Research on Dependable level in Network Computing System Yongxia Li 1, a, Guangxia Xu 2,b and Shuangyan Liu 3,c

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Research on Dependable level in Network Computing System Yongxia Li 1, a, Guangxia Xu 2,b and Shuangyan Liu 3,c"

Transcription

1 Applied Mechaics ad Materials Olie: ISSN: , Vols , pp doi:0.408/ 04 Tras Tech Publicatios, Switzerlad Research o Depedable level i Network Computig System Yogxia Li, a, Guagxia Xu,b ad Shuagya Liu 3,c School of Iformatio ad Egieerig, Chogqig City Maagemet College, Chia School of Software Egieerig, Chogqig Uiversity of Posts ad Telecommuicatios,Chia 3 School of Commuicatio ad iformatio Egieerig, Chogqig Uiversity of Posts ad Telecommuicatios, Chia a b c Keywords: Network computig system, cloud model, iterval ituitioistic fuzzy theory, credible level, depedable moitorig. Abstract. The most weakess lik i credible moitorig is that how to process multidimesioal dyamic behavior data effectively. System behavior moitorig ofte eeds to deal with differet kids of behavior data ad those data ca adopt status sapshot i multi-dimesioal vector form to express. Obviously, data has strog useful kowledge iformatio, which is regarded as a kid of classificatio ability. So we eed to fiish the mappig ad classificatio betwee a variety of etwork behavior sapshot ad depedable level. This paper itroduces o etwork state sapshot owig the characteristics of high dimesio, heterogeeous ad dyamic ad uses the theory of iterval ituitioistic fuzzy to judge credible degree i the system ad geerate behavior quality trust level of odes. Itroductio The abormal behavior caused by various etities of their ow fault ad exteral security hidde dager has become more ad more promiet i etwork computig eviromet, which leads to people s distrust i etwork service[,]. Based o the basic thought of structure techology with depedable moitorig is to iject moitorig ability ito software ad hardware system that has o moitorig ability origially, thus moitorig behavior ad state of system so that we ca determie whether the system is abormal ad fially improve the credible ature of system, such as maitaiability, flexibility ad availability. The trust maagemet research i trusted computig shows that the key procedure of dyamic trust decisio is to moitor ad process of dyamic behavior data[3,4]. The most weakess lik i credible moitorig is that how to process multidimesioal dyamic behavior data effectively. System behavior moitorig ofte eeds to deal with differet kids of behavior data ad those data ca adopt status sapshot i multi-dimesioal vector form to express. Obviously, data has strog useful kowledge iformatio, which is regarded as a kid of classificatio ability. So we eed to fiish the mappig ad classificatio betwee a variety of etwork behavior sapshot ad depedable level, this paper focuses o etwork state sapshot owig the characteristics of high dimesio, heterogeeous ad dyamic ad uses the theory of iterval ituitioistic fuzzy to judge credible degree i the system ad geerate behavior quality trust level of odes. Credible Ability Based O Cloud Model This paper uses cloud model to idetify the eigematrix of credible supervisig, ad geerates the cocept of cofidece level based o cloud model through cloud trasform by cosiderig the multidimesioal properties of credible supervisig. Respectively,we geerate the cofidece level by usig differet idetifyig algorithms agaist the feature properties i istat ad a period, furthermore, we determie the cofidece level of feature properties by usig similarity algorithm ad comprehesive sythesis operator. All rights reserved. No part of cotets of this paper may be reproduced or trasmitted i ay form or by ay meas without the writte permissio of Tras Tech Publicatios, (ID: , Pesylvaia State Uiversity, Uiversity Park, USA-/05/6,04:0:56)

2 06 Applied Sciece, Materials Sciece ad Iformatio Techologies i Idustry A. The cofidece level determiatio of period Feature properties based o the cloud model The moitor keeps several discrete status sapshots. So, we ca determie the cofidece levels of curret status ad curret time. The property feature durig a while geerate credible cloud algorithm, ad we take backward cloud algorithm with ucertaity. Through backward cloud algorithm, we ca gai the actual trusted cloud model of -dimesio period feature properties, we ca adopt similar cloud algorithm to decide which cofidece level these credible cloud models belog to. N feature properties of credible level cloud models: C { C ( Ex, E, He ), C ( Ex, E, He )}( j =,,, ), As the base, make comparisos j j j j j jm jm jm jm betwee period feature properties of cloud model, T{ T ( Ex, E, He ),, T ( Ex, E, He )}, with credible level cloud model, though the compariso ca we obtai the credible of each property. The more the cloud i the overlappig of C cloud is, the higher the η is, ad the more close ad similar the two clouds are. The similarity of clouds is a ucertaity cocept, ad the similarity ca exactly reflect, more ad more, the degree of closeess betwee two clouds by the icreasig of cloud droplet. B. The comprehesive cofidece level compoud of state sapshot I the system of multi-dimesio feature trusted idetificatio, the goal of cloud compoud is to get a comprehesive trusted cloud model which is compouded by all the cofidece level cloud model. Defiitio Assumig there are two trusted cloud T ( Ex, E, He ) ad T ( Ex, E, He ), ad we defie the compoud of T ad T as T = T T. (if Ex > Ex ), the: Ex + Ex Ex = = µ Ex µ µ Ex E = E + E Ex Ex Ex Ex Ex µ µ Ex He = He + He Ex Ex Ex Ex Accordig to the two defie below, we ca get the compoud formula of cloud model related to idexes to a etity. T ( Ex, E, He) = T T,, T, T T T3 is ordered by expectatio from low to high. I the formula, Ex + Ex + + Ex Ex = = ρ( Exk ρ Exk + ) Ex Ex ρ Exk Exk + ρ Ex Ex () E = E + + Ek + Ek E Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex ρ Ex Ex ρ Ex Ex He = He + + He + He + + Ex Ex Ex Ex Ex Ex Ex Ex He k k+ k k + Fially we ca gai the comprehesive cloud model ad the credible level through similarity cloud algorithm. Experimet ad Aalysis A. The geeratio of Characteristic attributes of credibility level based o cloud model Through the statistical aalysis of each dimesio property of sample data, we ca gai the frequecy distributio fuctio, o the other had, we ca obtai the umber of discrete coceptio by cloud trasform algorithm. Figure x shows credible level cocept cloud of two characteristics. ()

3 Applied Mechaics ad Materials Vols Fig. Differet characteristics of the depedable level cloud model As is show i Fig., each dimesio characteristic has itself uique credibility cloud model ad also itself distict cloud characteristic values. The characteristic of each dimesio is particularly obvious, which is differet from ay previous recogitio algorithm that ca ot distiguish characteristic behavior. Each dimesio characteristic has itself uique credibility cloud model, which are good for users or maagers to make a local observatios i order to take the best measures to deal with the curret system status. At the same time, comprehesive trusted level of the cloud model gives a very clear effect to sese the curret system state, which grasps the system s decisio strategy from a holistic perspective. B. Trusted level recogitio rate Usig differet samples as the traiig set ad uder the circumstaces of differet umber of sample, we ca obtai compariso for cloud model, PCA ad LPP reliable moitorig methods of recogitio about system trusted level o the trasiet performace by ijectig the icidet, as is show i Fig., recogitio rate is 66% ad relatively low whe the umber of traiig set is 300, but with the icreasig of sample, recogitio rate is icreasig gradually, at the same time, PCA uses miimal sample iformatio ad oly gai miimum sample mea square error. O the other had, whe the umber of sample is 300, PCA recogitio rate is oly 68%, with the icrease of time, recogitio rate is 83% whe the umber of sample is 3000, but it is difficult to adapt this recogitio rate to practical applicatio eviromet. LPP utilizes the iteral structure of data, with the icreasig of the umber of sample, structure of origial sample teds to stable ad shows the great improvemet, LPP algorithm is more 7% tha the PCA algorithm whe the umber of sample is 3000, which shows that it is very importat for trusted moitorig to classify iformatio. The cloud model ofte make a idetificatio based o statistical, so eve the recogitio rate is low whe the umber of sample is low, with the icreasig of sample, the recogitio rate is higher tha PCA ad LPP, so it has the practical sigificace i credible moitorig algorithm. cloud model sample umber Fig. Istataeous characteristic depedable recogitio rate compariso

4 08 Applied Sciece, Materials Sciece ad Iformatio Techologies i Idustry recogitio rate (%) Fig.3 A period of time characteristic depedable recogitio rate compariso The compariso of trusted recogitio rate for a period of time betwee cloud model of characteristic attributes ad classic high-dimesioal recogitio algorithm PCA ad LPP is show i Fig.3.There are still some differeces betwee trasiet performace credible recogitio ad credible recogitio for a period of time. The period of time characteristic depedable recogitio uses the similarity recogitio algorithm ad its stability has icreased, so the fial recogitio rate has improved steadily. Summary This paper uses data mimig based o cloud model, aalysis the trusted level cocept ad gives a formal descriptio of status of system. O this basis, we explores cloud model geeratio algorithm for oe-dimesio s trusted level, cloud model geeratio algorithm for a period of time, ad cloud model similarity algorithm ad so o. Experimetal results show that this method ca hadle the moitorig, judgmets ad idetificatio of complex multi-dimesioal data. Refereces [] YigHua Mig. Network fault tolerace ad security research. Joural of computer.003, 6(9): [] Chuag Li, Xuehai Peg. Research o Trustworthy Network. Joural of computer.005,8(5), [3] Martiez A M, Kak A C. PCA versus LDA. IEEE Trasactios o Patter Aalysis ad Machie Itelligece. 00, 3():8-33. [4] Gumus E, Kilic N, Sertbas A, et al. Evaluatio of face recogitio techiques usig PCA, wavelets ad SVM. Expert Systems with Applicatios.00, 37(9): [5] Jiag Rog. A Study o Time Series Data Miig [6] Du Yi. Research ad Applicatio of Assoeiatio Rule i Data Miig [7] KaiChag Di. The framework of spatial data miig ad kowledge discovery. Geomatics ad Iformatio Sciece of Wuha Uiversity,vol(4):38-33(999). [8] XiRe Zhao, Xiu-ya Peg, Guag-yu Jiag.Chia Northeast Power Network Short-term Load Forecastig Based o Neural Network. Joural of system simulatio, 006,8(6):

5 Applied Sciece, Materials Sciece ad Iformatio Techologies i Idustry 0.408/ Research o Depedable Level i Network Computig System 0.408/ DOI Refereces [3] Martiez A M, Kak A C. PCA versus LDA. IEEE Trasactios o Patter Aalysis ad Machie Itelligece. 00, 3(): / [4] Gumus E, Kilic N, Sertbas A, et al. Evaluatio of face recogitio techiques usig PCA, wavelets ad SVM. Expert Systems with Applicatios. 00, 37(9): /j.eswa

Evapotranspiration Estimation Using Support Vector Machines and Hargreaves-Samani Equation for St. Johns, FL, USA

Evapotranspiration Estimation Using Support Vector Machines and Hargreaves-Samani Equation for St. Johns, FL, USA Evirometal Egieerig 0th Iteratioal Coferece eissn 2029-7092 / eisbn 978-609-476-044-0 Vilius Gedimias Techical Uiversity Lithuaia, 27 28 April 207 Article ID: eviro.207.094 http://eviro.vgtu.lt DOI: https://doi.org/0.3846/eviro.207.094

More information

Interval Intuitionistic Trapezoidal Fuzzy Prioritized Aggregating Operators and their Application to Multiple Attribute Decision Making

Interval Intuitionistic Trapezoidal Fuzzy Prioritized Aggregating Operators and their Application to Multiple Attribute Decision Making Iterval Ituitioistic Trapezoidal Fuzzy Prioritized Aggregatig Operators ad their Applicatio to Multiple Attribute Decisio Makig Xia-Pig Jiag Chogqig Uiversity of Arts ad Scieces Chia cqmaagemet@163.com

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c 4th Iteratioal Coferece o Advaced Materials ad Iformatio Techology Processig (AMITP 06) Directio of Arrival Estimatio Method i Uderdetermied Coditio Zhag Youzhi a, Li eibo b, ag Hali c Naval Aeroautical

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences Discrete Dyamics i Nature ad Society Article ID 210761 4 pages http://dxdoiorg/101155/2014/210761 Research Article A Uified Weight Formula for Calculatig the Sample Variace from Weighted Successive Differeces

More information

The prediction of cement energy demand based on support vector machine Xin Zhang a, *, Shaohong Jing b

The prediction of cement energy demand based on support vector machine Xin Zhang a, *, Shaohong Jing b 4th Iteratioal Coferece o Computer, Mechatroics, Cotrol ad Electroic Egieerig (ICCMCEE 05) The predictio of cemet eergy demad based o support vector machie Xi Zhag a,, Shaohog Jig b School of Electrical

More information

Grey Correlation Analysis of China's Electricity Imports and Its Influence Factors Hongjing Zhang 1, a, Feng Wang 1, b and Zhenkun Tian 1, c

Grey Correlation Analysis of China's Electricity Imports and Its Influence Factors Hongjing Zhang 1, a, Feng Wang 1, b and Zhenkun Tian 1, c Applied Mechaics ad Materials Olie: 203-0-3 ISSN: 662-7482, Vols. 448-453, pp 258-262 doi:0.4028/www.scietific.et/amm.448-453.258 204 Tras Tech Publicatios, Switzerlad Grey Correlatio Aalysis of Chia's

More information

There is no straightforward approach for choosing the warmup period l.

There is no straightforward approach for choosing the warmup period l. B. Maddah INDE 504 Discrete-Evet Simulatio Output Aalysis () Statistical Aalysis for Steady-State Parameters I a otermiatig simulatio, the iterest is i estimatig the log ru steady state measures of performace.

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation Iteratioal Joural of Mathematics Research. ISSN 0976-5840 Volume 9 Number 1 (017) pp. 45-51 Iteratioal Research Publicatio House http://www.irphouse.com A collocatio method for sigular itegral equatios

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Reliability model of organization management chain of South-to-North Water Diversion Project during construction period

Reliability model of organization management chain of South-to-North Water Diversion Project during construction period Water Sciece ad Egieerig, Dec. 2008, Vol. 1, No. 4, 107-113 ISSN 1674-2370, http://kkb.hhu.edu.c, e-mail: wse@hhu.edu.c Reliability model of orgaizatio maagemet chai of South-to-North Water Diversio Project

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

An Intuitionistic fuzzy count and cardinality of Intuitionistic fuzzy sets

An Intuitionistic fuzzy count and cardinality of Intuitionistic fuzzy sets Malaya Joural of Matematik 4(1)(2013) 123 133 A Ituitioistic fuzzy cout ad cardiality of Ituitioistic fuzzy sets B. K. Tripathy a, S. P. Jea b ad S. K. Ghosh c, a School of Computig Scieces ad Egieerig,

More information

On Distance and Similarity Measures of Intuitionistic Fuzzy Multi Set

On Distance and Similarity Measures of Intuitionistic Fuzzy Multi Set IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 4 (Ja. - Feb. 03), PP 9-3 www.iosrourals.org O Distace ad Similarity Measures of Ituitioistic Fuzzy Multi Set *P. Raaraeswari, **N.

More information

Bi-Magic labeling of Interval valued Fuzzy Graph

Bi-Magic labeling of Interval valued Fuzzy Graph Advaces i Fuzzy Mathematics. ISSN 0973-533X Volume 1, Number 3 (017), pp. 645-656 Research Idia Publicatios http://www.ripublicatio.com Bi-Magic labelig of Iterval valued Fuzzy Graph K.Ameeal Bibi 1 ad

More information

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

More information

Intermittent demand forecasting by using Neural Network with simulated data

Intermittent demand forecasting by using Neural Network with simulated data Proceedigs of the 011 Iteratioal Coferece o Idustrial Egieerig ad Operatios Maagemet Kuala Lumpur, Malaysia, Jauary 4, 011 Itermittet demad forecastig by usig Neural Network with simulated data Nguye Khoa

More information

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm Joural of ad Eergy Egieerig, 05, 3, 43-437 Published Olie April 05 i SciRes. http://www.scirp.org/joural/jpee http://dx.doi.org/0.436/jpee.05.34058 Study o Coal Cosumptio Curve Fittig of the Thermal Based

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Reliability and Queueing

Reliability and Queueing Copyright 999 Uiversity of Califoria Reliability ad Queueig by David G. Messerschmitt Supplemetary sectio for Uderstadig Networked Applicatios: A First Course, Morga Kaufma, 999. Copyright otice: Permissio

More information

Comprehensive Bridge Health Evaluation Method Based on Information Fusion

Comprehensive Bridge Health Evaluation Method Based on Information Fusion MATEC Web of Cofereces 82, 03003 (2016) DOI: 10.1051/ mateccof/20168203003 Comprehesive Bridge Health Evaluatio Method Based o Iformatio Fusio Li-pig Li 1,a, We-xia Dig 2 ad Xiao-li Lu 3 1 Faculty of Egieerig,

More information

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice 0//008 Liear Discrimiat Fuctios Jacob Hays Amit Pillay James DeFelice 5.8, 5.9, 5. Miimum Squared Error Previous methods oly worked o liear separable cases, by lookig at misclassified samples to correct

More information

Testing Statistical Hypotheses for Compare. Means with Vague Data

Testing Statistical Hypotheses for Compare. Means with Vague Data Iteratioal Mathematical Forum 5 o. 3 65-6 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach

More information

Free Space Optical Wireless Communications under Turbulence Channel Effect

Free Space Optical Wireless Communications under Turbulence Channel Effect IOSR Joural of Electroics ad Commuicatio Egieerig (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue 3, Ver. III (May - Ju. 014), PP 01-08 Free Space Optical Wireless Commuicatios uder Turbulece

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

New Exponential Strengthening Buffer Operators and Numerical Simulation

New Exponential Strengthening Buffer Operators and Numerical Simulation Sesors & Trasducers, Vol. 59, Issue, November 0, pp. 7-76 Sesors & Trasducers 0 by IFSA http://www.sesorsportal.com New Expoetial Stregtheig Buffer Operators ad Numerical Simulatio Cuifeg Li, Huajie Ye,

More information

Analysis of Fuzzy Fault Tree using Intuitionstic Fuzzy Numbers

Analysis of Fuzzy Fault Tree using Intuitionstic Fuzzy Numbers Neeraj Lata / Iteratioal Joural of Computer Sciece & Egieerig Techology (IJCSET) Aalysis of Fuzzy Fault Tree usig Ituitiostic Fuzzy Numbers Neeraj Lata Departmet of applied Scieces,TeerthakerMahaveer Uiversity,

More information

Electricity consumption forecasting method based on MPSO-BP neural network model Youshan Zhang 1, 2,a, Liangdong Guo2, b,qi Li 3, c and Junhui Li2, d

Electricity consumption forecasting method based on MPSO-BP neural network model Youshan Zhang 1, 2,a, Liangdong Guo2, b,qi Li 3, c and Junhui Li2, d 4th Iteratioal Coferece o Electrical & Electroics Egieerig ad Computer Sciece (ICEEECS 2016) Electricity cosumptio forecastig method based o eural etwork model Yousha Zhag 1, 2,a, Liagdog Guo2, b,qi Li

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

Invariability of Remainder Based Reversible Watermarking

Invariability of Remainder Based Reversible Watermarking Joural of Network Itelligece c 16 ISSN 21-8105 (Olie) Taiwa Ubiquitous Iformatio Volume 1, Number 1, February 16 Ivariability of Remaider Based Reversible Watermarkig Shao-Wei Weg School of Iformatio Egieerig

More information

Short Term Load Forecasting Using Artificial Neural Network And Imperialist Competitive Algorithm

Short Term Load Forecasting Using Artificial Neural Network And Imperialist Competitive Algorithm Short Term Load Forecastig Usig Artificial eural etwork Ad Imperialist Competitive Algorithm Mostafa Salamat, Mostafa_salamat63@yahoo.com Javad Mousavi, jmousavi.sh1365@gmail.com Seyed Hamid Shah Alami,

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Vassilis Katsouros, Vassilis Papavassiliou and Christos Emmanouilidis

Vassilis Katsouros, Vassilis Papavassiliou and Christos Emmanouilidis Vassilis Katsouros, Vassilis Papavassiliou ad Christos Emmaouilidis ATHENA Research & Iovatio Cetre, Greece www.athea-iovatio.gr www.ceti.athea-iovatio.gr/compsys e-mail: christosem AT ieee.org Problem

More information

Accuracy assessment methods and challenges

Accuracy assessment methods and challenges Accuracy assessmet methods ad challeges Giles M. Foody School of Geography Uiversity of Nottigham giles.foody@ottigham.ac.uk Backgroud Need for accuracy assessmet established. Cosiderable progress ow see

More information

Sample Size Determination (Two or More Samples)

Sample Size Determination (Two or More Samples) Sample Sie Determiatio (Two or More Samples) STATGRAPHICS Rev. 963 Summary... Data Iput... Aalysis Summary... 5 Power Curve... 5 Calculatios... 6 Summary This procedure determies a suitable sample sie

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

Enterprise interoperability measurement - Basic concepts

Enterprise interoperability measurement - Basic concepts Eterprise iteroperability measuremet - Basic cocepts Nicolas Dacli, David Che, Bruo Vallespir LAPS/GRAI, Uiversity Bordeaux 1, ENSEIRB, UMR 5131 CNRS, 351 cours de la Libératio, 33405 Talece Cedex, Frace

More information

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm , pp.10-106 http://dx.doi.org/10.1457/astl.016.137.19 The DOA Estimatio of ultiple Sigals based o Weightig USIC Algorithm Chagga Shu a, Yumi Liu State Key Laboratory of IPOC, Beijig Uiversity of Posts

More information

The Nature Diagnosability of Bubble-sort Star Graphs under the PMC Model and MM* Model

The Nature Diagnosability of Bubble-sort Star Graphs under the PMC Model and MM* Model Iteratioal Joural of Egieerig ad Applied Scieces (IJEAS) ISSN: 394-366 Volume-4 Issue-8 August 07 The Nature Diagosability of Bubble-sort Star Graphs uder the PMC Model ad MM* Model Mujiagsha Wag Yuqig

More information

1. Introduction (Received 11 February 2013; accepted 3 June 2013)

1. Introduction (Received 11 February 2013; accepted 3 June 2013) 991. Applicatio of EMD-AR ad MTS for hydraulic pump fault diagosis Lu Che, Hu Jiameg, Liu Hogmei 991. APPLICATION OF EMD-AR AND MTS FOR HYDRAULIC PUMP FAULT DIAGNOSIS. Lu Che 1,, 3, Hu Jiameg 1, Liu Hogmei

More information

Formation of A Supergain Array and Its Application in Radar

Formation of A Supergain Array and Its Application in Radar Formatio of A Supergai Array ad ts Applicatio i Radar Tra Cao Quye, Do Trug Kie ad Bach Gia Duog. Research Ceter for Electroic ad Telecommuicatios, College of Techology (Coltech, Vietam atioal Uiversity,

More information

A STUDY OF VIBRATION MEASURING AND FATIGUE ANALYSIS FOR CANTILEVER BEAMS

A STUDY OF VIBRATION MEASURING AND FATIGUE ANALYSIS FOR CANTILEVER BEAMS Joural of Techology, Vol. 3, No., pp. 47-56 (07) 47, * LabView ANSYS A STUDY OF VIBRATION MEASURING AND FATIGUE ANALYSIS FOR CANTILEVER BEAMS Yuo-Ter Tsai, * Hsie-Yag Li Departmet of Mechaical Egieerig

More information

OPTIMAL PIECEWISE UNIFORM VECTOR QUANTIZATION OF THE MEMORYLESS LAPLACIAN SOURCE

OPTIMAL PIECEWISE UNIFORM VECTOR QUANTIZATION OF THE MEMORYLESS LAPLACIAN SOURCE Joural of ELECTRICAL EGIEERIG, VOL. 56, O. 7-8, 2005, 200 204 OPTIMAL PIECEWISE UIFORM VECTOR QUATIZATIO OF THE MEMORYLESS LAPLACIA SOURCE Zora H. Perić Veljo Lj. Staović Alesadra Z. Jovaović Srdja M.

More information

Control chart for number of customers in the system of M [X] / M / 1 Queueing system

Control chart for number of customers in the system of M [X] / M / 1 Queueing system Iteratioal Joural of Iovative Research i Sciece, Egieerig ad Techology (A ISO 3297: 07 Certified Orgaiatio) Cotrol chart for umber of customers i the system of M [X] / M / Queueig system T.Poogodi, Dr.

More information

Chapter 7. Support Vector Machine

Chapter 7. Support Vector Machine Chapter 7 Support Vector Machie able of Cotet Margi ad support vectors SVM formulatio Slack variables ad hige loss SVM for multiple class SVM ith Kerels Relevace Vector Machie Support Vector Machie (SVM)

More information

Provläsningsexemplar / Preview TECHNICAL REPORT INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Provläsningsexemplar / Preview TECHNICAL REPORT INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE TECHNICAL REPORT CISPR 16-4-3 2004 AMENDMENT 1 2006-10 INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE Amedmet 1 Specificatio for radio disturbace ad immuity measurig apparatus ad methods Part 4-3:

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

System Diagnostics using Kalman Filter Estimation Error

System Diagnostics using Kalman Filter Estimation Error System Diagostics usig Kalma Filter Estimatio Error Prof. Seugchul Lee, Seugtae Park, Heechag Kim, Hyusuk Huh ICMR2015 (11/25/2015) Machie Health Diagostics Desig Desig DNA + + Blue Prit phagocytes lymphocytes

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Forecasting SO 2 air pollution in Salamanca, Mexico using an ADALINE.

Forecasting SO 2 air pollution in Salamanca, Mexico using an ADALINE. Iovative Productio Machies ad Systems D.T. Pham, E.E. Eldukhri ad A.J. Soroka (eds) 2008 MEC. Cardiff Uiversity, UK. Forecastig SO 2 air pollutio i Salamaca, Mexico usig a ADALINE. M.G. Cortia a, U.S.

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Minimum Dominating Set Approach to Analysis and Control of Biological Networks

Minimum Dominating Set Approach to Analysis and Control of Biological Networks Miimum Domiatig Set Approach to Aalysis ad Cotrol of Biological Networks Tatsuya Akutsu Bioiformatics Ceter Istitute for Chemical Research, Kyoto Uiversity Joit work with Jose Nacher i Toho Uiversity Motivatio:

More information

Uniform Strict Practical Stability Criteria for Impulsive Functional Differential Equations

Uniform Strict Practical Stability Criteria for Impulsive Functional Differential Equations Global Joural of Sciece Frotier Research Mathematics ad Decisio Scieces Volume 3 Issue Versio 0 Year 03 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic (USA Olie

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II Solid State Pheomea Vol. 89 (003) pp 343-348 (003) Tras Tech Publicatios, Switzerlad doi:0.408/www.scietific.et/ssp.89.343 A New Impulse Mechaical Spectrometer to Study the Dyamic Mechaical Properties

More information

Bounds for the Extreme Eigenvalues Using the Trace and Determinant

Bounds for the Extreme Eigenvalues Using the Trace and Determinant ISSN 746-7659, Eglad, UK Joural of Iformatio ad Computig Sciece Vol 4, No, 9, pp 49-55 Bouds for the Etreme Eigevalues Usig the Trace ad Determiat Qi Zhog, +, Tig-Zhu Huag School of pplied Mathematics,

More information

Extreme Value Charts and Analysis of Means (ANOM) Based on the Log Logistic Distribution

Extreme Value Charts and Analysis of Means (ANOM) Based on the Log Logistic Distribution Joural of Moder Applied Statistical Methods Volume 11 Issue Article 0 11-1-01 Extreme Value Charts ad Aalysis of Meas (ANOM) Based o the Log Logistic istributio B. Sriivasa Rao R.V.R & J.C. College of

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Power Comparison of Some Goodness-of-fit Tests

Power Comparison of Some Goodness-of-fit Tests Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 7-6-2016 Power Compariso of Some Goodess-of-fit Tests Tiayi Liu tliu019@fiu.edu DOI: 10.25148/etd.FIDC000750

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

The study of fault-diagnosis method of reciprocating compressor based on fuzzy fault tree theory Jian-Chun Gong 1, a, PENG-Fei Tian 2,b

The study of fault-diagnosis method of reciprocating compressor based on fuzzy fault tree theory Jian-Chun Gong 1, a, PENG-Fei Tian 2,b Applied Mechaics ad Materials Olie: 202--2 ISSN: 662-7482 Vols 27-29 pp 2649-2653 doi:04028/wwwscietificet/amm27-292649 202 Tras Tech Publicatios Switzerlad The study of fault-diagosis method of reciprocatig

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

A proposed discrete distribution for the statistical modeling of

A proposed discrete distribution for the statistical modeling of It. Statistical Ist.: Proc. 58th World Statistical Cogress, 0, Dubli (Sessio CPS047) p.5059 A proposed discrete distributio for the statistical modelig of Likert data Kidd, Marti Cetre for Statistical

More information

Testing Statistical Hypotheses with Fuzzy Data

Testing Statistical Hypotheses with Fuzzy Data Iteratioal Joural of Statistics ad Systems ISS 973-675 Volume 6, umber 4 (), pp. 44-449 Research Idia Publicatios http://www.ripublicatio.com/ijss.htm Testig Statistical Hypotheses with Fuzzy Data E. Baloui

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable Iteratioal Joural of Probability ad Statistics 01, 1(4: 111-118 DOI: 10.593/j.ijps.010104.04 Estimatio of Populatio Mea Usig Co-Efficiet of Variatio ad Media of a Auxiliary Variable J. Subramai *, G. Kumarapadiya

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

STUDY OF ATTRACTOR VARIATION IN THE RECONSTRUCTED PHASE SPACE OF SPEECH SIGNALS

STUDY OF ATTRACTOR VARIATION IN THE RECONSTRUCTED PHASE SPACE OF SPEECH SIGNALS STUDY OF ATTRACTOR VARIATION IN THE RECONSTRUCTED PHASE SPACE OF SPEECH SIGNALS Jiji Ye Departmet of Electrical ad Computer Egieerig Milwaukee, WI USA jiji.ye@mu.edu Michael T. Johso Departmet of Electrical

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

On Edge Regular Fuzzy Line Graphs

On Edge Regular Fuzzy Line Graphs Iteratioal Joural of Computatioal ad Applied Mathematics ISSN 1819-4966 Volume 11, Number 2 (2016), pp 105-118 Research Idia Publicatios http://wwwripublicatiocom O Edge Regular Fuzz Lie Graphs K Radha

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Presenting A Framework To Study Linkages Among Tqm Practices, Supply Chain Management Practices, And Performance Using Dematel Technique

Presenting A Framework To Study Linkages Among Tqm Practices, Supply Chain Management Practices, And Performance Using Dematel Technique Australia Joural of Basic ad Applied Scieces, 5(9): 885-890, 20 ISSN 99-878 Presetig A Framework To Study Likages Amog Tqm Practices, Supply Chai Maagemet Practices, Ad Performace Usig Dematel Techique

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

ADVANCED SOFTWARE ENGINEERING

ADVANCED SOFTWARE ENGINEERING ADVANCED SOFTWARE ENGINEERING COMP 3705 Exercise Usage-based Testig ad Reliability Versio 1.0-040406 Departmet of Computer Ssciece Sada Narayaappa, Aeliese Adrews Versio 1.1-050405 Departmet of Commuicatio

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Robust Resource Allocation in Parallel and Distributed Computing Systems (tentative)

Robust Resource Allocation in Parallel and Distributed Computing Systems (tentative) Robust Resource Allocatio i Parallel ad Distributed Computig Systems (tetative) Ph.D. cadidate V. Shestak Colorado State Uiversity Electrical ad Computer Egieerig Departmet Fort Collis, Colorado, USA shestak@colostate.edu

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

FUZZY ALTERNATING DIRECTION IMPLICIT METHOD FOR SOLVING PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS IN THREE DIMENSIONS

FUZZY ALTERNATING DIRECTION IMPLICIT METHOD FOR SOLVING PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS IN THREE DIMENSIONS FUZZY ALTERNATING DIRECTION IMPLICIT METHOD FOR SOLVING PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS IN THREE DIMENSIONS N.Mugutha *1, B.Jessaili Jeba #2 *1 Assistat Professor, Departmet of Mathematics, M.V.Muthiah

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

Weighted Correlation Coefficient with a Trigonometric Function Entropy of Intuitionistic Fuzzy Set in Decision Making

Weighted Correlation Coefficient with a Trigonometric Function Entropy of Intuitionistic Fuzzy Set in Decision Making Weighted Correlatio Coefficiet with a Trigoometric Fuctio Etropy of Ituitioistic Fuzzy Set i Decisio Makig Wa Khadiah Wa Ismail, Lazim bdullah School of Iformatics ad pplied Mathematics, Uiversiti Malaysia

More information

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration Hidawi Publishig Corporatio Advaces i Acoustics ad Vibratio Volume 2, Article ID 69652, 5 pages doi:.55/2/69652 Research Article Health Moitorig for a Structure Usig Its Nostatioary Vibratio Yoshimutsu

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Linear chord diagrams with long chords

Linear chord diagrams with long chords Liear chord diagrams with log chords Everett Sulliva Departmet of Mathematics Dartmouth College Haover New Hampshire, U.S.A. everett..sulliva@dartmouth.edu Submitted: Feb 7, 2017; Accepted: Oct 7, 2017;

More information

Accuracy of prediction methods for the improvement of impact sound pressure levels using floor coverings

Accuracy of prediction methods for the improvement of impact sound pressure levels using floor coverings Accuracy of predictio methods for the improvemet of impact soud pressure levels usig floor coverigs Daiel GRIFFIN 1 1 Marshall Day Acoustics, Australia ABSTRACT The improvemet of impact soud pressure levels

More information

Classification Using Decision Trees. Jackknife Estimator: Example 1. Data Mining. Jackknife Estimator: Example 2(cont. Jackknife Estimator: Example 2

Classification Using Decision Trees. Jackknife Estimator: Example 1. Data Mining. Jackknife Estimator: Example 2(cont. Jackknife Estimator: Example 2 Data Miig CS 341, Sprig 2007 Lecture 8: Decisio tree algorithms Jackkife Estimator: Example 1 Estimate of mea for X={x 1, x 2, x 3,}, =3, g=3, m=1, θ = µ = (x( 1 + x 2 + x 3 )/3 θ 1 = (x( 2 + x 3 )/2,

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution America Joural of Theoretical ad Applied Statistics 05; 4(: 6-69 Published olie May 8, 05 (http://www.sciecepublishiggroup.com/j/ajtas doi: 0.648/j.ajtas.05040. ISSN: 6-8999 (Prit; ISSN: 6-9006 (Olie Mathematical

More information