Dynamic Van der Waals Theory

Size: px
Start display at page:

Download "Dynamic Van der Waals Theory"

Transcription

1 Dynamic Van der Waal heory A diffue interface model for two-phae hydrodynamic involving the liquid-ga tranition in non-uniform temperature [A. Onuki, PRL (005) & PRE (007)] Hydrodynamic equation for liquid-ga flow in the bulk region [well developed] + Boundary condition at fluid-olid interface [J. Chem. Phy. (010) and ongoing]

2 Helmholtz free energy denity: f ( n, ) = nk ln( 3 ) ( ) B λthn 1 ln 1 vn 0 εvn 0 Internal energy denity, entropy per molecule, and preure e n, = 3 nk / εv n ( ) B 0 3 ( ) λ ( ) n, = kbln thn/ 1 v0n + 5 kb / p n, = nk/ 1 vn εvn ( ) ( ) B 0 0 Gradient contribution to the internal energy denity and entropy denity K ( n ) eˆ = e+ n ˆ (, ) ( ) C n S = n n e n Free energy minimization lead to the equilibrium tructure of a diffue liquid-ga interface. van der Waal Elaticity in one-component liquid-ga ytem, manifeted through a reverible tre tenor Π, which i aniotropic.

3 Balance equation for particle number, momentum, and energy n + ( nv) = 0 the continuity equation ( ρv) + ( ρvv) = M the momentum equation M Π+ σ i the total tre tenor. reverible irreverible (vicou) eˆ + ( eˆ v) = Π : v + σ : v q for the internal energy denity Ue of tandard thermodynamic relation Sˆ ( ˆ ) ˆ S Sv = J + : ( ˆ f σ v q + Π + pi + M n n) : v the balance equation for the denity of entropy ( ) ˆ S f M n n/ t+ n + / J v q the total entropy flux

4 he rate of entropy production in the bulk region σ = σ : v q + Π + pi+ M n n : v ( ) ( /3) q = λ heat flux ( ˆ ) he denity inhomogeneity doe not contribute to entropy production. Π = M n n pˆ I the reverible tre M nm ˆ n M p p n n n n Mn n and = + (, ) = ( ) + ( ) σ = 1 1 σ : v q he poitive definitene of M n K n C n can be enured by the contitutive relation σ = η v+ v + ζ η I v vicou tre

5 v γ = w γ v = v w lip τ τ τ A chematic illutration. of the fluxe into the urface region bounded by the cloed curve C Σ No adorption at the fluid-olid interface. he area denitie of urface energy and urface entropy are flunction of n, the boundary value of fluid denity. Surface tre tenor and urface heat flux are preent, but no urface vicoity.

6 he general boundary (jump) condition in differential form (a pecial cae of the extended Kotchine theorem) φ + ( ) ˆ τ φ τ = τ + + π with γˆ J γˆ J Jw v J γ J ( ) Here the prime denote the urface quantitie whoe dimenion are different from the correponding bulk quantitie. Surface entropy and urface energy S daσ ( n) E = dae n = ( ) Helmholtz free energy per unit area f ( n, ) = e ( n) σ ( n) 1 1 f dσ = de dn n A Gibb-type equation γ f = f the fluid-olid interfacial tenion Surface tre tenor i tangential and ymmetric: M γ fτ = f τ τ I γγ ˆˆ

7 Balance equation at the fluid-olid interface Force balance Energy balance e f ˆ τ γ M+ F = 0 f ˆ τ γ M τ + Fτ = 0 γˆ M γˆ + Fγ = 0 hree force by the interface, fluid, and wall lip + e v = f v q + γˆ q γˆ M v w f ( ) ( ) τ τ τ τ τ τ τ τ v = v w lip τ τ τ Firt law of thermodynamic applied at the fluid-olid interface Entropy balance from σ 1 e 1 f n = n tangential lip velocity

8 Entropy balance σ q ( ) ( ˆ ˆ S ˆ ˆ S + σ v = + ) + σ γ J γ J τ τ τ w urf ( ) ˆ ˆ S γ J γˆ q + Mn γ n / ˆ ˆ S γ J γˆ q / w w w entropy fluxe σ lip 1 q ˆ τ γ q Fτ vτ Ln w urf w entropy production γ ( / ) L= M n+ f n i equal to zero in equilibrium. Interfacial contitutive relation 1 1 q = λ τ χf τ κ γˆ qw = w lip χ βvτ = β τ Fτ α n = L

9 Balance equation (conervation law) Contitutive relation } Hydrodynamic equation From the bulk region to the interface Balance equation Contitutive relation } Hydrodynamic boundary condition A continuum hydrodynamic model formed by differential equation and boundary condition.

10 Hydrodynamic Boundary Condition Denity relaxation n f α + vτ τn = M γn n Impermeability Velocity lip γˆ v = γˆ w= 0 lip f χ βv = η v + M n n σ β τ γ τ + γ + n τ τ emperature lip Heat fluxe 1 1 κλw γw = w e λ γ + λw γw = + τ ( σ vτ ) + vτ τ f 1 χ τ ( λ τ) Fτ Fτ τ ( χfτ ) Fτ τ β F v σ ( / ) = η M n n f τ γ τ γ τ τ f = + f n n τ τ τ

11 A limiting cae Xu and Qian, J. Chem. Phy. 133, (010) No cro coupling: χ 0 Contant temperature at the fluid-olid interface: κ 0 and fat relaxation toward thermal equilibrium in the olid = w = cont. Denity relaxation n f α + vτ τn = M γn n Impermeability Velocity lip γˆ v = γˆ w= 0 βv = η v f + M n+ n lip τ γ τ γ τ n Dirichlet temperature condition = w = cont

12 =0.875c =0.99c

HYDRODYNAMIC BOUNDARY CONDITIONS FOR ONE-COMPONENT LIQUID-GAS FLOWS ON NON-ISOTHERMAL SOLID SUBSTRATES

HYDRODYNAMIC BOUNDARY CONDITIONS FOR ONE-COMPONENT LIQUID-GAS FLOWS ON NON-ISOTHERMAL SOLID SUBSTRATES COMMUN. MAH. SCI. Vol. 10, No. 4, pp. 1027 1053 c 2012 International Press HYDRODYNAMIC BOUNDARY CONDIIONS FOR ONE-COMPONEN LIQUID-GAS FLOWS ON NON-ISOHERMAL SOLID SUBSRAES XINPENG XU, CHUN LIU, AND IEZHENG

More information

The Lippmann equation for liquid metal electrodes

The Lippmann equation for liquid metal electrodes Weiertra Intitute for Applied Analyi and tochatic The Lippmann equation for liquid metal electrode Wolfgang Dreyer, Clemen Guhlke, Manuel Landtorfer, Rüdiger Müller Mohrentrae 39 10117 Berlin Germany Tel.

More information

A novel protocol for linearization of the Poisson-Boltzmann equation

A novel protocol for linearization of the Poisson-Boltzmann equation Ann. Univ. Sofia, Fac. Chem. Pharm. 16 (14) 59-64 [arxiv 141.118] A novel protocol for linearization of the Poion-Boltzmann equation Roumen Tekov Department of Phyical Chemitry, Univerity of Sofia, 1164

More information

THE THERMOELASTIC SQUARE

THE THERMOELASTIC SQUARE HE HERMOELASIC SQUARE A mnemonic for remembering thermodynamic identitie he tate of a material i the collection of variable uch a tre, train, temperature, entropy. A variable i a tate variable if it integral

More information

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas 2 State of a Sytem Motly chap 1 and 2 of Kittel &Kroemer 2.1 State / Configuration 2.2 Probabilitie of State Fundamental aumption Entropy 2.3 Counting State 2.4 Entropy of an ideal ga Phyic 112 (S2012)

More information

The Multilayer Impedance Pump Model

The Multilayer Impedance Pump Model 12 Chapter 2 The Multilayer Impedance Pump Model 2.1 Phyical model The MIP wa a luid-illed elatic tube with an excitation zone located aymmetrically with repect to the length o the pump. The pump had an

More information

COLLISIONS AND TRANSPORT

COLLISIONS AND TRANSPORT COLLISIONS AND TRANSPORT Temperature are in ev the correponding value of Boltzmann contant i k = 1.6 1 1 erg/ev mae µ, µ are in unit of the proton ma e α = Z α e i the charge of pecie α. All other unit

More information

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter APCOM & ISCM 11-14 th December, 2013, Singapore luid-tructure coupling analyi and imulation of vicoity effect on Corioli ma flowmeter *Luo Rongmo, and Wu Jian National Metrology Centre, A*STAR, 1 Science

More information

Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory

Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory Multicomponent, Multiphae Thermodynamic of Swelling Porou Media with Electroquaitatic: II. Contitutive Theory Lynn Schreyer Bennethum John H. Cuhman Augut 8, 2001 Abtract In Part I macrocopic field equation

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

Molecular Diffusion and Tensorial Slip at Surfaces with Periodic and Random Nanoscale Textures. Nikolai V. Priezjev

Molecular Diffusion and Tensorial Slip at Surfaces with Periodic and Random Nanoscale Textures. Nikolai V. Priezjev Molecular Diffuion and Tenorial Slip at Surface with Periodic and Random Nanocale Teture Nikolai V. Priezjev Department of Mechanical Engineering Michigan State Univerity Movie, preprint @ http://www.egr.mu.edu/~priezjev

More information

Lecture 13. Thermodynamic Potentials (Ch. 5)

Lecture 13. Thermodynamic Potentials (Ch. 5) Lecture 13. hermodynamic Potential (Ch. 5) So far we have been uing the total internal energy U and ometime the enthalpy H to characterize variou macrocopic ytem. hee function are called the thermodynamic

More information

Slip Behavior in Liquid Films: Influence of Patterned Surface Energy, Flow Orientation, and Deformable Gas-Liquid Interface. Nikolai V.

Slip Behavior in Liquid Films: Influence of Patterned Surface Energy, Flow Orientation, and Deformable Gas-Liquid Interface. Nikolai V. Slip Behavior in Liquid Film: Influence of Patterned Surface Energy, Flow Orientation, and Deformable Ga-Liquid Interface Nikolai V. Priezjev Department of Mechanical and Material Engineering Wright State

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

Nearshore Sediment Transport Modeling: Collaborative Studies with the U. S. Naval Research Laboratory

Nearshore Sediment Transport Modeling: Collaborative Studies with the U. S. Naval Research Laboratory Nearhore Sediment Tranport Modeling: Collaborative Studie with the U. S. Naval Reearch Laboratory Donald N. Slinn Department of Civil and Coatal Engineering, Univerity of Florida Gaineville, FL 32611-6590,

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

Numerical Simulations of Coriolis Flow Meters for Low Reynolds Number Flows

Numerical Simulations of Coriolis Flow Meters for Low Reynolds Number Flows MAPAN - Journal Numerical of Metrology Simulation Society of of Corioli India, Vol. Flow 26, Meter No. 3, 2011; for Low pp. Reynold 225-235 Number Flow ORIGINAL ARTICLE Numerical Simulation of Corioli

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0 Lecture Part 1 Copyright by Hongyun Wang, UCSC Prandtl boundary layer Navier-Stoke equation: Conervation of ma: ρ t + ( ρ u) = Balance of momentum: u ρ t + u = p+ µδ u + ( λ + µ ) u where µ i the firt

More information

Fundamental Physics of Force and Energy/Work:

Fundamental Physics of Force and Energy/Work: Fundamental Phyic of Force and Energy/Work: Energy and Work: o In general: o The work i given by: dw = F dr (5) (One can argue that Eqn. 4 and 5 are really one in the ame.) o Work or Energy are calar potential

More information

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles Study of a Freely Falling Ellipe with a Variety of Apect Ratio and Initial Angle Dedy Zulhidayat Noor*, Ming-Jyh Chern*, Tzyy-Leng Horng** *Department of Mechanical Engineering, National Taiwan Univerity

More information

EP225 Note No. 5 Mechanical Waves

EP225 Note No. 5 Mechanical Waves EP5 Note No. 5 Mechanical Wave 5. Introduction Cacade connection of many ma-pring unit conitute a medium for mechanical wave which require that medium tore both kinetic energy aociated with inertia (ma)

More information

MODELLING OF DENSE GAS-PARTICLE FLOWS USING KINETIC THEORY OF GRANULAR FLOW J.A.M. KUIPERS TWENTE UNIVERSITY THE NETHERLANDS

MODELLING OF DENSE GAS-PARTICLE FLOWS USING KINETIC THEORY OF GRANULAR FLOW J.A.M. KUIPERS TWENTE UNIVERSITY THE NETHERLANDS MODELLING OF DENSE GAS-PARTICLE FLOWS USING KINETIC THEORY OF GRANULAR FLOW J.A.M. KUIPERS TWENTE UNIVERSITY THE NETHERLANDS DENSE GAS-SOLID FLOWS hiting and Tanzania DENSE GAS-SOLID FLOWS cluter in co-current

More information

( 7) ( 9) ( 8) Applying Thermo: an Example of Kinetics - Diffusion. Applying Thermo: an Example of Kinetics - Diffusion. dw = F dr = dr (6) r

( 7) ( 9) ( 8) Applying Thermo: an Example of Kinetics - Diffusion. Applying Thermo: an Example of Kinetics - Diffusion. dw = F dr = dr (6) r Fundamental Phyic of Force and Energy/Work: Energy and Work: o In general: o The work i given by: dw = F dr (5) (One can argue that Eqn. 4 and 5 are really one in the ame.) o Work or Energy are calar potential

More information

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model.

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model. Excerpt from the Proceeding of the COMSOL Conference 2010 Boton Modeling of Tranport and Reaction in a Catalytic Bed Uing a Catalyt Particle Model. F. Allain *,1, A.G. Dixon 1 1 Worceter Polytechnic Intitute

More information

Contact Angle for Spherical Nanodroplet in Cylindrical Cavity with Quadratic Curve Generatrix

Contact Angle for Spherical Nanodroplet in Cylindrical Cavity with Quadratic Curve Generatrix Mechanical Engineering Reearch; Vol. 6o. 1; 16 ISSN 197-67 E-ISSN 197-615 Publihed by Canadian Center of Science and Education Contact Angle for Spherical Nanodroplet in Cylindrical Cavity with Quadratic

More information

Pressure distribution in a fluid:

Pressure distribution in a fluid: 18/01/2016 LECTURE 5 Preure ditribution in a fluid: There are many intance where the fluid i in tationary condition. That i the movement of liquid (or ga) i not involved. Yet, we have to olve ome engineering

More information

Closure Conditions for Two-Fluid Flow in Porous Media

Closure Conditions for Two-Fluid Flow in Porous Media Tranport in Porou Media 47: 29 65, 2002. 2002 Kluwer Academic Publiher. Printed in the Netherland. 29 Cloure Condition for Two-Fluid Flow in Porou Media WILLIAM G. GRAY 1, ANDREW F. B. TOMPSON 2 and WENDY

More information

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr Lecture #5: 5-0735: Dynamic behavior of material and tructure Introduction to Continuum Mechanic Three-dimenional Rate-indeendent Platicity by Dirk Mohr ETH Zurich, Deartment of Mechanical and Proce Engineering,

More information

Radiation Heat Transfer

Radiation Heat Transfer CM30 ranport I Part II: Heat ranfer Radiation Heat ranfer Profeor Faith Morrion Department of Chemical Engineering Michigan echnological Univerity CM30 ranport Procee and Unit Operation I Part : Heat ranfer

More information

Basics of a Quartz Crystal Microbalance

Basics of a Quartz Crystal Microbalance Baic of a Quartz Crytal Microbalance Introduction Thi document provide an introduction to the quartz crytal microbalance (QCM) which i an intrument that allow a uer to monitor mall ma change on an electrode.

More information

Absorption of gas by a falling liquid film

Absorption of gas by a falling liquid film Absorption of gas by a falling liquid film Christoph Albert Dieter Bothe Mathematical Modeling and Analysis Center of Smart Interfaces/ IRTG 1529 Darmstadt University of Technology 4th Japanese-German

More information

Jump condition at the boundary between a porous catalyst and a homogeneous fluid

Jump condition at the boundary between a porous catalyst and a homogeneous fluid From the SelectedWork of Francico J. Valde-Parada 2005 Jump condition at the boundary between a porou catalyt and a homogeneou fluid Francico J. Valde-Parada J. Alberto Ochoa-Tapia Available at: http://work.bepre.com/francico_j_valde_parada/12/

More information

CFD Modeling of a Binary Liquid-Solid Fluidized Bed

CFD Modeling of a Binary Liquid-Solid Fluidized Bed Middle-Eat Journal of Scientific Reearch 9 (0): 7-79, 04 ISSN 990-9 IDOSI Publication, 04 DOI: 0.589/idoi.mejr.04.9.0.89 CFD Modeling of a Binary Liquid-Solid Fluidized Bed Reza Davarnejad, Reza Ehghipour,

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Mucus Transport in the Human Lung Airways: Effect of Porosity Parameter and Air Velocity

Mucus Transport in the Human Lung Airways: Effect of Porosity Parameter and Air Velocity Mucu Tranport in the Human Lung Airway: Effect of Poroity Parameter and Air Velocity V.S. Verma 1, Vikah Rana Department of Mathematic and Statitic, DDU Gorakhpur Univerity, Gorakhpur-73009, U.P. (India)

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Sediment Transport in Shallow Overland Flow

Sediment Transport in Shallow Overland Flow Sediment Tranport in Shallow Overland Flow M.J.M. Römken USDA-ARS National Sedimentation Laboratory Oxford, MS 38655 M.R. Suryadevara Department of Civil Engineering Univerity of Miiippi Univerity, MS

More information

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known. PROBLEM.7 A hown in Fig. P.7, 0 ft of air at T = 00 o R, 00 lbf/in. undergoe a polytropic expanion to a final preure of 5.4 lbf/in. The proce follow pv. = contant. The work i W = 94.4 Btu. Auming ideal

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

Types of Heat Transfer

Types of Heat Transfer ype of Heat ranfer * Dvz Dt x k d dx v S * * v Gr z HH vap lat uject in the coure conduction (Fourier Law) forced convection (due to flow) ource term free convection (fluid motion due to denity variation

More information

Transonic Canards and Stellar Wind

Transonic Canards and Stellar Wind Tranonic Canard and Stellar Wind Paul Carter Edgar Knobloch Martin Wechelberger January 6, 017 Abtract Parker claical tellar wind olution [0] decribing teady pherically ymmetric outflow from the urface

More information

arxiv:hep-ph/ v1 7 May 2001

arxiv:hep-ph/ v1 7 May 2001 A Grand Canonical Enemble Approach to the Thermodynamic Propertie of the Nucleon in the Quark-Gluon Coupling Model arxiv:hep-ph/0105050v1 7 May 2001 Hai Lin (April 2001) Department of P hyic, P eking Univerity,

More information

Faculty of Environmental Sciences, Institute of Waste Management and Contaminated Site Treatment. The Simulation Software.

Faculty of Environmental Sciences, Institute of Waste Management and Contaminated Site Treatment. The Simulation Software. Faculty of Environmental Science, Intitute of Wate Management and Contaminated Site Treatment The Simulation Software PCSiWaPro Overview 1. Modelling in the unaturated oil zone 2. The oftware PCSiWaPro

More information

Non-Maxwell-Boltzmann statistics in spin-torque devices: calculating switching rates and oscillator linewidths

Non-Maxwell-Boltzmann statistics in spin-torque devices: calculating switching rates and oscillator linewidths Non-axwell-Boltzmann tatitic in pin-torque device: calculating witching rate and ocillator linewidth P. B.Vicher and D.. Apalkov Department of Phyic and Atronomy Thi project wa upported by NSF grant #

More information

4 Fermi Liquid Theory

4 Fermi Liquid Theory 4 ermi Liquid Theory L.D. Landau, Sov. Phy. JETP 3, 920 (1957); ivid, 5, 101 (1957) particle: good quantum number: bare 3 He atom (bare ma: m) p, σ Quaiparticle (effective ma: m*) p, σ ermi momentum: ermi

More information

A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: CORRESPONDENCE: ABSTRACT

A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: CORRESPONDENCE: ABSTRACT A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: Zenon Medina-Cetina International Centre for Geohazard / Norwegian Geotechnical Intitute Roger

More information

MODELLING OF FRICTIONAL SOIL DAMPING IN FINITE ELEMENT ANALYSIS

MODELLING OF FRICTIONAL SOIL DAMPING IN FINITE ELEMENT ANALYSIS MODELLING OF FRICTIONAL SOIL DAMPING IN FINITE ELEMENT ANALYSIS S. VAN BAARS Department of Science, Technology and Communication, Univerity of Luxembourg, Luxembourg ABSTRACT: In oil dynamic, the oil i

More information

Domain Optimization Analysis in Linear Elastic Problems * (Approach Using Traction Method)

Domain Optimization Analysis in Linear Elastic Problems * (Approach Using Traction Method) Domain Optimization Analyi in Linear Elatic Problem * (Approach Uing Traction Method) Hideyuki AZEGAMI * and Zhi Chang WU *2 We preent a numerical analyi and reult uing the traction method for optimizing

More information

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations Hervé Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr, herve.lemonnier.sci.free.fr/tpf/tpf.htm

More information

Tensor Visualization Chap. 7 April 2, 2013 April 4, Jie Zhang Copyright

Tensor Visualization Chap. 7 April 2, 2013 April 4, Jie Zhang Copyright Tenor iualization Chap. 7 April, 3 April 4, 3 Jie Zhang Copright CDS 3 Spring, 3 Outline 7.. Principle Component Anali (PCA 7.. iualizing Component 7.3. iualizing Scalar PCA Information 7.4. iualizing

More information

Solutions to exercises week 45 FYS2160

Solutions to exercises week 45 FYS2160 Solution to exercie week 45 FYS2160 Kritian Bjørke, Knut Oddvar Høie Vadla November 29, 2017 Schroeder 5.23 a) Writing Φ = U T S µn in term of infiniteimal change of the quantitie involved: dφ = du T ds

More information

Modelling of coupled multifield problems in concrete by means of porous media mechanics

Modelling of coupled multifield problems in concrete by means of porous media mechanics Modelling of coupled multifield problem in concrete by mean of porou media mechanic F. Peavento & B. A. Schrefler Dept. of Structural and Tranportation Engineering, Univerity of Padova, Padova, Italy D.

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Determination of Load Dependent Thermal Conductivity of Porous Adsorbents

Determination of Load Dependent Thermal Conductivity of Porous Adsorbents Determination of Load Dependent Thermal Conductivity of Porou Adorbent Kraft 1, Gaier 1, Stripf 1, Hee 2 1 Univerity of Applied Science Karlruhe, Baden-ürttemberg, Germany 2 TU Dreden Abtract: Standard

More information

the moving contact line

the moving contact line Molecular hydrodynamics of the moving contact line Tiezheng Qian Mathematics Department Hong Kong University of Science and Technology in collaboration with Ping Sheng (Physics Dept, HKUST) Xiao-Ping Wang

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics Sring 018 ME 3560 Fluid Mechanic Chater III. Elementary Fluid Dynamic The Bernoulli Equation 1 Sring 018 3.1 Newton Second Law A fluid article can exerience acceleration or deceleration a it move from

More information

Lectures on Exact Solutions of Landau 1+1 Hydrodynamics Cheuk-Yin Wong Oak Ridge National Laboratory

Lectures on Exact Solutions of Landau 1+1 Hydrodynamics Cheuk-Yin Wong Oak Ridge National Laboratory 1 Dene Matter Summer School, Dubna, July 4, 015 Lecture on Exact Solution of Landau 1+1 Hydrodynamic Cheuk-Yin Wong Oak Ridge National Laboratory 1. Introduction. Exact analytical olution diplayed Analogou

More information

Assessment of Surface Tension and Viscosity of In-Zn melt

Assessment of Surface Tension and Viscosity of In-Zn melt The Himalayan Phyic Vol. 6 & 7, pril 2017 (15-19) ement of Surface Tenion and Vicoity of In-Zn melt ISSN 2542-2545 R. P. Koirala 1, 2*, S.K. Yadav 2, 3, 4,. P. Singh 1, I. S. Jha 2, D. dhikari 2 1 Univerity

More information

contact line dynamics

contact line dynamics contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic

More information

722 Chen Xiang-wei et al. Vol. 9 r i and _r i are repectively the poition vector and the velocity vector of the i-th particle and R i = dm i dt u i; (

722 Chen Xiang-wei et al. Vol. 9 r i and _r i are repectively the poition vector and the velocity vector of the i-th particle and R i = dm i dt u i; ( Volume 9, Number 10 October, 2000 1009-1963/2000/09(10)/0721-05 CHINESE PHYSICS cfl 2000 Chin. Phy. Soc. PERTURBATION TO THE SYMMETRIES AND ADIABATIC INVARIANTS OF HOLONOMIC VARIABLE MASS SYSTEMS * Chen

More information

PRESSURE WORK EFFECTS IN UNSTEADY CONVECTIVELY DRIVEN FLOW ALONG A VERTICAL PLATE

PRESSURE WORK EFFECTS IN UNSTEADY CONVECTIVELY DRIVEN FLOW ALONG A VERTICAL PLATE Proceeding of 3ICCHMT 3 rd International Conference on Computational Heat and Ma Tranfer May 6 3, 3, Banff, CANADA Paper Number 87 PRESSURE WORK EFFECTS IN UNSTEADY CONVECTIVELY DRIVEN FLOW ALONG A VERTICAL

More information

Recent progress in fire-structure analysis

Recent progress in fire-structure analysis EJSE Special Iue: Selected Key Note paper from MDCMS 1 1t International Conference on Modern Deign, Contruction and Maintenance of Structure - Hanoi, Vietnam, December 2007 Recent progre in fire-tructure

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

On the Normal-Mode Frequency Spectrum of Kinetic Magnetohydrodynamics. J.J. Ramos. December, 2014

On the Normal-Mode Frequency Spectrum of Kinetic Magnetohydrodynamics. J.J. Ramos. December, 2014 PSFC/JA-14-33 On the Normal-Mode Frequency Spectrum of Kinetic Magnetohydrodynamic J.J. Ramo December, 14 Plama Science and Fuion Center Maachuett Intitute of Technology Cambridge MA 139, U.S.A. Thi work

More information

Cake ltration analysis the eect of the relationship between the pore liquid pressure and the cake compressive stress

Cake ltration analysis the eect of the relationship between the pore liquid pressure and the cake compressive stress Chemical Engineering Science 56 (21) 5361 5369 www.elevier.com/locate/ce Cake ltration analyi the eect of the relationhip between the pore liquid preure and the cake compreive tre C. Tien, S. K. Teoh,

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Chapter 3- Answers to selected exercises

Chapter 3- Answers to selected exercises Chater 3- Anwer to elected exercie. he chemical otential of a imle uid of a ingle comonent i gien by the exreion o ( ) + k B ln o ( ) ; where i the temerature, i the reure, k B i the Boltzmann contant,

More information

Helium. Characteristics of a cryogenic fluid. Name that man. Spelling Bee

Helium. Characteristics of a cryogenic fluid. Name that man. Spelling Bee Characteritic of a cryogenic fluid Critical, normal boiling, and triple point temperature of cryogenic fluid 1. Critical, normal boiling, and triple point temperature of cryogenic fluid 2. Vapor preure

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s 2. Analyzing tre: Definition and Concept 2.1 Introduction Stre and train - The fundamental and paramount ubject in mechanic of material - Chapter 2: Stre - Chapter 3: Strain 2.2 Normal tre under aial loading

More information

PHASE-FIELD SIMULATION OF SOLIDIFICATION WITH DENSITY CHANGE

PHASE-FIELD SIMULATION OF SOLIDIFICATION WITH DENSITY CHANGE Proceeing of IMECE04 004 ASME International Mechanical Engineering Congre an Epoition November 3-0, 004, Anaheim, California USA IMECE004-60875 PHASE-FIELD SIMULATION OF SOLIDIFICATION WITH DENSITY CHANGE

More information

MATHEMATICAL ASPECTS OF THE MECHANICS OF LEFT VENTRICULAR CONTRACTION

MATHEMATICAL ASPECTS OF THE MECHANICS OF LEFT VENTRICULAR CONTRACTION .M. Shoucri, Int. J. of Deign & Nature and Ecodynamic. Vol. 5, No. (010) 173 188 MATHEMATICAL ASPECTS OF THE MECHANICS OF LEFT VENTICULA CONTACTION.M. SHOUCI Department of Mathematic and Computer Science,

More information

12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, 2012

12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, 2012 THE INFLUENCE OF OSMOTIC PRESSURE ON POULTICING TREATMENTS Leo Pel, 1 Victoria Voronina 1 and Alion Heritage 2 1 Tranport in Permeable Media, Department of Applied Phyic, Eindhoven Univerity of Technology,

More information

Pulsed Magnet Crimping

Pulsed Magnet Crimping Puled Magnet Crimping Fred Niell 4/5/00 1 Magnetic Crimping Magnetoforming i a metal fabrication technique that ha been in ue for everal decade. A large capacitor bank i ued to tore energy that i ued to

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

The stability of thin (soft) films

The stability of thin (soft) films The tability of thin (oft) film Lecture 5 Stability of thin film Long range force* November, 9 e.g. Diperion, electrotatic, polymeric Review of Lecture The dijoining preure i a jump in preure at the boundary.

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) A flight project in the Microgravity Materials Science Program 2002 Microgravity Materials Science Meeting June 25, 2002 John A. Pojman

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 245 ON NUMERICAL APPROXIMATION OF FLUID-STRUCTURE INTERACTIONS OF AIR FLOW WITH A MODEL OF VOCAL FOLDS

TOPICAL PROBLEMS OF FLUID MECHANICS 245 ON NUMERICAL APPROXIMATION OF FLUID-STRUCTURE INTERACTIONS OF AIR FLOW WITH A MODEL OF VOCAL FOLDS TOPICAL PROBLEMS OF FLUID MECHANICS 245 ON NUMERICAL APPROXIMATION OF FLUID-STRUCTURE INTERACTIONS OF AIR FLOW WITH A MODEL OF VOCAL FOLDS J. Valášek 1, J. Horáček 2, P. Sváček 1 1 Department of Technical

More information

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + =

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + = ME Fall 8 HW olution Problem he turbe i an open ytem. We identiy the team contaed the turbe a the control volume. Ma conervation: t law o thermodynamic: Aumption: dm m m m dt + + de V V V m h + + gz +

More information

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams Unified Deign Method for Flexure and Debonding in FRP Retrofitted RC Beam G.X. Guan, Ph.D. 1 ; and C.J. Burgoyne 2 Abtract Flexural retrofitting of reinforced concrete (RC) beam uing fibre reinforced polymer

More information

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?)

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?) High-field behavior: the law of approach to aturation (I there an equation for the magnetization at high field? In the high-field region the magnetization approache aturation. The firt attempt to give

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

3-D CFD SIMULATION OF A CFB CARBONATOR COLD MODEL

3-D CFD SIMULATION OF A CFB CARBONATOR COLD MODEL Centre for Reearch & Technology Hella (CERTH) Intitute for Solid Fuel Technology & Application (ISFTA) 3-D CFD SIMULATION OF A CFB CARBONATOR COLD MODEL Nikolopoulo A., Nikolopoulo N. Grammeli P., Kakara

More information

SPECTRAL AND PHASE SPACE ANALYSIS OF THE LINEARIZED NON-CUTOFF KAC COLLISION OPERATOR

SPECTRAL AND PHASE SPACE ANALYSIS OF THE LINEARIZED NON-CUTOFF KAC COLLISION OPERATOR SPECTRAL AND PHASE SPACE ANALYSIS OF THE LINEARIZED NON-CUTOFF KAC COLLISION OPERATOR N. LERNER, Y. MORIMOTO, K. PRAVDA-STAROV & C.-J. XU Abtract. The non-cutoff Kac operator i a kinetic model for the

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices EE321 Fall 2015 Semiconductor Phyic and Device November 30, 2015 Weiwen Zou ( 邹卫文 ) Ph.D., Aociate Prof. State Key Lab of advanced optical communication ytem and network, Dept. of Electronic Engineering,

More information

Analysis of cavitating flow through a venturi

Analysis of cavitating flow through a venturi Vol. 0(), pp. 67-7, June, 0 DOI: 0.897/SRE0.60 Article Number:BFBED8 ISSN 99-8 Copyright 0 Author() retain the copyright of thi article http://www.academicjournal.org/sre Scientific Reearch and Eay Full

More information

Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler-Volmer and Nernst Equations

Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler-Volmer and Nernst Equations J. Phy. Chem. B 2003, 107, 13471-13477 13471 Meocopic Nonequilibrium Thermodynamic Give the Same Thermodynamic Bai to Butler-Volmer and Nernt Equation J. M. Rubi and S. Kjeltrup* Department of Chemitry,

More information

A General Pressure Gradient Formulation for Ocean Models. Part II: Energy, Momentum, and Bottom Torque Consistency

A General Pressure Gradient Formulation for Ocean Models. Part II: Energy, Momentum, and Bottom Torque Consistency 3231 A General Preure Gradient Formulation for Ocean Model. Part II: Energy, Momentum, and Bottom Torque Conitency Y. TONY SONG Earth and Space Science Diviion, Jet Propulion Laboratory, California Intitute

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Chapter 4 Total Entropy Cannot Decrease 2012/5/6

Chapter 4 Total Entropy Cannot Decrease 2012/5/6 Chapter 4 Total Entropy Cannot Decreae "Ice melting" - a claic example of entropy increaing It happen all the time! Nothing you can do About it. Spontaneou and irreverible. It i approaching to an equilibrium

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

X R. U x U x B. U x U x B X R. U x U x B. U x U x B. one solution. solution. two solutions no solution. one. R two solutions no solution.

X R. U x U x B. U x U x B X R. U x U x B. U x U x B. one solution. solution. two solutions no solution. one. R two solutions no solution. CLASSIFICATION OF CODIMENSION-ONE RIEMANN SOLUTIONS STEPHEN SCHECTER, BRADLEY J. PLOHR, AND DAN MARCHESIN Abtract. We invetigate olution of Riemann problem for ytem of two conervation law in one patial

More information

Spri ringer. INTERFACIAL TRANSPORT PHENOMENA 2 nd Edition. John C. Slattery Department ofaerospace Engineering Texas A&M University

Spri ringer. INTERFACIAL TRANSPORT PHENOMENA 2 nd Edition. John C. Slattery Department ofaerospace Engineering Texas A&M University INTERFACIAL TRANSPORT PHENOMENA 2 nd Edition John C. Slattery Department ofaerospace Engineering Texas A&M University Leonard Sagis Department of Agrotechnology & Food Science Wageningen University Eun-Suok

More information