Small Signal Model. S. Sivasubramani EE101 Small Signal  Diode


 Cathleen Skinner
 1 years ago
 Views:
Transcription
1 Small Signal Model i v
2 Small Signal Model i I D i d i D v d v D v V D
3 Small Signal Model Mathematical Analysis V D  DC value v d  ac signal v D  Total signal (DC ac signal) Diode current and voltage are related by i d = I s (exp( v d ) 1) Let us apply V D, I D = I s (exp( V D ) 1) I D I s (exp( V D )) (1)
4 Small Signal Model Mathematical Analysis Let us apply v D, sum of DC and ac signal, v D = V D v d The current i D = I s (exp( v D ) 1) i D I s (exp( v D )) i D I s (exp( V D v d )) i D I s exp( V D ) exp( v d )
5 Contd.. From (1) i D = I D exp( v d ) If v d <<, it can be written using Taylor s series i D = I D (1 v d ) I D i d = I D I Dv d i d = I D v d The small signal voltage and current related by linear relationship like resistor. i d = g d v d where g d = I D and is a small signal conductance in.
6 Small Signal Model It can also be written as v d = r d i d where r d =. r d is a small signal resistance in Ω. I D It can also be obtained [ ] did r d = 1/ dv D v D =V D For small signal (v d < V T ) v D v d r d i D i d
7 Small Signal Model  Various Elements Resistor R i D v D R i d v d Voltage Source  Independent V i D i d Current Source  Independent I v D v d
8 Test Draw the small signal equivalent circuit at V D = 1 V, I D = 1 ma. The element N has the following i v relationship. i D = v 2 D R R v i sin(ωt) v i sin(ωt) v d r N v D N i d V I i D r N = 1 1 = di D 2 Ω vd =V dv D D
9 Small Signal Model  Analysis If an input ac signal is superimposed on DC, use the following steps to solve for voltage and current in any nonlinear circuit. 1 Calculate DC operating point without ac signal using any one of the nonlinear techniques such as analytical method or graphical method. 2 Draw small signal equivalent circuit. 3 As it is a linear circuit, use any linear techniques to solve for voltage/current. 4 Add DC operating point and small signal voltage current to find the response of total signal (DC small signal). Keep in mind that this method will work till v d <.
10 ExampleI 1 kω 1 sin(ωt) V v D 5 V i D
11 PSPICE Result of Total Signal * C:\IITP\Academic_Work\Subjects_Taken\2014\EE101\PSPICE\Diode_Analysis.sch Date/Time run: 09/15/14 17:12:36 (A) Diode_Analysis (active) 660.0mV Temperature: mV 637.5mV 630.0mV 0s 50ms 100ms V(R1:2,D1:2) Time Date: September 15, 2014 Page 1 Time: 17:14:25
12 Small Signal Analysis Approach 5 V 1 Find operating point. (Use any nonlinear technique) 1 kω V D I D V D = V; I D = ma 2 Obtain small signal circuit 1 sin(ωt) V 3 Add them 1 kω v d i d r d v D = sin(ωt) V r d = I D = = Ω v d = 1 r d R r d = V
13 PSPICE of Total and Small Signal Analysis * C:\IITP\Academic_Work\Subjects_Taken\2014\EE101\PSPICE\Diode_Analysis.sch Date/Time run: 09/16/14 21:27:22 (A) Diode_Analysis (active) 660.0mV Temperature: mV 637.5mV 630.0mV 0s 50ms 100ms V(x) V(y)V(z) Time Date: September 16, 2014 Page 1 Time: 21:32:21
14 ExampleII 1 kω 5 sin(ωt) V v D 5 V i D
15 PSPICE Result of Total Signal * C:\IITP\Academic_Work\Subjects_Taken\2014\EE101\PSPICE\Diode_Analysis.sch Date/Time run: 09/18/14 14:34:35 (A) Diode_Analysis (active) 800mV Temperature: mV 0V 0s 50ms 100ms V(x) Time Date: September 18, 2014 Page 1 Time: 14:35:33
16 Small Signal Analysis Approach 1 DC operating point (Already done.) 2 Get the small signal circuit 5 sin(ωt) V 1 kω 3 Add operating point and small signal output v d i d r d r d = I D = = Ω v d = 5 r d R r d = V v D = sin(ωt) V As v d >, Small signal approach failed here... For large variation from DC operating point, any one of the nonlinear techniques should be used.
17 PSPICE of Total and Small Signal Analysis * C:\IITP\Academic_Work\Subjects_Taken\2014\EE101\PSPICE\Diode_Analysis.sch Date/Time run: 09/18/14 14:34:35 (A) Diode_Analysis (active) 800mV Temperature: mV 0V 0s 50ms 100ms V(x) V(y)V(z) Time Date: September 18, 2014 Page 1 Time: 14:36:37
Bipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationCURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS
CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS
More informationFig. 11 Current Flow in a Resistive load
1 Electric Circuits: Current flow in a resistive load flows either from () to () which is labeled below as Electron flow or the Conventional flow from () to (). We will use conventional flow in this
More informationECE Circuit Theory. Final Examination. December 5, 2008
ECE 212 H1F Pg 1 of 12 ECE 212  Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems
More informationSimple Resistive Circuits
German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in
More informationParallel Circuits. Chapter
Chapter 5 Parallel Circuits Topics Covered in Chapter 5 51: The Applied Voltage V A Is the Same Across Parallel Branches 52: Each Branch I Equals V A / R 53: Kirchhoff s Current Law (KCL) 54: Resistance
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationIndustrial Electricity
Industrial Electricity PRELAB / LAB 7: Series & Parallel Circuits with Faults Name PRELAB due BEFORE beginning the lab (initials required at the bottom of page 3) PLEASE TAKE THE TIME TO READ THIS PAGE
More informationChapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode
Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. SmallSignal AC Modeling of the DCM Switch Network 11.3. HighFrequency
More informationSTEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2
Production Series Circuits Page 2 Copyright 2017 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright
More informationWhat to Add Next time you update?
What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review
More informationCircuits Practice Websheet 18.1
Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10Ω resistors? a. 24
More informationKirchhoff's Laws and Maximum Power Transfer
German Jordanian University (GJU) Electrical Circuits Laboratory Section Experiment Kirchhoff's Laws and Maximum Power Transfer Post lab Report Mahmood Hisham Shubbak / / 8 Objectives: To learn KVL and
More informationChapter 10 Sinusoidal Steady State Analysis Chapter Objectives:
Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steadystate analysis. Learn how to apply nodal and mesh analysis in the frequency
More informationSolution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.
Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure
More informationresistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )
DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationBasic RL and RC Circuits RL TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri
st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R
More informationREACTANCE. By: Enzo Paterno Date: 03/2013
REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE  R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationA Level Physics B (Advancing Physics) H557/03 Practical skills in physics Sample Question Paper SPECIMEN
A Level Physics B (Advancing Physics) H557/03 Practical skills in physics Sample Question Paper Date Morning/Afternoon Time allowed: 1 hour 30 minutes You must have: the Data, Formulae and Relationships
More informationMAE106 Homework 2  Solution DC Motors & Intro to the frequency domain
MAE06 Homework 2  Solution DC Motors & Intro to the frequency domain University of California, Irvine Department of Mechanical and Aerospace Engineering Problem You are given the circuit shown in Figure.
More informationVoltage Dividers, Nodal, and Mesh Analysis
Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify
More informationEE 321 Analog Electronics, Fall 2013 Homework #3 solution
EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [
More informationUNIVERSITY F P RTLAND Sch l f Engineering
UNIVERSITY F P RTLAND Sch l f Engineering EE271Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems  p. 1 of 5  Electrical
More informationmith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut
mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!
More informationCARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
More informationVer 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2  Solutions
Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet  Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save
More informationExperiment 9 Equivalent Circuits
Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 36104 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,
More informationChapter 5 Objectives
Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define
More informationD C Circuit Analysis and Network Theorems:
UNIT1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,
More informationChapter 3 Output stages
Chapter 3 utput stages 3.. Goals and properties 3.. Goals and properties deliver power into the load with good efficacy and small power dissipate on the final transistors small output impedance maximum
More informationSimple Resistive Circuits
Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015 Electric Circuits 1 Structure Resistors in Series Resistors in Parallel The Voltage/Current Divider Circuit Voltage/Current
More informationElectrical Circuits Lab Series RC Circuit Phasor Diagram
Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram  Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is
More informationElectronics The basics of semiconductor physics
Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors
More informationECE 523/421  Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42  Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
More informationOUTCOME 3  TUTORIAL 2
Unit : Unit code: QCF evel: 4 Credit value: 15 SYABUS Engineering Science /601/1404 OUTCOME 3  TUTORIA Be able to apply DC theory to solve electrical and electronic engineering problems DC electrical
More informationEE201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6) None of above
EE201, Review Probs Test 1 page1 Spring 98 EE201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6)
More informationProject Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU
Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER
More informationRIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIBR T7. Detailed Explanations. Rank Improvement Batch ANSWERS.
8 Electrical Engineering RIBR T7 Session 089 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)
More informationChapter 3. Chapter 3
Chapter 3 Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit and is measured in volts. Current is the rate of charge flow
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationCircuit AnalysisIII. Circuit AnalysisII Lecture # 3 Friday 06 th April, 18
Circuit AnalysisIII Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)
More informationELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling
ELEC 3908, Physical Electronics, Lecture 13 iode Small Signal Modeling Lecture Outline Last few lectures have dealt exclusively with modeling and important effects in static (dc) operation ifferent modeling
More informationFig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf
1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A twoway switch S can connect the capacitors either to a d.c.
More informationChapter 21 Electric Current and Circuits
Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4
More informationThe equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
More informationElectronics I  Diode models
Chapter 4 Electronics I  Diode models p n A K Fall 2017 talarico@gonzaga.edu 1 Effect of Temperature on I/V curves Source: Hu Figure 4.21 The IV curves of the silicon PN diode shift to lower voltages
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationAN6783S. IC for long interval timer. ICs for Timer. Overview. Features. Applications. Block Diagram
IC for long interval timer Overview The is an IC designed for a long interval timer. It is oscillated by using the external resistor and capacitor, and the oscillation frequency divided by a  stage F.F.
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationSimultaneous equations for circuit analysis
Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationFigure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationIntroducing chaotic circuits in an undergraduate electronic course. Abstract. Introduction
Introducing chaotic circuits in an undergraduate electronic course Cherif Aissi 1 University of ouisiana at afayette, College of Engineering afayette, A 70504, USA Session II.A3 Abstract For decades, the
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Moule 2 DC Circuit Lesson 9 Analysis of c resistive network in presence of one nonlinear element Objectives To unerstan the volt (V ) ampere ( A ) characteristics of linear an nonlinear elements. Concept
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationExperiment #6. Thevenin Equivalent Circuits and Power Transfer
Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn
More informationChapter 7. Chapter 7
Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important
More informationCapacitor Action. 3. Capacitor Action Theory Support. Electronics  AC Circuits
Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18 Charging a Capacitor (DC) Before looking at how capacitors charge
More informationENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani
ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Opamp Circuits 2. Differential Amplifiers 3. Comparator Circuits
More informationErrata to LINEAR CIRCUITS, VOL1 DECARLO/LIN, EDITION 3 CHAPTERS 1 11 (updated 8/23/10)
Errata to LINEAR CIRCUITS, VOL1 DECARLO/LIN, EDITION 3 CHAPTERS 1 11 (updated 8/23/10) page location correction 42 Ch1, P1, statement (e) Figure P.1.3b should be Figure P.1.1b 46 Ch1, P19, statement (c)
More informationSOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
More informationPage 1 of 15 Page 2 of 15 Ohm s Law Basic Electricity Worksheet Topics Question 1 For a given amount of water pressure, which will flow a greater rate of water: a small (restrictive) nozzle or a large
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationElectric Circuits I. Midterm #1
The University of Toledo Section number s5ms_elci7.fm  Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm
More informationConventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?
Conventional Paper I03.(a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? (ii) Give one example each of a dielectric and a ferroelectric material
More informationLecture Notes on DC Network Theory
Federal University, NdufuAlike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by
More informationLab #3 Linearity, Proportionality, and Superposition
This lab experiment will focus on three concepts. Those concepts are linearity, proportionality, and superposition. Linearity and proportionality are like twins; they look similar at first glance, but
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationElectric Circuits I Final Examination
EECS:300 Electric Circuits I ffs_elci.fm  Electric Circuits I Final Examination Problems Points. 4. 3. Total 38 Was the exam fair? yes no //3 EECS:300 Electric Circuits I ffs_elci.fm  Problem 4 points
More informationScheme I SAMPLE QUESTION PAPER I
SAMPLE QUESTION PAPER I Marks : 70 Time: 3 Hours Q.1) A) Attempt any FIVE of the following. a) Define active components. b) List different types of resistors. c) Describe method to test following passive
More informationElectronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Threeterminal device whose voltagecurrent relationship is controlled by a third voltage
More informationCHAPTER 4. Circuit Theorems
CHAPTER 4 Circuit Theorems The growth in areas of application of electrical circuits has led to an evolution from simple to complex circuits. To handle such complexity, engineers over the years have developed
More informationANSWERS AND MARK SCHEMES. (a) (i) 0.4 A 1. (ii) 0.4 A 1. (b) (i) potential difference = current resistance V 1. (ii) 1.6 V 1
QUESTIONSHEET 1 (a) (i) 0.4 A 1 (ii) 0.4 A 1 (b) (i) potential difference = current resistance 1 2.4 V 1 (ii) 1.6 V 1 (c) showing all working 1 correct answer with units for total resistance: 16 Ω 1 calculate
More informationECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OPAMP) Circuits
ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OPAMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform
More informationUniversity of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions
Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brickwall characteristic shown in Figure
More informationAbout the different types of variables, How to identify them when doing your practical work.
Learning Objectives You should learn : About the different types of variables, How to identify them when doing your practical work. Variables Variables are things that vary and change Variables In any
More informationCOE. DC. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe
COE. DC Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 battery of internal resistance r and e.m.f. E can supply a current of 6.0 to a resistor R as shown in Fig
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationHomework 1 solutions
Electric Circuits 1 Homework 1 solutions (Due date: 2014/3/3) This assignment covers Ch1 and Ch2 of the textbook. The full credit is 100 points. For each question, detailed derivation processes and accurate
More informationfigure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationOperational amplifiers (Op amps)
Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationE40M Review  Part 1
E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,
More informationLM34  Precision Fahrenheit Temperature Sensor
 Precision Fahrenheit Temperature Sensor Features Typical Application Calibrated directly in degrees Fahrenheit Linear +10.0 mv/ F scale factor 1.0 F accuracy guaranteed (at +77 F) Parametric Table Supply
More informationECE 220 Laboratory 4 Volt Meter, Comparators, and Timer
ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory
More informationProf. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits
Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.
More informationElectrical properties of GaN LEDs & Parallel connections
Electrical properties of GaN LEDs & Parallel connections Contents 1. Overview 2. Parallel Connection of GaNbasis LED 3. Summary 1/5 1.Overview For reference on current and forward voltage, please consult
More informationECE2262 Electric Circuit
ECE2262 Electric Circuit Chapter 7: FIRST AND SECONDORDER RL AND RC CIRCUITS Response to FirstOrder RL and RC Circuits Response to SecondOrder RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady
More informationUNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:
UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ECE 1270 HOMEWORK #6 Solution Summer 2009 1. After being closed a long time, the switch opens at t = 0. Find i(t) 1 for t > 0. t = 0 10kΩ
More information