Research on Dependable level in Network Computing System Yongxia Li 1, a, Guangxia Xu 2,b and Shuangyan Liu 3,c

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Research on Dependable level in Network Computing System Yongxia Li 1, a, Guangxia Xu 2,b and Shuangyan Liu 3,c"

Transcription

1 Applied Mechaics ad Materials Olie: ISSN: , Vols , pp doi:0.408/ 04 Tras Tech Publicatios, Switzerlad Research o Depedable level i Network Computig System Yogxia Li, a, Guagxia Xu,b ad Shuagya Liu 3,c School of Iformatio ad Egieerig, Chogqig City Maagemet College, Chia School of Software Egieerig, Chogqig Uiversity of Posts ad Telecommuicatios,Chia 3 School of Commuicatio ad iformatio Egieerig, Chogqig Uiversity of Posts ad Telecommuicatios, Chia a b c Keywords: Network computig system, cloud model, iterval ituitioistic fuzzy theory, credible level, depedable moitorig. Abstract. The most weakess lik i credible moitorig is that how to process multidimesioal dyamic behavior data effectively. System behavior moitorig ofte eeds to deal with differet kids of behavior data ad those data ca adopt status sapshot i multi-dimesioal vector form to express. Obviously, data has strog useful kowledge iformatio, which is regarded as a kid of classificatio ability. So we eed to fiish the mappig ad classificatio betwee a variety of etwork behavior sapshot ad depedable level. This paper itroduces o etwork state sapshot owig the characteristics of high dimesio, heterogeeous ad dyamic ad uses the theory of iterval ituitioistic fuzzy to judge credible degree i the system ad geerate behavior quality trust level of odes. Itroductio The abormal behavior caused by various etities of their ow fault ad exteral security hidde dager has become more ad more promiet i etwork computig eviromet, which leads to people s distrust i etwork service[,]. Based o the basic thought of structure techology with depedable moitorig is to iject moitorig ability ito software ad hardware system that has o moitorig ability origially, thus moitorig behavior ad state of system so that we ca determie whether the system is abormal ad fially improve the credible ature of system, such as maitaiability, flexibility ad availability. The trust maagemet research i trusted computig shows that the key procedure of dyamic trust decisio is to moitor ad process of dyamic behavior data[3,4]. The most weakess lik i credible moitorig is that how to process multidimesioal dyamic behavior data effectively. System behavior moitorig ofte eeds to deal with differet kids of behavior data ad those data ca adopt status sapshot i multi-dimesioal vector form to express. Obviously, data has strog useful kowledge iformatio, which is regarded as a kid of classificatio ability. So we eed to fiish the mappig ad classificatio betwee a variety of etwork behavior sapshot ad depedable level, this paper focuses o etwork state sapshot owig the characteristics of high dimesio, heterogeeous ad dyamic ad uses the theory of iterval ituitioistic fuzzy to judge credible degree i the system ad geerate behavior quality trust level of odes. Credible Ability Based O Cloud Model This paper uses cloud model to idetify the eigematrix of credible supervisig, ad geerates the cocept of cofidece level based o cloud model through cloud trasform by cosiderig the multidimesioal properties of credible supervisig. Respectively,we geerate the cofidece level by usig differet idetifyig algorithms agaist the feature properties i istat ad a period, furthermore, we determie the cofidece level of feature properties by usig similarity algorithm ad comprehesive sythesis operator. All rights reserved. No part of cotets of this paper may be reproduced or trasmitted i ay form or by ay meas without the writte permissio of Tras Tech Publicatios, (ID: , Pesylvaia State Uiversity, Uiversity Park, USA-/05/6,04:0:56)

2 06 Applied Sciece, Materials Sciece ad Iformatio Techologies i Idustry A. The cofidece level determiatio of period Feature properties based o the cloud model The moitor keeps several discrete status sapshots. So, we ca determie the cofidece levels of curret status ad curret time. The property feature durig a while geerate credible cloud algorithm, ad we take backward cloud algorithm with ucertaity. Through backward cloud algorithm, we ca gai the actual trusted cloud model of -dimesio period feature properties, we ca adopt similar cloud algorithm to decide which cofidece level these credible cloud models belog to. N feature properties of credible level cloud models: C { C ( Ex, E, He ), C ( Ex, E, He )}( j =,,, ), As the base, make comparisos j j j j j jm jm jm jm betwee period feature properties of cloud model, T{ T ( Ex, E, He ),, T ( Ex, E, He )}, with credible level cloud model, though the compariso ca we obtai the credible of each property. The more the cloud i the overlappig of C cloud is, the higher the η is, ad the more close ad similar the two clouds are. The similarity of clouds is a ucertaity cocept, ad the similarity ca exactly reflect, more ad more, the degree of closeess betwee two clouds by the icreasig of cloud droplet. B. The comprehesive cofidece level compoud of state sapshot I the system of multi-dimesio feature trusted idetificatio, the goal of cloud compoud is to get a comprehesive trusted cloud model which is compouded by all the cofidece level cloud model. Defiitio Assumig there are two trusted cloud T ( Ex, E, He ) ad T ( Ex, E, He ), ad we defie the compoud of T ad T as T = T T. (if Ex > Ex ), the: Ex + Ex Ex = = µ Ex µ µ Ex E = E + E Ex Ex Ex Ex Ex µ µ Ex He = He + He Ex Ex Ex Ex Accordig to the two defie below, we ca get the compoud formula of cloud model related to idexes to a etity. T ( Ex, E, He) = T T,, T, T T T3 is ordered by expectatio from low to high. I the formula, Ex + Ex + + Ex Ex = = ρ( Exk ρ Exk + ) Ex Ex ρ Exk Exk + ρ Ex Ex () E = E + + Ek + Ek E Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex ρ Ex Ex ρ Ex Ex He = He + + He + He + + Ex Ex Ex Ex Ex Ex Ex Ex He k k+ k k + Fially we ca gai the comprehesive cloud model ad the credible level through similarity cloud algorithm. Experimet ad Aalysis A. The geeratio of Characteristic attributes of credibility level based o cloud model Through the statistical aalysis of each dimesio property of sample data, we ca gai the frequecy distributio fuctio, o the other had, we ca obtai the umber of discrete coceptio by cloud trasform algorithm. Figure x shows credible level cocept cloud of two characteristics. ()

3 Applied Mechaics ad Materials Vols Fig. Differet characteristics of the depedable level cloud model As is show i Fig., each dimesio characteristic has itself uique credibility cloud model ad also itself distict cloud characteristic values. The characteristic of each dimesio is particularly obvious, which is differet from ay previous recogitio algorithm that ca ot distiguish characteristic behavior. Each dimesio characteristic has itself uique credibility cloud model, which are good for users or maagers to make a local observatios i order to take the best measures to deal with the curret system status. At the same time, comprehesive trusted level of the cloud model gives a very clear effect to sese the curret system state, which grasps the system s decisio strategy from a holistic perspective. B. Trusted level recogitio rate Usig differet samples as the traiig set ad uder the circumstaces of differet umber of sample, we ca obtai compariso for cloud model, PCA ad LPP reliable moitorig methods of recogitio about system trusted level o the trasiet performace by ijectig the icidet, as is show i Fig., recogitio rate is 66% ad relatively low whe the umber of traiig set is 300, but with the icreasig of sample, recogitio rate is icreasig gradually, at the same time, PCA uses miimal sample iformatio ad oly gai miimum sample mea square error. O the other had, whe the umber of sample is 300, PCA recogitio rate is oly 68%, with the icrease of time, recogitio rate is 83% whe the umber of sample is 3000, but it is difficult to adapt this recogitio rate to practical applicatio eviromet. LPP utilizes the iteral structure of data, with the icreasig of the umber of sample, structure of origial sample teds to stable ad shows the great improvemet, LPP algorithm is more 7% tha the PCA algorithm whe the umber of sample is 3000, which shows that it is very importat for trusted moitorig to classify iformatio. The cloud model ofte make a idetificatio based o statistical, so eve the recogitio rate is low whe the umber of sample is low, with the icreasig of sample, the recogitio rate is higher tha PCA ad LPP, so it has the practical sigificace i credible moitorig algorithm. cloud model sample umber Fig. Istataeous characteristic depedable recogitio rate compariso

4 08 Applied Sciece, Materials Sciece ad Iformatio Techologies i Idustry recogitio rate (%) Fig.3 A period of time characteristic depedable recogitio rate compariso The compariso of trusted recogitio rate for a period of time betwee cloud model of characteristic attributes ad classic high-dimesioal recogitio algorithm PCA ad LPP is show i Fig.3.There are still some differeces betwee trasiet performace credible recogitio ad credible recogitio for a period of time. The period of time characteristic depedable recogitio uses the similarity recogitio algorithm ad its stability has icreased, so the fial recogitio rate has improved steadily. Summary This paper uses data mimig based o cloud model, aalysis the trusted level cocept ad gives a formal descriptio of status of system. O this basis, we explores cloud model geeratio algorithm for oe-dimesio s trusted level, cloud model geeratio algorithm for a period of time, ad cloud model similarity algorithm ad so o. Experimetal results show that this method ca hadle the moitorig, judgmets ad idetificatio of complex multi-dimesioal data. Refereces [] YigHua Mig. Network fault tolerace ad security research. Joural of computer.003, 6(9): [] Chuag Li, Xuehai Peg. Research o Trustworthy Network. Joural of computer.005,8(5), [3] Martiez A M, Kak A C. PCA versus LDA. IEEE Trasactios o Patter Aalysis ad Machie Itelligece. 00, 3():8-33. [4] Gumus E, Kilic N, Sertbas A, et al. Evaluatio of face recogitio techiques usig PCA, wavelets ad SVM. Expert Systems with Applicatios.00, 37(9): [5] Jiag Rog. A Study o Time Series Data Miig [6] Du Yi. Research ad Applicatio of Assoeiatio Rule i Data Miig [7] KaiChag Di. The framework of spatial data miig ad kowledge discovery. Geomatics ad Iformatio Sciece of Wuha Uiversity,vol(4):38-33(999). [8] XiRe Zhao, Xiu-ya Peg, Guag-yu Jiag.Chia Northeast Power Network Short-term Load Forecastig Based o Neural Network. Joural of system simulatio, 006,8(6):

5 Applied Sciece, Materials Sciece ad Iformatio Techologies i Idustry 0.408/ Research o Depedable Level i Network Computig System 0.408/ DOI Refereces [3] Martiez A M, Kak A C. PCA versus LDA. IEEE Trasactios o Patter Aalysis ad Machie Itelligece. 00, 3(): / [4] Gumus E, Kilic N, Sertbas A, et al. Evaluatio of face recogitio techiques usig PCA, wavelets ad SVM. Expert Systems with Applicatios. 00, 37(9): /j.eswa

Reliability model of organization management chain of South-to-North Water Diversion Project during construction period

Reliability model of organization management chain of South-to-North Water Diversion Project during construction period Water Sciece ad Egieerig, Dec. 2008, Vol. 1, No. 4, 107-113 ISSN 1674-2370, http://kkb.hhu.edu.c, e-mail: wse@hhu.edu.c Reliability model of orgaizatio maagemet chai of South-to-North Water Diversio Project

More information

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation Iteratioal Joural of Mathematics Research. ISSN 0976-5840 Volume 9 Number 1 (017) pp. 45-51 Iteratioal Research Publicatio House http://www.irphouse.com A collocatio method for sigular itegral equatios

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Intermittent demand forecasting by using Neural Network with simulated data

Intermittent demand forecasting by using Neural Network with simulated data Proceedigs of the 011 Iteratioal Coferece o Idustrial Egieerig ad Operatios Maagemet Kuala Lumpur, Malaysia, Jauary 4, 011 Itermittet demad forecastig by usig Neural Network with simulated data Nguye Khoa

More information

Testing Statistical Hypotheses for Compare. Means with Vague Data

Testing Statistical Hypotheses for Compare. Means with Vague Data Iteratioal Mathematical Forum 5 o. 3 65-6 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach

More information

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm Joural of ad Eergy Egieerig, 05, 3, 43-437 Published Olie April 05 i SciRes. http://www.scirp.org/joural/jpee http://dx.doi.org/0.436/jpee.05.34058 Study o Coal Cosumptio Curve Fittig of the Thermal Based

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm , pp.10-106 http://dx.doi.org/10.1457/astl.016.137.19 The DOA Estimatio of ultiple Sigals based o Weightig USIC Algorithm Chagga Shu a, Yumi Liu State Key Laboratory of IPOC, Beijig Uiversity of Posts

More information

Formation of A Supergain Array and Its Application in Radar

Formation of A Supergain Array and Its Application in Radar Formatio of A Supergai Array ad ts Applicatio i Radar Tra Cao Quye, Do Trug Kie ad Bach Gia Duog. Research Ceter for Electroic ad Telecommuicatios, College of Techology (Coltech, Vietam atioal Uiversity,

More information

Enterprise interoperability measurement - Basic concepts

Enterprise interoperability measurement - Basic concepts Eterprise iteroperability measuremet - Basic cocepts Nicolas Dacli, David Che, Bruo Vallespir LAPS/GRAI, Uiversity Bordeaux 1, ENSEIRB, UMR 5131 CNRS, 351 cours de la Libératio, 33405 Talece Cedex, Frace

More information

A STUDY OF VIBRATION MEASURING AND FATIGUE ANALYSIS FOR CANTILEVER BEAMS

A STUDY OF VIBRATION MEASURING AND FATIGUE ANALYSIS FOR CANTILEVER BEAMS Joural of Techology, Vol. 3, No., pp. 47-56 (07) 47, * LabView ANSYS A STUDY OF VIBRATION MEASURING AND FATIGUE ANALYSIS FOR CANTILEVER BEAMS Yuo-Ter Tsai, * Hsie-Yag Li Departmet of Mechaical Egieerig

More information

Minimum Dominating Set Approach to Analysis and Control of Biological Networks

Minimum Dominating Set Approach to Analysis and Control of Biological Networks Miimum Domiatig Set Approach to Aalysis ad Cotrol of Biological Networks Tatsuya Akutsu Bioiformatics Ceter Istitute for Chemical Research, Kyoto Uiversity Joit work with Jose Nacher i Toho Uiversity Motivatio:

More information

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II Solid State Pheomea Vol. 89 (003) pp 343-348 (003) Tras Tech Publicatios, Switzerlad doi:0.408/www.scietific.et/ssp.89.343 A New Impulse Mechaical Spectrometer to Study the Dyamic Mechaical Properties

More information

Power Comparison of Some Goodness-of-fit Tests

Power Comparison of Some Goodness-of-fit Tests Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 7-6-2016 Power Compariso of Some Goodess-of-fit Tests Tiayi Liu tliu019@fiu.edu DOI: 10.25148/etd.FIDC000750

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Testing Statistical Hypotheses with Fuzzy Data

Testing Statistical Hypotheses with Fuzzy Data Iteratioal Joural of Statistics ad Systems ISS 973-675 Volume 6, umber 4 (), pp. 44-449 Research Idia Publicatios http://www.ripublicatio.com/ijss.htm Testig Statistical Hypotheses with Fuzzy Data E. Baloui

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

Robust Resource Allocation in Parallel and Distributed Computing Systems (tentative)

Robust Resource Allocation in Parallel and Distributed Computing Systems (tentative) Robust Resource Allocatio i Parallel ad Distributed Computig Systems (tetative) Ph.D. cadidate V. Shestak Colorado State Uiversity Electrical ad Computer Egieerig Departmet Fort Collis, Colorado, USA shestak@colostate.edu

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

On Edge Regular Fuzzy Line Graphs

On Edge Regular Fuzzy Line Graphs Iteratioal Joural of Computatioal ad Applied Mathematics ISSN 1819-4966 Volume 11, Number 2 (2016), pp 105-118 Research Idia Publicatios http://wwwripublicatiocom O Edge Regular Fuzz Lie Graphs K Radha

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration Hidawi Publishig Corporatio Advaces i Acoustics ad Vibratio Volume 2, Article ID 69652, 5 pages doi:.55/2/69652 Research Article Health Moitorig for a Structure Usig Its Nostatioary Vibratio Yoshimutsu

More information

Linear chord diagrams with long chords

Linear chord diagrams with long chords Liear chord diagrams with log chords Everett Sulliva Departmet of Mathematics Dartmouth College Haover New Hampshire, U.S.A. everett..sulliva@dartmouth.edu Submitted: Feb 7, 2017; Accepted: Oct 7, 2017;

More information

DISTRIBUTION LAW Okunev I.V.

DISTRIBUTION LAW Okunev I.V. 1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated

More information

Properties of Fuzzy Length on Fuzzy Set

Properties of Fuzzy Length on Fuzzy Set Ope Access Library Joural 206, Volume 3, e3068 ISSN Olie: 2333-972 ISSN Prit: 2333-9705 Properties of Fuzzy Legth o Fuzzy Set Jehad R Kider, Jaafar Imra Mousa Departmet of Mathematics ad Computer Applicatios,

More information

The Choquet Integral with Respect to Fuzzy-Valued Set Functions

The Choquet Integral with Respect to Fuzzy-Valued Set Functions The Choquet Itegral with Respect to Fuzzy-Valued Set Fuctios Weiwei Zhag Abstract The Choquet itegral with respect to real-valued oadditive set fuctios, such as siged efficiecy measures, has bee used i

More information

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to:

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to: OBJECTIVES Chapter 1 INTRODUCTION TO INSTRUMENTATION At the ed of this chapter, studets should be able to: 1. Explai the static ad dyamic characteristics of a istrumet. 2. Calculate ad aalyze the measuremet

More information

Four-dimensional Vector Matrix Determinant and Inverse

Four-dimensional Vector Matrix Determinant and Inverse I.J. Egieerig ad Maufacturig 013 30-37 Published Olie Jue 01 i MECS (http://www.mecs-press.et) DOI: 10.5815/iem.01.03.05 vailable olie at http://www.mecs-press.et/iem Four-dimesioal Vector Matrix Determiat

More information

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS R775 Philips Res. Repts 26,414-423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated

More information

EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR

EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Joural of Statistical Research 26, Vol. 37, No. 2, pp. 43-55 Bagladesh ISSN 256-422 X EDGEORTH SIZE CORRECTED, AND TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Zahirul Hoque Departmet of Statistics

More information

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018) NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

More information

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration Advaces i Acoustics ad Vibratio Volume 2, Article ID 69652, 5 pages doi:.55/2/69652 Research Article Health Moitorig for a Structure Usig Its Nostatioary Vibratio Yoshimutsu Hirata, Mikio Tohyama, Mitsuo

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Analysis of Experimental Data

Analysis of Experimental Data Aalysis of Experimetal Data 6544597.0479 ± 0.000005 g Quatitative Ucertaity Accuracy vs. Precisio Whe we make a measuremet i the laboratory, we eed to kow how good it is. We wat our measuremets to be both

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

How to Maximize a Function without Really Trying

How to Maximize a Function without Really Trying How to Maximize a Fuctio without Really Tryig MARK FLANAGAN School of Electrical, Electroic ad Commuicatios Egieerig Uiversity College Dubli We will prove a famous elemetary iequality called The Rearragemet

More information

Teaching Mathematics Concepts via Computer Algebra Systems

Teaching Mathematics Concepts via Computer Algebra Systems Iteratioal Joural of Mathematics ad Statistics Ivetio (IJMSI) E-ISSN: 4767 P-ISSN: - 4759 Volume 4 Issue 7 September. 6 PP-- Teachig Mathematics Cocepts via Computer Algebra Systems Osama Ajami Rashaw,

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

Probability, Expectation Value and Uncertainty

Probability, Expectation Value and Uncertainty Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

More information

Final Examination Solutions 17/6/2010

Final Examination Solutions 17/6/2010 The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

More information

Increasing timing capacity using packet coloring

Increasing timing capacity using packet coloring 003 Coferece o Iformatio Scieces ad Systems, The Johs Hopkis Uiversity, March 4, 003 Icreasig timig capacity usig packet colorig Xi Liu ad R Srikat[] Coordiated Sciece Laboratory Uiversity of Illiois e-mail:

More information

Topic 18: Composite Hypotheses

Topic 18: Composite Hypotheses Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2 Joural of Advaced Research i Pure Mathematics Olie ISSN: 1943-2380 Vol. 3, Issue. 1, 2010, pp. 104-110 doi: 10.5373/jarpm.473.061810 O Orlicz N-frames Reu Chugh 1,, Shashak Goel 2 1 Departmet of Mathematics,

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

A New Class of Ternary Zero Correlation Zone Sequence Sets Based on Mutually Orthogonal Complementary Sets

A New Class of Ternary Zero Correlation Zone Sequence Sets Based on Mutually Orthogonal Complementary Sets IOSR Joural of Electroics ad Commuicatio Egieerig (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 0, Issue 3, Ver. I (May - Ju.205), PP 08-3 www.iosrjourals.org A New Class of Terary Zero Correlatio

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

NCSS Statistical Software. Tolerance Intervals

NCSS Statistical Software. Tolerance Intervals Chapter 585 Itroductio This procedure calculates oe-, ad two-, sided tolerace itervals based o either a distributio-free (oparametric) method or a method based o a ormality assumptio (parametric). A two-sided

More information

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error Proceedigs of the 6th WSEAS Iteratioal Coferece o SIGNAL PROCESSING, Dallas, Texas, USA, March -4, 7 67 Sesitivity Aalysis of Daubechies 4 Wavelet Coefficiets for Reductio of Recostructed Image Error DEVINDER

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Solving a Nonlinear Equation Using a New Two-Step Derivative Free Iterative Methods

Solving a Nonlinear Equation Using a New Two-Step Derivative Free Iterative Methods Applied ad Computatioal Mathematics 07; 6(6): 38-4 http://www.sciecepublishiggroup.com/j/acm doi: 0.648/j.acm.070606. ISSN: 38-5605 (Prit); ISSN: 38-563 (Olie) Solvig a Noliear Equatio Usig a New Two-Step

More information

9. Simulation lect09.ppt S Introduction to Teletraffic Theory - Fall

9. Simulation lect09.ppt S Introduction to Teletraffic Theory - Fall lect09.ppt S-38.145 - Itroductio to Teletraffic Theory - Fall 2001 1 Cotets Itroductio Geeratio of realizatios of the traffic process Geeratio of realizatios of radom variables Collectio of data Statistical

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Statistical Fundamentals and Control Charts

Statistical Fundamentals and Control Charts Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials,

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Improved cosine similarity measures of simplified intuitionistic sets for. medicine diagnoses

Improved cosine similarity measures of simplified intuitionistic sets for. medicine diagnoses *Mauscript lick here to dowload Mauscript: cossimm_sss.doc lick here to view liked Refereces mproved cosie similarity measures of simplified ituitioistic sets for medicie diagoses Ju Ye.* Departmet of

More information

A Modified Statistical Design Model of Double Sampling X Control Chart

A Modified Statistical Design Model of Double Sampling X Control Chart Proceedigs of the Iteratioal MultiCoferece of Egieers ad Computer Scietists 009 Vol II IMECS 009, March 8-0, 009, Hog Kog A Modified Statistical Desig Model of Double Samplig X Cotrol Chart Chau-Che Torg,

More information

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations Abstract ad Applied Aalysis Volume 2013, Article ID 487062, 4 pages http://dx.doi.org/10.1155/2013/487062 Research Article A New Secod-Order Iteratio Method for Solvig Noliear Equatios Shi Mi Kag, 1 Arif

More information

A numerical Technique Finite Volume Method for Solving Diffusion 2D Problem

A numerical Technique Finite Volume Method for Solving Diffusion 2D Problem The Iteratioal Joural Of Egieerig d Sciece (IJES) Volume 4 Issue 10 Pages PP -35-41 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 umerical Techique Fiite Volume Method for Solvig Diffusio 2D Problem 1 Mohammed

More information

True Nature of Potential Energy of a Hydrogen Atom

True Nature of Potential Energy of a Hydrogen Atom True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365-w, 33+p Abstract I cosiderig the potetial

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

A New Simulation Model of Rician Fading Channel Xinxin Jin 1,2,a, Yu Zhang 1,3,b, Changyong Pan 4,c

A New Simulation Model of Rician Fading Channel Xinxin Jin 1,2,a, Yu Zhang 1,3,b, Changyong Pan 4,c 6 Iteratioal Coferece o Iformatio Egieerig ad Commuicatios Techology (IECT 6 ISB: 978--6595-375-5 A ew Simulatio Model of Ricia Fadig Chael Xixi Ji,,a, Yu Zhag,3,b, Chagyog Pa 4,c Tsighua atioal Laboratory

More information

A new iterative algorithm for reconstructing a signal from its dyadic wavelet transform modulus maxima

A new iterative algorithm for reconstructing a signal from its dyadic wavelet transform modulus maxima ol 46 No 6 SCIENCE IN CHINA (Series F) December 3 A ew iterative algorithm for recostructig a sigal from its dyadic wavelet trasform modulus maxima ZHANG Zhuosheg ( u ), LIU Guizhog ( q) & LIU Feg ( )

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

Research on real time compensation of thermal errors of CNC lathe based on linear regression theory Qiu Yongliang

Research on real time compensation of thermal errors of CNC lathe based on linear regression theory Qiu Yongliang d Iteratioal Coferece o Machiery, Materials Egieerig, Chemical Egieerig ad Biotechology (MMECEB 015) Research o real time compesatio of thermal errors of CNC lathe based o liear regressio theory Qiu Yogliag

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Integrating Classification and Association Rules by proposing adaptations to the CBA Algorithm

Integrating Classification and Association Rules by proposing adaptations to the CBA Algorithm Itegratig Classificatio ad Associatio Rules by proposig adaptatios to the CBA Algorithm Davy Jasses Geert Wets Tom Brijs Koe Vahoof DAVY.JANSSENS@LUC.AC.BE GEERT.WETS@LUC.AC.BE TOM.BRIJS@LUC.AC.BE KOEN.VANHOOF@LUC.AC.BE

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

Basis for simulation techniques

Basis for simulation techniques Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

Oblivious Gradient Clock Synchronization

Oblivious Gradient Clock Synchronization Motivatio: Clock Sychroizatio Oblivious Gradiet Clock Sychroizatio Thomas Locher, ETH Zurich Roger Wattehofer, ETH Zurich Clock sychroizatio is a classic, importat problem! May results have bee published

More information

Section 7 Fundamentals of Sequences and Series

Section 7 Fundamentals of Sequences and Series ectio Fudametals of equeces ad eries. Defiitio ad examples of sequeces A sequece ca be thought of as a ifiite list of umbers. 0, -, -0, -, -0...,,,,,,. (iii),,,,... Defiitio: A sequece is a fuctio which

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

Modified Lilliefors Test

Modified Lilliefors Test Joural of Moder Applied Statistical Methods Volume 14 Issue 1 Article 9 5-1-2015 Modified Lilliefors Test Achut Adhikari Uiversity of Norther Colorado, adhi2939@gmail.com Jay Schaffer Uiversity of Norther

More information

How to Resolve Conflict in Strategic Alliance: A Cognitive-Map-Based Approach

How to Resolve Conflict in Strategic Alliance: A Cognitive-Map-Based Approach How to Resolve Coflict i Strategic Alliace: A Cogitive-Map-Based Approach Tao Zhag ad Yapig Liu School of Ecoomics ad Maagemet, Beijig Jiaotog Uiversity, Beijig100044, P.R. Chia emasse@126.com mf001455@263.et

More information

1036: Probability & Statistics

1036: Probability & Statistics 036: Probability & Statistics Lecture 0 Oe- ad Two-Sample Tests of Hypotheses 0- Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany PROBABILITY AND STATISTICS Vol. III - Correlatio Aalysis - V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS J. Japa Statist. Soc. Vol. 41 No. 1 2011 67 73 A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS Yoichi Nishiyama* We cosider k-sample ad chage poit problems for idepedet data i a

More information

General IxJ Contingency Tables

General IxJ Contingency Tables page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad cross-sectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test

More information