros in PSTricks Le Phuong Quan (Cantho University, Vietnam) April 5, 00 Contents. Drawing approximations to the area under a graph by rectangles.. Description...........................................

More information

Outline Calculus for the Life Sciences II. Pollution in a Lake 1. Introduction. Lecture Notes Numerical Methods for Differential Equations

Outline Calculus for the Life Sciences II. Pollution in a Lake 1. Introduction. Lecture Notes Numerical Methods for Differential Equations Improved Improved Outline Calculus for the Life Sciences II tial Equations Joseph M. Mahaffy, mahaffy@math.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

MiSP Force and Gravity Worksheet #3, L3

MiSP Force and Gravity Worksheet #3, L3 MiSP Force and Gravity Worksheet #3, L3 Name Date FORCE AND ACCELERATION Introduction Today you will view a video of a typical skydive. The skydiver had a skydiving altimeter mounted in a special box with

More information

551614:Advanced Mathematics for Mechatronics. Numerical solution for ODEs School of Mechanical Engineering

551614:Advanced Mathematics for Mechatronics. Numerical solution for ODEs School of Mechanical Engineering 551614:Advanced Mathematics for Mechatronics Numerical solution for ODEs School of Mechanical Engineering 1 Prescribed text : Numerical Method for Engineering, Seventh Edition, Steven C.Chapra, Raymond

More information

Math 116 Second Midterm March 19, 2012

Math 116 Second Midterm March 19, 2012 Math 6 Second Midterm March 9, 22 Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so. 2. This exam has pages including this cover. There are 9 problems. Note that

More information

Ordinary Differential Equations (ODE)

Ordinary Differential Equations (ODE) Ordinary Differential Equations (ODE) Why study Differential Equations? Many physical phenomena are best formulated mathematically in terms of their rate of change. Motion of a swinging pendulum Bungee-jumper

More information

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations Numerical Methods for Ordinary Differential Equations By Brian D. Storey 1. Introduction Differential equations can describe nearly all systems undergoing change. They are ubiquitous is science and engineering

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

Physics 584 Computational Methods

Physics 584 Computational Methods Physics 584 Computational Methods Introduction to Matlab and Numerical Solutions to Ordinary Differential Equations Ryan Ogliore April 18 th, 2016 Lecture Outline Introduction to Matlab Numerical Solutions

More information

Numerical Integration of Ordinary Differential Equations for Initial Value Problems

Numerical Integration of Ordinary Differential Equations for Initial Value Problems Numerical Integration of Ordinary Differential Equations for Initial Value Problems Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu These slides are a

More information

Numerical Methods for the Solution of Differential Equations

Numerical Methods for the Solution of Differential Equations Numerical Methods for the Solution of Differential Equations Markus Grasmair Vienna, winter term 2011 2012 Analytical Solutions of Ordinary Differential Equations 1. Find the general solution of the differential

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations In this lecture, we will look at different options for coding simple differential equations. Start by considering bicycle riding as an example. Why does a bicycle move forward?

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) 1 Computer Simulations Why is computation becoming so important in physics? One reason is that most of our analytical tools such as differential calculus are best

More information

Thrust and Flight Modeling

Thrust and Flight Modeling Thrust and Flight Modeling So just how did OpenRocket or Rocksim predict the trajectory, velocity, and acceleration of our vehicle? What did we input into these numerical tools? Rocket Motors Device for

More information

Math Numerical Analysis Homework #4 Due End of term. y = 2y t 3y2 t 3, 1 t 2, y(1) = 1. n=(b-a)/h+1; % the number of steps we need to take

Math Numerical Analysis Homework #4 Due End of term. y = 2y t 3y2 t 3, 1 t 2, y(1) = 1. n=(b-a)/h+1; % the number of steps we need to take Math 32 - Numerical Analysis Homework #4 Due End of term Note: In the following y i is approximation of y(t i ) and f i is f(t i,y i ).. Consider the initial value problem, y = 2y t 3y2 t 3, t 2, y() =.

More information

Module 4: Numerical Methods for ODE. Michael Bader. Winter 2007/2008

Module 4: Numerical Methods for ODE. Michael Bader. Winter 2007/2008 Outlines Module 4: for ODE Part I: Basic Part II: Advanced Lehrstuhl Informatik V Winter 2007/2008 Part I: Basic 1 Direction Fields 2 Euler s Method Outlines Part I: Basic Part II: Advanced 3 Discretized

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Math 2250 Lab 3 Due September 18, Name:

Math 2250 Lab 3 Due September 18, Name: Math 2250 Lab 3 Due September 18, 2014 Name: 1. Consider the differential equation dx dt = 4x4 x 2 (a) Find the equilbria and draw the phase diagram. (b) Classify the equilibria as stable, unstable, or

More information

Section 2-2: Constant velocity means moving at a steady speed in the same direction

Section 2-2: Constant velocity means moving at a steady speed in the same direction Section 2-2: Constant velocity means moving at a steady speed in the same direction 1. A particle moves from x 1 = 30 cm to x 2 = 40 cm. The displacement of this particle is A. 30 cm B. 40 cm C. 70 cm

More information

Slope Fields and Differential Equations

Slope Fields and Differential Equations Student Stud Session Slope Fields and Differential Equations Students should be able to: Draw a slope field at a specified number of points b hand. Sketch a solution that passes through a given point on

More information

The Effect of Air Resistance Harvey Gould Physics 127 2/06/07

The Effect of Air Resistance Harvey Gould Physics 127 2/06/07 1 The Effect of Air Resistance Harvey Gould Physics 127 2/06/07 I. INTRODUCTION I simulated the motion of a falling body near the earth s surface in the presence of gravity and air resistance. I used the

More information

7.2 Trapezoidal Approximation

7.2 Trapezoidal Approximation 7. Trapezoidal Approximation NOTES Write your questions here! Riemann Sum f(x) = x + 1 [1,3] f(x) = x + 1 The Definite Integral b f(x)dx a Trapezoidal Approximation for interval [1,3] with n subintervals

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Ordinary Differential Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

Thrust and Flight Modeling

Thrust and Flight Modeling Thrust and Flight Modeling How did OpenRocket or Rocksim predict the trajectory, velocity, and acceleration of our vehicle? What did we input into these numerical tools? Thrust Curve of an Estes B4 Motor

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

What are Numerical Methods? (1/3)

What are Numerical Methods? (1/3) What are Numerical Methods? (1/3) Numerical methods are techniques by which mathematical problems are formulated so that they can be solved by arithmetic and logic operations Because computers excel at

More information

First In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 20 September 2018

First In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 20 September 2018 First In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 20 September 208 () [6] In the absence of predators the population of mosquitoes in a certain area would increase at a rate proportional

More information

Differentiation of Parametric Space Curves. Goals: Velocity in parametric curves Acceleration in parametric curves

Differentiation of Parametric Space Curves. Goals: Velocity in parametric curves Acceleration in parametric curves Block #2: Differentiation of Parametric Space Curves Goals: Velocity in parametric curves Acceleration in parametric curves 1 Displacement in Parametric Curves - 1 Displacement in Parametric Curves Using

More information

2 Ordinary Differential Equations: Initial Value Problems

2 Ordinary Differential Equations: Initial Value Problems Ordinar Differential Equations: Initial Value Problems Read sections 9., (9. for information), 9.3, 9.3., 9.3. (up to p. 396), 9.3.6. Review questions 9.3, 9.4, 9.8, 9.9, 9.4 9.6.. Two Examples.. Foxes

More information