Classification Using Decision Trees. Jackknife Estimator: Example 1. Data Mining. Jackknife Estimator: Example 2(cont. Jackknife Estimator: Example 2

Size: px
Start display at page:

Download "Classification Using Decision Trees. Jackknife Estimator: Example 1. Data Mining. Jackknife Estimator: Example 2(cont. Jackknife Estimator: Example 2"

Transcription

1 Data Miig CS 341, Sprig 2007 Lecture 8: Decisio tree algorithms Jackkife Estimator: Example 1 Estimate of mea for X={x 1, x 2, x 3,}, =3, g=3, m=1, θ = µ = (x( 1 + x 2 + x 3 )/3 θ 1 = (x( 2 + x 3 )/2, θ 2 = (x( 1 + x 3 )/2, θ 1 = (x( 1 + x 2 )/2, θ = (θ( 1 + θ 2 + θ 2 )/3 θ Q = gθ-(gg (g-1) θ_= 3θ-(33 (3-1) θ_= (x( 1 + x 2 + x 3 )/3 I this case, the Jackkife Estimator is the same as the usual estimator. Pretice Hall 2 Jackkife Estimator: Example 2 Estimate of variace for X={1, 4, 4}, =3, g=3, m=1, θ = σ 2 σ 2 = ((1-3) 2 +(4-3) 2 +(4-3) 2 )/3 = 2 θ 1 = ((4-4) 4) 2 + (4-4) 4) 2 ) /2 = 0, 0 θ 2 = 2.25, θ 3 = 2.25 θ = (θ 1 + θ 2 + θ 2 )/3 = 1.5 θ Q = gθ-(g-1) θ_= 3θ-(33 (3-1) θ_ =3(2)-2(1.5)=3 2(1.5)=3 I this case, the Jackkife Estimator is differet from the usual estimator. Jackkife Estimator: Example 2(cot Example 2(cot d) I geeral, apply the Jackkife techique to the biased estimator σ 2 σ 2 = Σ (x i x ) 2 / the the jackkife estimator is s 2 s 2 = Σ (x i x ) 2 / ( -1) Which is kow to be ubiased for σ 2 Pretice Hall 3 Pretice Hall 4 Review: Distace-based Algorithms Place items i class to which they are closest. Similarity measures or distace measures Simple approach K Nearest Neighbors Decisio Tree issues, pros ad cos Pretice Hall 5 Classificatio Usig Decisio Trees Partitioig based: Divide search space ito rectagular regios. Tuple placed ito class based o the regio withi which it falls. DT approaches differ i how the tree is built: DT Iductio Iteral odes associated with attribute ad arcs with values for that attribute. Algorithms: ID3, C4.5, CART Pretice Hall 6 1

2 Decisio Tree Give: D = {t 1,, t } where t i =<t i1,, t ih > Database schema cotais {A 1, A 2,,, A h } Classes C={C 1,., C m } Decisio or Classificatio Tree is a tree associated with D such that Each iteral ode is labeled with attribute, A i Each arc is labeled with predicate which ca be applied to attribute at paret Each leaf ode is labeled with a class, C j DT Iductio Pretice Hall 7 Pretice Hall 8 Iformatio Decisio Tree Iductio is ofte based o Iformatio Theory So Pretice Hall 9 Pretice Hall 10 DT Iductio Whe all the marbles i the bowl are mixed up, little iformatio is give. Whe the marbles i the bowl are all from oe class ad those i the other two classes are o either side, more iformatio is give. Use this approach with DT Iductio! Iformatio/Etropy Give probabilities p 1, p 2,.., p s whose sum is 1, Etropy is defied as: Etropy measures the amout of radomess or surprise or ucertaity. Its value is betwee 0 ad 1. Reaches the maximum whe all the probabilities are the same. Goal i classificatio o surprise etropy = 0 Pretice Hall 11 Pretice Hall 12 2

3 Etropy ID3 Creates tree usig iformatio theory cocepts ad tries to reduce expected umber of compariso.. ID3 chooses split attribute with the highest iformatio gai: Iformatio gai: the differece betwee how much iformatio is eeded to make a correct classificatio before the split versus how much iformatio is eeded after the split. log (1/p) H(p,1-p) Pretice Hall 13 Pretice Hall 14 Height Example Data N a m e G e d e r H e i g h t O u t p u t 1 O u t p u t 2 K r is ti a F 1. 6 m S h o r t M e d iu m J im M 2 m T a ll M e d iu m M a g g ie F 1. 9 m M e d iu m T a ll M a r th a F m M e d iu m T a ll S te p h a ie F 1. 7 m S h o r t M e d iu m B o b M m M e d iu m M e d iu m K a t h y F 1. 6 m S h o r t M e d iu m D a v e M 1. 7 m S h o r t M e d iu m W o r t h M 2. 2 m T a ll T a ll S te v e M 2. 1 m T a ll T a ll D e b b ie F 1. 8 m M e d iu m M e d iu m T o d d M m M e d iu m M e d iu m K im F 1. 9 m M e d iu m T a ll A m y F 1. 8 m M e d iu m M e d iu m W y e t te F m M e d iu m M e d iu m Pretice Hall 15 Iformatio Gai Choose geder as the split attribute H(D): etropy before split E(H(D)) : expected etropy after split Iformatio gai = Choose height as the split attribute H(D): etropy before split E(H(D)) : expected etropy after split Iformatio gai = Pretice Hall 16 ID3 Example (Output1) Startig state etropy: 4/15 log(15/4) + 8/15 log(15/8) + 3/15 log(15/3) = Gai usig geder: Female: 3/9 log(9/3)+6/9 log(9/6)= Male: 1/6 (log 6/1) + 2/6 log(6/2) + 3/6 log(6/3) = Weighted sum: (9/15)(0.2764) + (6/15)(0.4392) = Gai: = Gai usig height: (2/15)(0.301) = Choose height as first splittig attribute Pretice Hall 17 ID3 Example (Output1) Startig state etropy: 4/15 log(15/4) + 8/15 log(15/8) + 3/15 log(15/3) = Gai usig geder: Gai usig height: (2/15)(0.301) = Choose height as first splittig attribute Pretice Hall 18 3

4 C4.5 ID3 favors attributes with large umber of divisios Improved versio of ID3: Missig Data Cotiuous Data Pruig Rules GaiRatio: C4.5: Example Calculate the GaiRatio for the geder split Etropy associated with the split igorig classes H(9/15, 6/15) = The GaiRatio value for the geder attribute /0.292 = Pretice Hall 19 Pretice Hall 20 C5.0 A commercial versio of C4.5 widely used i may data miig packages. Targeted toward use with large datasets. Produce more accurate rules. Improves o memory usage by 90% Ru much faster tha C4.5 CART Create Biary Tree Uses etropy for best splittig attribute (as with ID3) Formula to choose split poit, s, for ode t: P L,P R probability that a tuple i the traiig set will be o the left or right side of the tree. P(C j t L ), P(C j t R ) :probability that a tuple is i class C j ad i the left (or right) subtree. Pretice Hall 21 Pretice Hall 22 CART Example At the start, there are six choices for split poit (right brach o equality): ϕ(geder)= (Geder)=2(6/15)(9/15)(2/15 + 4/15 + 3/15)=0.224 ϕ(1.6) = 0 ϕ(1.7) = 2(2/15)(13/15)(0 + 8/15 + 3/15) = ϕ(1.8) = 2(5/15)(10/15)(4/15 + 6/15 + 3/15) = ϕ(1.9) = 2(9/15)(6/15)(4/15 + 2/15 + 3/15) = ϕ(2.0) = 2(12/15)(3/15)(4/15 + 8/15 + 3/15) = 0.32 Best split at 1.8 What is ext? Scalable DT Techiques SPRINT Creatio of DTs for large datasets. Based o CART techiques Pretice Hall 23 Pretice Hall 24 4

5 Next Lecture: Rule-based algorithms Combig techiques Pretice Hall 25 5

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations Review of Lecture 1 This course is about finding novel actionable patterns in data. We can divide data mining algorithms (and the patterns they find) into five groups Across records Classification, Clustering,

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Lecture 11: Decision Trees

Lecture 11: Decision Trees ECE9 Sprig 7 Statistical Learig Theory Istructor: R. Nowak Lecture : Decisio Trees Miimum Complexity Pealized Fuctio Recall the basic results of the last lectures: let X ad Y deote the iput ad output spaces

More information

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234 STA 291 Lecture 19 Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Locatio CB 234 STA 291 - Lecture 19 1 Exam II Covers Chapter 9 10.1; 10.2; 10.3; 10.4; 10.6

More information

Machine Learning. Ilya Narsky, Caltech

Machine Learning. Ilya Narsky, Caltech Machie Learig Ilya Narsky, Caltech Lecture 4 Multi-class problems. Multi-class versios of Neural Networks, Decisio Trees, Support Vector Machies ad AdaBoost. Reductio of a multi-class problem to a set

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

Machine Learning, Spring 2011: Homework 1 Solution

Machine Learning, Spring 2011: Homework 1 Solution 10-701 Machie Learig, Sprig 011: Homework 1 Solutio February 1, 011 Istructios There are 3 questios o this assigmet. The last questio ivolves codig. Attach your code to the writeup. Please submit your

More information

CSE 4095/5095 Topics in Big Data Analytics Spring 2017; Homework 1 Solutions

CSE 4095/5095 Topics in Big Data Analytics Spring 2017; Homework 1 Solutions CSE 09/09 Topics i ig Data Aalytics Sprig 2017; Homework 1 Solutios Note: Solutios to problems,, ad 6 are due to Marius Nicolae. 1. Cosider the followig algorithm: for i := 1 to α log e do Pick a radom

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

Lecture 8: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS

Lecture 8: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS Lecture 8: No-parametric Compariso of Locatio GENOME 560, Sprig 2016 Doug Fowler, GS (dfowler@uw.edu) 1 Review What do we mea by oparametric? What is a desirable locatio statistic for ordial data? What

More information

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions Chapter 9 Slide Ifereces from Two Samples 9- Overview 9- Ifereces about Two Proportios 9- Ifereces about Two Meas: Idepedet Samples 9-4 Ifereces about Matched Pairs 9-5 Comparig Variatio i Two Samples

More information

Lecture 9: Independent Groups & Repeated Measures t-test

Lecture 9: Independent Groups & Repeated Measures t-test Brittay s ote 4/6/207 Lecture 9: Idepedet s & Repeated Measures t-test Review: Sigle Sample z-test Populatio (o-treatmet) Sample (treatmet) Need to kow mea ad stadard deviatio Problem with this? Sigle

More information

Lecture 10: Performance Evaluation of ML Methods

Lecture 10: Performance Evaluation of ML Methods CSE57A Machie Learig Sprig 208 Lecture 0: Performace Evaluatio of ML Methods Istructor: Mario Neuma Readig: fcml: 5.4 (Performace); esl: 7.0 (Cross-Validatio); optioal book: Evaluatio Learig Algorithms

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Berli Che Deartmet of Comuter Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chater 5 & Teachig Material Itroductio

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Sample Size Determination (Two or More Samples)

Sample Size Determination (Two or More Samples) Sample Sie Determiatio (Two or More Samples) STATGRAPHICS Rev. 963 Summary... Data Iput... Aalysis Summary... 5 Power Curve... 5 Calculatios... 6 Summary This procedure determies a suitable sample sie

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Exercises Advanced Data Mining: Solutions

Exercises Advanced Data Mining: Solutions Exercises Advaced Data Miig: Solutios Exercise 1 Cosider the followig directed idepedece graph. 5 8 9 a) Give the factorizatio of P (X 1, X 2,..., X 9 ) correspodig to this idepedece graph. P (X) = 9 P

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Inferential Statistics. Inference Process. Inferential Statistics and Probability a Holistic Approach. Inference Process.

Inferential Statistics. Inference Process. Inferential Statistics and Probability a Holistic Approach. Inference Process. Iferetial Statistics ad Probability a Holistic Approach Iferece Process Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

CS 332: Algorithms. Linear-Time Sorting. Order statistics. Slide credit: David Luebke (Virginia)

CS 332: Algorithms. Linear-Time Sorting. Order statistics. Slide credit: David Luebke (Virginia) 1 CS 332: Algorithms Liear-Time Sortig. Order statistics. Slide credit: David Luebke (Virgiia) Quicksort: Partitio I Words Partitio(A, p, r): Select a elemet to act as the pivot (which?) Grow two regios,

More information

Economics Spring 2015

Economics Spring 2015 1 Ecoomics 400 -- Sprig 015 /17/015 pp. 30-38; Ch. 7.1.4-7. New Stata Assigmet ad ew MyStatlab assigmet, both due Feb 4th Midterm Exam Thursday Feb 6th, Chapters 1-7 of Groeber text ad all relevat lectures

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam Itroductio to Artificial Itelligece CAP 601 Summer 013 Midterm Exam 1. Termiology (7 Poits). Give the followig task eviromets, eter their properties/characteristics. The properties/characteristics of the

More information

Lecture 15: Learning Theory: Concentration Inequalities

Lecture 15: Learning Theory: Concentration Inequalities STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 5: Learig Theory: Cocetratio Iequalities Istructor: Ye-Chi Che 5. Itroductio Recall that i the lecture o classificatio, we have see that

More information

Probabilistic Classifiers Using Nearest Neighbor Balls. Climate Change Workshop, Malta, March, 2009

Probabilistic Classifiers Using Nearest Neighbor Balls. Climate Change Workshop, Malta, March, 2009 Probabilistic Classifiers Usig Nearest Neighbor Balls Climate Chage Worshop Malta March 2009 Bo Raeby & Ju Yu Cetre of Biostochastics Swedish Uiversity of Agricultural Scieces Bacgroud Climate chage implies

More information

Chapter 7. Support Vector Machine

Chapter 7. Support Vector Machine Chapter 7 Support Vector Machie able of Cotet Margi ad support vectors SVM formulatio Slack variables ad hige loss SVM for multiple class SVM ith Kerels Relevace Vector Machie Support Vector Machie (SVM)

More information

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 No-Parametric Techiques Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 Parametric vs. No-Parametric Parametric Based o Fuctios (e.g Normal Distributio) Uimodal Oly oe peak Ulikely real data cofies

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

6.046 Recitation 5: Binary Search Trees Bill Thies, Fall 2004 Outline

6.046 Recitation 5: Binary Search Trees Bill Thies, Fall 2004 Outline 6.046 Recitatio 5: Biary Search Trees Bill Thies, Fall 2004 Outlie My cotact iformatio: Bill Thies thies@mit.edu Office hours: Sat 1-3pm, 36-153 Recitatio website: http://cag.lcs.mit.edu/~thies/6.046/

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Spectral Partitioning in the Planted Partition Model

Spectral Partitioning in the Planted Partition Model Spectral Graph Theory Lecture 21 Spectral Partitioig i the Plated Partitio Model Daiel A. Spielma November 11, 2009 21.1 Itroductio I this lecture, we will perform a crude aalysis of the performace of

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Fial Math - 3 7 These problems are provided to help you study The presece of a problem o this hadout does ot imply that there will be a similar problem o the test Ad the absece

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

3 Resampling Methods: The Jackknife

3 Resampling Methods: The Jackknife 3 Resamplig Methods: The Jackkife 3.1 Itroductio I this sectio, much of the cotet is a summary of material from Efro ad Tibshirai (1993) ad Maly (2007). Here are several useful referece texts o resamplig

More information

Different kinds of Mathematical Induction

Different kinds of Mathematical Induction Differet ids of Mathematical Iductio () Mathematical Iductio Give A N, [ A (a A a A)] A N () (First) Priciple of Mathematical Iductio Let P() be a propositio (ope setece), if we put A { : N p() is true}

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b Logistic Regressio Step : Fuctio Set We wat to fid P w,b C x σ z = + exp z If P w,b C x.5, output C Otherwise, output C 2 z P w,b C x = σ z z = w x + b = w i x i + b i z Fuctio set: f w,b x = P w,b C x

More information

We will conclude the chapter with the study a few methods and techniques which are useful

We will conclude the chapter with the study a few methods and techniques which are useful Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

More information

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

More information

This Lecture. Divide and Conquer. Merge Sort: Algorithm. Merge Sort Algorithm. MergeSort (Example) - 1. MergeSort (Example) - 2

This Lecture. Divide and Conquer. Merge Sort: Algorithm. Merge Sort Algorithm. MergeSort (Example) - 1. MergeSort (Example) - 2 This Lecture Divide-ad-coquer techique for algorithm desig. Example the merge sort. Writig ad solvig recurreces Divide ad Coquer Divide-ad-coquer method for algorithm desig: Divide: If the iput size is

More information

Elementary Statistics

Elementary Statistics Elemetary Statistics M. Ghamsary, Ph.D. Sprig 004 Chap 0 Descriptive Statistics Raw Data: Whe data are collected i origial form, they are called raw data. The followig are the scores o the first test of

More information

Analysis of Experimental Measurements

Analysis of Experimental Measurements Aalysis of Experimetal Measuremets Thik carefully about the process of makig a measuremet. A measuremet is a compariso betwee some ukow physical quatity ad a stadard of that physical quatity. As a example,

More information

General IxJ Contingency Tables

General IxJ Contingency Tables page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad cross-sectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Context-free grammars and. Basics of string generation methods

Context-free grammars and. Basics of string generation methods Cotext-free grammars ad laguages Basics of strig geeratio methods What s so great about regular expressios? A regular expressio is a strig represetatio of a regular laguage This allows the storig a whole

More information

There is no straightforward approach for choosing the warmup period l.

There is no straightforward approach for choosing the warmup period l. B. Maddah INDE 504 Discrete-Evet Simulatio Output Aalysis () Statistical Aalysis for Steady-State Parameters I a otermiatig simulatio, the iterest is i estimatig the log ru steady state measures of performace.

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc)

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc) Classificatio of problem & problem solvig strategies classificatio of time complexities (liear, arithmic etc) Problem subdivisio Divide ad Coquer strategy. Asymptotic otatios, lower boud ad upper boud:

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Lecture 1. Statistics: A science of information. Population: The population is the collection of all subjects we re interested in studying.

Lecture 1. Statistics: A science of information. Population: The population is the collection of all subjects we re interested in studying. Lecture Mai Topics: Defiitios: Statistics, Populatio, Sample, Radom Sample, Statistical Iferece Type of Data Scales of Measuremet Describig Data with Numbers Describig Data Graphically. Defiitios. Example

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

1036: Probability & Statistics

1036: Probability & Statistics 036: Probability & Statistics Lecture 0 Oe- ad Two-Sample Tests of Hypotheses 0- Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso

More information

Bivariate Sample Statistics Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 7

Bivariate Sample Statistics Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 7 Bivariate Sample Statistics Geog 210C Itroductio to Spatial Data Aalysis Chris Fuk Lecture 7 Overview Real statistical applicatio: Remote moitorig of east Africa log rais Lead up to Lab 5-6 Review of bivariate/multivariate

More information

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D.

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D. ample ie Estimatio i the Proportioal Haards Model for K-sample or Regressio ettigs cott. Emerso, M.D., Ph.D. ample ie Formula for a Normally Distributed tatistic uppose a statistic is kow to be ormally

More information

Increasing timing capacity using packet coloring

Increasing timing capacity using packet coloring 003 Coferece o Iformatio Scieces ad Systems, The Johs Hopkis Uiversity, March 4, 003 Icreasig timig capacity usig packet colorig Xi Liu ad R Srikat[] Coordiated Sciece Laboratory Uiversity of Illiois e-mail:

More information

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACATÓLICA Quatitative Methods Miguel Gouveia Mauel Leite Moteiro Faculdade de Ciêcias Ecoómicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACatólica 006/07 Métodos Quatitativos

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information

Final Review. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Final Review. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Fial Review Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milto Stewart School of Idustrial Systems & Egieerig Georgia Tech 1 Radom samplig model radom samples populatio radom samples: x 1,..., x

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ STATISTICAL INFERENCE INTRODUCTION Statistical iferece is that brach of Statistics i which oe typically makes a statemet about a populatio based upo the results of a sample. I oesample testig, we essetially

More information

Lecture 5: Parametric Hypothesis Testing: Comparing Means. GENOME 560, Spring 2016 Doug Fowler, GS

Lecture 5: Parametric Hypothesis Testing: Comparing Means. GENOME 560, Spring 2016 Doug Fowler, GS Lecture 5: Parametric Hypothesis Testig: Comparig Meas GENOME 560, Sprig 2016 Doug Fowler, GS (dfowler@uw.edu) 1 Review from last week What is a cofidece iterval? 2 Review from last week What is a cofidece

More information

Introduction to regression

Introduction to regression Itroductio to regressio Regressio Bria Caffo, Jeff Leek ad Roger Peg Johs Hopkis Bloomberg School of Public Health A famous motivatig example (Perhaps surprisigly, this example is still relevat) http://www.ature.com/ejhg/joural/v17/8/full/ejhg20095a.html

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information