G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan"

Transcription

1 Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity Multa, Pakista Muhammad Aslam Departmet of Statistics Bahauddi Zakariya Uiversity Multa, Pakista Muhammad Javed Departmet of Statistics Bahauddi Zakariya Uiversity Multa, Pakista Abstract I this paper, we preset that how much the variaces of the classical estimators, amely, maximum likelihood estimator ad momet estimator deviate from the miimum variace boud while estimatig for the Maxwell distributio. We also sketch this differece for the egative iteger momet estimator. We ote the poor performace of the egative iteger momet estimator i the said cosideratio while maximum likelihood estimator attais miimum variace boud ad becomes a attractive choice. Keywords: Classical estimator; Cramer-Rao iequality; Maximum likelihood estimator; Maxwell distributio; Miimum variace boud; Momet estimator; Negative iteger momet estimator. 1. Itroductio I the cotext of the kietic molecular theory of gases, a gas cotais a large umber of particles i rapid motios. Each particle has a differet speed, ad each collisio betwee particles chages the speeds of the particles. A uderstadig of the properties of the gas requires a uderstadig of the distributio of particle speeds. The Maxwell distributio describes the distributio of particle speeds i a ideal gas. This distributio has a variety of applicatios i the study of the distributio of speeds of molecules i thermal equilibrium as give by statistical mechaics (see Papoulis, 1984 for more details). The probability desity fuctio of Maxwell distributio is give as x x f ( x; ) = exp ( ), for > 0, x > 0 (1.1) 3 π Pak. j. stat. oper. res. Vol.II No. 006 pp

2 G. R. Pasha, Muhammad Aslam, Muhammad Javed With the applicatios of the Maxwell distributio kietic molecular theory of gases ad a umber of other similar cases, the estimatio for its ukow parameter also become crucial. I the preset paper, we compare two classical estimators, amely, maximum likelihood estimator (MLE) ad estimator by method of momets (MME) with the egative iteger momet estimator (NIME). Mohsi ad Shahbaz (005) also coducted such kid of compariso while estimatig the parameter of iverse Rayleigh distributio but they just compare MLE with NIME. But i our study, i additio of MME, we maily, compute miimum variace boud (MVB) for ay ubiased estimator of ukow parameter of the Maxwell distributio ad compute the deviatio of this MVB form the variaces of the said estimators. I Sectio, we compute the classical estimates of the ukow value of the parameter for desity (1.1) alog with variaces. For this we use MLE ad MME. Sectio 3, dedicates for the estimatio by method of egative iteger momets. I Sectio 4, we give Cramer-Rao iequality ad compute the MVB for estimatio of. I Sectio 5, we discuss the deviatio of the variaces from the MVB ad relative efficiecies while Sectio 6 cocludes.. Classical Estimatio The MLE is oe of the classical estimators i statistical iferece. Efro (198) explaied the method of maximum likelihood estimatio alog with the properties of the estimator. Accordig to Aldrich (1997), the makig of maximum likelihood was oe of the most importat developmets i 0th cetury statistics. I his paper, he cosidered Fisher s chagig justificatios for the method. It ca be foud that the log likelihood of (1.1) is; log (L) = log ( ) 1-3 log + log ( ) x i - x i, (.1) π 1 1 ad, resultatly, the MLE of is give as with ML = var( ML 1 x 3 i, (.) Γ ) = 3 3 Γ (.3) The method of momet (MM) is also a commoly used method of estimatio. I this method, the sample momets are assumed to be estimates of populatio momets ad thus momet estimates for the ukow values of populatio parameters are foud (see Lehma ad Casella, 1998, for details). For ukow parameter i (1.1), the momet estimator ca be foud as 146 Pak. j. stat. oper. res. Vol.II No. 006 pp

3 Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator 1 π MM = X, (.4) where X is sample mea. also, ( 3π 8 var MM ) = (.5) 8 3. Negative Iteger Momet Estimator Negative iteger momets are useful i applicatios i several cotexts, otably i life testig problems. Bock et al. (1984) illustrated the examples of their use i the evaluatio of a variety of estimators. With the particular referece to Chi-square distributio, i the iverse regressio problem, Oma (1985) gave a exact formula for the mea squared error of Kruutchkoff s iverse estimator by use of egative iteger momets of the ocetral Chi-squared variable. The rth egative iteger momet is defied as: r E{( X + c) } where X is a radom variable, c is a costat, ad r is a positive iteger. Before fidig the estimator by the method of egative iteger momets, we have the rth order egative iteger momets of Maxwell distributio is as r 1 3 r μ ( r) = Γ r π For r = 1, the first order egative iteger momet is; (3.1) μ 1 ( 1) = (3.) π Now accordig to method of egative iteger momet (NIM) estimatio, the estimator for ukow parameter for (1.1) is 1 NIM =, (3.3) π m ( 1) 1/ xi 1 where m( 1) =. For variace of estimator i (3.3), we have var( NIM ) 4. Miimum Variace Boud = π (3.4) Let X = (X 1, X,, X ) be a radom sample ad let f(x; ) deotes the probability desity fuctio for some model of the data with ukow parameter. If T(X) be Pak. j. stat. oper. res. Vol.II No. 006 pp

4 G. R. Pasha, Muhammad Aslam, Muhammad Javed ay statistic ad ψ() be its expectatio such that ψ() = E [T(X)]. Uder some regularity coditios (see Lehma ad Casella, 1998), it follows that for all, ψ ( ) Var( T ( X )), (4.1) I ( ) where I () is Fisher s iformatio matrix. This is called Cramer-Rao iequality ad the right had side of (4.1) is called Cramer-Rao lower boud or MVB. I particular, if T(X) is a ubiased estimator of, the the umerator becomes 1, ad MVB is simply 1/I (). Obviously, if the variace of estimator coicides with the MVB, it meas that we are usig a estimator that bears miimum variace i its class of estimators. For the ukow parameter i (1.1), it ca easily be show that for ay ubiased estimator of ; MVB = 6 (4.) 5. Deviatio from MVB ad Relative Efficiecy We compare all the three variaces (.3), (.5), ad (3.4) with the MVB give i (4.). Sice all these variaces cotais the term as a multiplier so we drop it while comparig them all. Fig. 5.1 shows the deviatio of the variaces (actual variaces i the figure should be multiplied by ) of the estimators uder cosideratio from the MVB. These values are draw agaist differet sample sizes. We ote that the variace of MLE has least deviatio from the MVB. As the sample size icreases, the variace of MLE begis to coicide with the MVB. For > 0, variace of MLE equalizes to the MVB. For small samples, the variace of momet estimator otably deviates from the MVB but this differece covers with the icrease i sample size. Whe sample size becomes larger tha 30, this variace begis to coicide with the MVB. I the case of NIM estimatio, the performace of NIME remais quite miserable, especially, for small sample. The variace of NIME remais largely deviat from the MVB as it falls miles away form the MVB. Although, the severity of the deviatio decreases with the icrease i sample size but eve the it does ot appear to make NIME attractive while comparig with its two competitors. As for as relative efficiecy is cocered, we ote the efficiecy of MLE relative to NIME as 3.45 for = 10 ad MLE remais about.5 times more efficiet as compared to NIME for larger sample size. Our fidigs thus also matches to those of Mohsi ad Shahbaz (005) who also declared MLE more efficiet as compared to NIME while estimatig the parameter of iverse Rayleigh distributio. 148 Pak. j. stat. oper. res. Vol.II No. 006 pp

5 Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator We also ote that MME remais about. times more efficiet as compared to NIME. We further ote that this relative efficiecy dose ot chage with the icrease i sample size. Whe we compare MLE with MME for variaces, we fid MLE about 7% more efficiet as compared to the momet estimator Variace MLE MME NIME MVB Sample Size Figure 5.1: Deviatio from MVB 6. Coclusio Although the egative iteger momets are gaiig popularity for their applicatios but NIM estimator performs poorly i the term of efficiecy while estimatig the ukow parameter of the Maxwell distributio. Its variace remai too far form the Cramer-Rao lower boud for variace i.e., MVB. Whe we are dealig with the kietic molecular theory of gases or the matters of thermodyamic with the applicatio of the Maxwell distributio, MLE is the best choice for estimatig the ukow parameter. Eve for large samples ( > 30), momet estimator may equally be utilized. Refereces 1. Aldrich, J. (1997). R. A. Fisher ad the Makig of Maximum Likelihood Statistical Sciece, 3, Bock, M. E., Judge, G. G. ad Yacy, T. A. (1984). A Simple Form for the Iverse Momets of No-cetral Chi-Square ad F Radom Variables ad Certai Cofluet Hypergeometric Fuctios. J. Ecoometrics, 5, Efro, B. (198). Maximum Likelihood ad Decisio Theory. A. Statist. 10, Lehma, E. L., ad Casella, G. (1998). Theory of Poit Estimatio. Spriger, New York. Pak. j. stat. oper. res. Vol.II No. 006 pp

6 G. R. Pasha, Muhammad Aslam, Muhammad Javed 5. Mohsi, M. ad Shahbaz, M.Q., (005). Compariso of Negative Momet Estimator with Maximum Likelihood Estimator of Iverse Rayliegh Distributio, PJSOR, 1, Oma, S. D., (1985). A Explicit Formula for the Mea Squared Error of the Iverse Estimator i the Liear Calibratio Problem, Joural of Statistics Plaig ad Iferece, 11, Papoulis, A. (1984). Probability, Radom Variables, ad Stochastic Processes. McGraw-Hill, New York. 150 Pak. j. stat. oper. res. Vol.II No. 006 pp

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s) Rajesh Sigh, Pakaj Chauha, Nirmala Sawa School of Statistics, DAVV, Idore (M.P.), Idia Floreti Smaradache Uiversity of New Meico, USA A Geeral Family of Estimators for Estimatig Populatio Variace Usig

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality A goodess-of-fit test based o the empirical characteristic fuctio ad a compariso of tests for ormality J. Marti va Zyl Departmet of Mathematical Statistics ad Actuarial Sciece, Uiversity of the Free State,

More information

Estimation of the Population Mean in Presence of Non-Response

Estimation of the Population Mean in Presence of Non-Response Commuicatios of the Korea Statistical Society 0, Vol. 8, No. 4, 537 548 DOI: 0.535/CKSS.0.8.4.537 Estimatio of the Populatio Mea i Presece of No-Respose Suil Kumar,a, Sadeep Bhougal b a Departmet of Statistics,

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

Varanasi , India. Corresponding author

Varanasi , India. Corresponding author A Geeral Family of Estimators for Estimatig Populatio Mea i Systematic Samplig Usig Auxiliary Iformatio i the Presece of Missig Observatios Maoj K. Chaudhary, Sachi Malik, Jayat Sigh ad Rajesh Sigh Departmet

More information

Lecture 6 Ecient estimators. Rao-Cramer bound.

Lecture 6 Ecient estimators. Rao-Cramer bound. Lecture 6 Eciet estimators. Rao-Cramer boud. 1 MSE ad Suciecy Let X (X 1,..., X) be a radom sample from distributio f θ. Let θ ˆ δ(x) be a estimator of θ. Let T (X) be a suciet statistic for θ. As we have

More information

Testing Statistical Hypotheses for Compare. Means with Vague Data

Testing Statistical Hypotheses for Compare. Means with Vague Data Iteratioal Mathematical Forum 5 o. 3 65-6 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Large holes in quasi-random graphs

Large holes in quasi-random graphs Large holes i quasi-radom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,

More information

Sampling Distributions, Z-Tests, Power

Sampling Distributions, Z-Tests, Power Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

More information

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N. 3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

Probability and Statistics

Probability and Statistics ICME Refresher Course: robability ad Statistics Staford Uiversity robability ad Statistics Luyag Che September 20, 2016 1 Basic robability Theory 11 robability Spaces A probability space is a triple (Ω,

More information

Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation

Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation Some Properties of the Exact ad Score Methods for Biomial Proportio ad Sample Size Calculatio K. KRISHNAMOORTHY AND JIE PENG Departmet of Mathematics, Uiversity of Louisiaa at Lafayette Lafayette, LA 70504-1010,

More information

Introducing Sample Proportions

Introducing Sample Proportions Itroducig Sample Proportios Probability ad statistics Aswers & Notes TI-Nspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,

More information

Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Linear Regression Model Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

Probabilistic and Average Linear Widths in L -Norm with Respect to r-fold Wiener Measure

Probabilistic and Average Linear Widths in L -Norm with Respect to r-fold Wiener Measure joural of approximatio theory 84, 3140 (1996) Article No. 0003 Probabilistic ad Average Liear Widths i L -Norm with Respect to r-fold Wieer Measure V. E. Maiorov Departmet of Mathematics, Techio, Haifa,

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

Testing Statistical Hypotheses with Fuzzy Data

Testing Statistical Hypotheses with Fuzzy Data Iteratioal Joural of Statistics ad Systems ISS 973-675 Volume 6, umber 4 (), pp. 44-449 Research Idia Publicatios http://www.ripublicatio.com/ijss.htm Testig Statistical Hypotheses with Fuzzy Data E. Baloui

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

Probability, Expectation Value and Uncertainty

Probability, Expectation Value and Uncertainty Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

arxiv: v1 [math.pr] 13 Oct 2011

arxiv: v1 [math.pr] 13 Oct 2011 A tail iequality for quadratic forms of subgaussia radom vectors Daiel Hsu, Sham M. Kakade,, ad Tog Zhag 3 arxiv:0.84v math.pr] 3 Oct 0 Microsoft Research New Eglad Departmet of Statistics, Wharto School,

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Two-Stage Controlled Fractional Factorial Screening for Simulation Experiments

Two-Stage Controlled Fractional Factorial Screening for Simulation Experiments Two-Stage Cotrolled Fractioal Factorial Screeig for Simulatio Experimets Hog Wa Assistat Professor School of Idustrial Egieerig Purdue Uiversity 35 N. Grat Street West Lafayette, IN 4797-223 hwa@purdue.edu

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Topic 15: Maximum Likelihood Estimation

Topic 15: Maximum Likelihood Estimation Topic 5: Maximum Likelihood Estimatio November ad 3, 20 Itroductio The priciple of maximum likelihood is relatively straightforward. As before, we begi with a sample X (X,..., X of radom variables chose

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

arxiv: v1 [math.co] 5 Jan 2014

arxiv: v1 [math.co] 5 Jan 2014 O the degree distributio of a growig etwork model Lida Farczadi Uiversity of Waterloo lidafarczadi@gmailcom Nicholas Wormald Moash Uiversity ickwormald@moashedu arxiv:14010933v1 [mathco] 5 Ja 2014 Abstract

More information

Formation of A Supergain Array and Its Application in Radar

Formation of A Supergain Array and Its Application in Radar Formatio of A Supergai Array ad ts Applicatio i Radar Tra Cao Quye, Do Trug Kie ad Bach Gia Duog. Research Ceter for Electroic ad Telecommuicatios, College of Techology (Coltech, Vietam atioal Uiversity,

More information

Topic 6 Sampling, hypothesis testing, and the central limit theorem

Topic 6 Sampling, hypothesis testing, and the central limit theorem CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio

More information

Elementary Statistics

Elementary Statistics Elemetary Statistics M. Ghamsary, Ph.D. Sprig 004 Chap 0 Descriptive Statistics Raw Data: Whe data are collected i origial form, they are called raw data. The followig are the scores o the first test of

More information

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 48 52

Available online at  ScienceDirect. Physics Procedia 57 (2014 ) 48 52 Available olie at www.sciecedirect.com ScieceDirect Physics Procedia 57 (214 ) 48 52 27th Aual CSP Workshops o Recet Developmets i Computer Simulatio Studies i Codesed Matter Physics, CSP 214 Applicatio

More information

A Risk Comparison of Ordinary Least Squares vs Ridge Regression

A Risk Comparison of Ordinary Least Squares vs Ridge Regression Joural of Machie Learig Research 14 (2013) 1505-1511 Submitted 5/12; Revised 3/13; Published 6/13 A Risk Compariso of Ordiary Least Squares vs Ridge Regressio Paramveer S. Dhillo Departmet of Computer

More information

AN INTRODUCTION TO SPECTRAL GRAPH THEORY

AN INTRODUCTION TO SPECTRAL GRAPH THEORY AN INTRODUCTION TO SPECTRAL GRAPH THEORY JIAQI JIANG Abstract. Spectral graph theory is the study of properties of the Laplacia matrix or adjacecy matrix associated with a graph. I this paper, we focus

More information

Searching for the Holy Grail of Index Number Theory

Searching for the Holy Grail of Index Number Theory Searchig for the Holy Grail of Idex Number Theory Bert M. Balk Rotterdam School of Maagemet Erasmus Uiversity Rotterdam E-mail bbalk@rsm.l ad Statistics Netherlads Voorburg April 15, 28 Abstract The idex

More information

STATISTICAL method is one branch of mathematical

STATISTICAL method is one branch of mathematical 40 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL 3, NO, AUGUST 07 Optimizig Forest Samplig by usig Lagrage Multipliers Suhud Wahyudi, Farida Agustii Widjajati ad Dea Oktaviati

More information

Statistics. Chapter 10 Two-Sample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 10-1

Statistics. Chapter 10 Two-Sample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 10-1 Statistics Chapter 0 Two-Sample Tests Copyright 03 Pearso Educatio, Ic. publishig as Pretice Hall Chap 0- Learig Objectives I this chapter, you lear How to use hypothesis testig for comparig the differece

More information

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1 460_0906.qxd //04 :8 PM Page 69 SECTION 9.6 The Ratio ad Root Tests 69 Sectio 9.6 EXPLORATION Writig a Series Oe of the followig coditios guaratees that a series will diverge, two coditios guaratee that

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

STAT 203 Chapter 18 Sampling Distribution Models

STAT 203 Chapter 18 Sampling Distribution Models STAT 203 Chapter 18 Samplig Distributio Models Populatio vs. sample, parameter vs. statistic Recall that a populatio cotais the etire collectio of idividuals that oe wats to study, ad a sample is a subset

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

Section 11.6 Absolute and Conditional Convergence, Root and Ratio Tests

Section 11.6 Absolute and Conditional Convergence, Root and Ratio Tests Sectio.6 Absolute ad Coditioal Covergece, Root ad Ratio Tests I this chapter we have see several examples of covergece tests that oly apply to series whose terms are oegative. I this sectio, we will lear

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Sampling, WLS, and Mixed Models Festschrift to Honor Professor Gary Koch

Sampling, WLS, and Mixed Models Festschrift to Honor Professor Gary Koch Samplig, WLS, ad Mixed Models Festschrift to Hoor Professor Gary Koch Edward J. Staek Departmet of Public Health Uiversity of Massachusetts, Amherst, MA 40 Arold House 75 N. Pleasat Street Uiversity of

More information

arxiv: v2 [math.st] 20 Mar 2008

arxiv: v2 [math.st] 20 Mar 2008 Joural of Machie Learig Research 0 (0000) 0 Submitted 3/08; Published 0/00 Data-drive calibratio of pealties for least-squares regressio arxiv:0802.0837v2 [math.st] 20 Mar 2008 Sylvai Arlot Uiv Paris-Sud,

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND

ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND Pacific-Asia Joural of Mathematics, Volume 5, No., Jauary-Jue 20 ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND SHAKEEL JAVAID, Z. H. BAKHSHI & M. M. KHALID ABSTRACT: I this paper, the roll cuttig problem

More information

A Note on Sums of Independent Random Variables

A Note on Sums of Independent Random Variables Cotemorary Mathematics Volume 00 XXXX A Note o Sums of Ideedet Radom Variables Pawe l Hitczeko ad Stehe Motgomery-Smith Abstract I this ote a two sided boud o the tail robability of sums of ideedet ad

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Sequences and Limits

Sequences and Limits Chapter Sequeces ad Limits Let { a } be a sequece of real or complex umbers A ecessary ad sufficiet coditio for the sequece to coverge is that for ay ɛ > 0 there exists a iteger N > 0 such that a p a q

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Sampling, WLS, and Mixed Models Festschrift to Honor Professor Gary Koch

Sampling, WLS, and Mixed Models Festschrift to Honor Professor Gary Koch Samplig, WLS, ad Mixed Models Festschrift to Hoor Professor Gary Koch Edward J. Staek III Departmet of Public Health Uiversity of Massachusetts, Amherst, MA ad Julio M Siger Departameto de Estatística

More information

Section 5.1 The Basics of Counting

Section 5.1 The Basics of Counting 1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of

More information

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II Solid State Pheomea Vol. 89 (003) pp 343-348 (003) Tras Tech Publicatios, Switzerlad doi:0.408/www.scietific.et/ssp.89.343 A New Impulse Mechaical Spectrometer to Study the Dyamic Mechaical Properties

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Four-dimensional Vector Matrix Determinant and Inverse

Four-dimensional Vector Matrix Determinant and Inverse I.J. Egieerig ad Maufacturig 013 30-37 Published Olie Jue 01 i MECS (http://www.mecs-press.et) DOI: 10.5815/iem.01.03.05 vailable olie at http://www.mecs-press.et/iem Four-dimesioal Vector Matrix Determiat

More information

Central Limit Theorem the Meaning and the Usage

Central Limit Theorem the Meaning and the Usage Cetral Limit Theorem the Meaig ad the Usage Covetio about otatio. N, We are usig otatio X is variable with mea ad stadard deviatio. i lieu of sayig that X is a ormal radom Assume a sample of measuremets

More information

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to:

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to: OBJECTIVES Chapter 1 INTRODUCTION TO INSTRUMENTATION At the ed of this chapter, studets should be able to: 1. Explai the static ad dyamic characteristics of a istrumet. 2. Calculate ad aalyze the measuremet

More information

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals. Discrete-ime Sigals ad Systems Discrete-ime Sigals ad Systems Dr. Deepa Kudur Uiversity of oroto Referece: Sectios. -.5 of Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms,

More information

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error Proceedigs of the 6th WSEAS Iteratioal Coferece o SIGNAL PROCESSING, Dallas, Texas, USA, March -4, 7 67 Sesitivity Aalysis of Daubechies 4 Wavelet Coefficiets for Reductio of Recostructed Image Error DEVINDER

More information

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2 Joural of Advaced Research i Pure Mathematics Olie ISSN: 1943-2380 Vol. 3, Issue. 1, 2010, pp. 104-110 doi: 10.5373/jarpm.473.061810 O Orlicz N-frames Reu Chugh 1,, Shashak Goel 2 1 Departmet of Mathematics,

More information

Throwing Buffon s Needle with Mathematica

Throwing Buffon s Needle with Mathematica The Mathematica Joural Throwig Buffo s Needle with Mathematica Eis Siiksara It has log bee kow that Buffo s eedle experimets ca be used to estimate p. Three mai factors ifluece these experimets: grid shape,

More information

MLE and efficiency 23. P (X = x) = θx Let s try to find the MLE for θ. A random sample drawn from this distribution has the likelihood function

MLE and efficiency 23. P (X = x) = θx Let s try to find the MLE for θ. A random sample drawn from this distribution has the likelihood function 3. Maximum likelihood estimators ad efficiecy 3.1. Maximum likelihood estimators. Let X 1,..., X be a radom sample, draw from a distributio P θ that depeds o a ukow parameter θ. We are lookig for a geeral

More information

Lecture 11 October 27

Lecture 11 October 27 STATS 300A: Theory of Statistics Fall 205 Lecture October 27 Lecturer: Lester Mackey Scribe: Viswajith Veugopal, Vivek Bagaria, Steve Yadlowsky Warig: These otes may cotai factual ad/or typographic errors..

More information

Formulas FROM LECTURE 01 TO 22 W X. d n. fx f. Arslan Latif (mt ) & Mohsin Ali (mc ) Mean: Weighted Mean: Mean Deviation: Ungroup Data

Formulas FROM LECTURE 01 TO 22 W X. d n. fx f. Arslan Latif (mt ) & Mohsin Ali (mc ) Mean: Weighted Mean: Mean Deviation: Ungroup Data 1 Formulas FROM LECTURE 01 TO Mea: fx f Weighted Mea: X w W X i i Wi Mea Deviatio: Ugroup Data d M. D Group Data fi di M. D f d ( X X ) Coefficiet of Mea Deviatio: M. D Co-efficiet of M. D(for mea) Mea

More information

Research on Dependable level in Network Computing System Yongxia Li 1, a, Guangxia Xu 2,b and Shuangyan Liu 3,c

Research on Dependable level in Network Computing System Yongxia Li 1, a, Guangxia Xu 2,b and Shuangyan Liu 3,c Applied Mechaics ad Materials Olie: 04-0-06 ISSN: 66-748, Vols. 53-57, pp 05-08 doi:0.408/www.scietific.et/amm.53-57.05 04 Tras Tech Publicatios, Switzerlad Research o Depedable level i Network Computig

More information

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y. Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad o-users, x - y. Such studies are sometimes viewed

More information

Chapter 22: What is a Test of Significance?

Chapter 22: What is a Test of Significance? Chapter 22: What is a Test of Sigificace? Thought Questio Assume that the statemet If it s Saturday, the it s the weeked is true. followig statemets will also be true? Which of the If it s the weeked,

More information

A NEW APPROACH TO SOLVE AN UNBALANCED ASSIGNMENT PROBLEM

A NEW APPROACH TO SOLVE AN UNBALANCED ASSIGNMENT PROBLEM A NEW APPROACH TO SOLVE AN UNBALANCED ASSIGNMENT PROBLEM *Kore B. G. Departmet Of Statistics, Balwat College, VITA - 415 311, Dist.: Sagli (M. S.). Idia *Author for Correspodece ABSTRACT I this paper I

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Question 1: Exercise 8.2

Question 1: Exercise 8.2 Questio 1: Exercise 8. (a) Accordig to the regressio results i colum (1), the house price is expected to icrease by 1% ( 100% 0.0004 500 ) with a additioal 500 square feet ad other factors held costat.

More information

ρ = Chapter 2 Review of Statistics Summarize from Heij Chapter Descriptive Statistics

ρ = Chapter 2 Review of Statistics Summarize from Heij Chapter Descriptive Statistics Chapter Review of Statistics Summarize from Heij Chapter. Descriptive Statistics Presetatio of Statistics: there are may methods to preset iformatio i data set such as table, graph, ad picture. The importat

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

Chapter VII Measures of Correlation

Chapter VII Measures of Correlation Chapter VII Measures of Correlatio A researcher may be iterested i fidig out whether two variables are sigificatly related or ot. For istace, he may be iterested i kowig whether metal ability is sigificatly

More information

Inference approaches for instrumental variable quantile regression

Inference approaches for instrumental variable quantile regression Ecoomics Letters 95 (2007) 272 277 www.elsevier.com/locate/ecobase Iferece approaches for istrumetal variable quatile regressio Victor Cherozhukov a, Christia Hase b,, Michael Jasso c a Massachusetts Istitute

More information

Chapter 4 - Summarizing Numerical Data

Chapter 4 - Summarizing Numerical Data Chapter 4 - Summarizig Numerical Data 15.075 Cythia Rudi Here are some ways we ca summarize data umerically. Sample Mea: i=1 x i x :=. Note: i this class we will work with both the populatio mea µ ad the

More information

Solutions to Tutorial 3 (Week 4)

Solutions to Tutorial 3 (Week 4) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial Week 4 MATH2962: Real ad Complex Aalysis Advaced Semester 1, 2017 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

Reference : Chapter 15 of Ebeling (The simple case of r = n) Statistical Inference (SI) When the Underlying Distribution is Weibull

Reference : Chapter 15 of Ebeling (The simple case of r = n) Statistical Inference (SI) When the Underlying Distribution is Weibull Referece : Chapter 5 of Ebelig (The simple case of r ) Statistical Iferece (SI) Whe the Uderlyig Distributio is Weibull Maghsoodloo Recall that by SI we mea estimatio ad test of hypothesis. We will cover

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS Cotets 1. A few useful discrete radom variables 2. Joit, margial, ad

More information

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities O Equivalece of Martigale Tail Bouds ad Determiistic Regret Iequalities Sasha Rakhli Departmet of Statistics, The Wharto School Uiversity of Pesylvaia Dec 16, 2015 Joit work with K. Sridhara arxiv:1510.03925

More information

Example 3.3: Rainfall reported at a group of five stations (see Fig. 3.7) is as follows. Kundla. Sabli

Example 3.3: Rainfall reported at a group of five stations (see Fig. 3.7) is as follows. Kundla. Sabli 3.4.4 Spatial Cosistecy Check Raifall data exhibit some spatial cosistecy ad this forms the basis of ivestigatig the observed raifall values. A estimate of the iterpolated raifall value at a statio is

More information