Arc Operads and Arc Algebras

Size: px
Start display at page:

Download "Arc Operads and Arc Algebras"

Transcription

1 ISSN (on line) (prined) 5 Geomery & Topology Volume 7 (003) Pulihed: 8 Augu 003 G G G G T T T G T T T G T G T GG TT G G G G GG T T T TT Ar Operd nd Ar Alger Rlph M Kufmnn Muriel Liverne RC Penner RMK: Oklhom Se Univeriy, Sillwer, USA nd Mx Plnk Iniu für Mhemik, Bonn, Germny ML: Univerié Pri 3, Frne RCP: Univeriy of Souhern Cliforni, Lo Angele, USA Emil: rlphk@mpim-onn.mpg.de, liverne@mh.univ-pri3.fr rpenner@mh.u.edu Ar Severl opologil nd homologil operd ed on fmilie of projeively weighed r in ounded urfe re inrodued nd udied. The pe underlying he i operd re idenified wih open ue of ominoril ompifiion due o Penner of pe loely reled o Riemnn moduli pe. Alger over hee operd re hown o e Blin Vilkoviky lger, where he enire BV ruure i relized impliilly. Furhermore, our i operd onin he i operd up o homoopy. New operd ruure on he irle re lified nd omined wih he i operd o produe geomerilly nurl exenion of he lgeri ruure of BV lger, whih re lo ompued. AMS Clifiion numer Primry: 3G5 Seondry: 8D50, 7BXX, 83E30 Keyword Moduli of Surfe, Operd, Blin Vilkoviky lger Propoed: Shigeyuki Mori Reeived: 6 Deemer 00 Seonded: Rlph Cohen, Vughn Jone Aeped: 8 June 003 Geomery & Topology Puliion

2 5 Rlph M Kufmnn, Muriel Liverne nd R C Penner Inroduion Wih he rie of ring heory nd i ompnion opologil nd onforml field heorie, here h een very fruiful inerion eween phyil ide nd opology. One of i mnifeion i he renewed inere nd reerh iviy in operd nd moduli pe, whih h unovered mny new invrin, ruure nd mny unexpeed reul. The preen reie dd o hi generl undernding. The ring poin i Riemnn moduli pe, whih provide he i operd underlying onforml field heory. I h een exenively udied nd give rie o Blin Vilkoviky ruure nd grviy lger. Uully one i lo inereed in ompifiion or pril ompifiion of hi pe whih led o oher ype of heorie, for inne, he Deligne Mumford ompifiion orrepond o ohomologil field heorie re preen in Gromov Wien heory nd qunum ohomology. There re oher ype of ompifiion however h re eqully inereing like he new ompifiion of Loev nd Mnin [0] nd he ominoril ompifiion of Penner []. The ler ompifiion, whih we will employ in hi pper, i for inne well uied o hndle mrix heory nd onruive field heory. The ominoril nure of he onruion h he gre enefi h ll lulion n e mde explii nd ofen hve very nie geomeri deripion. The ominoril ruure of hi pe i deried y omplexe of emedded weighed r on urfe, upon whih we hll ommen furher elow. Thee omplexe hemelve re of exreme inere hey provide very generl deripion of urfe wih exr ruure whih n e een ing vi oordim. The urfe devoid of r give he uul oordim defining opologil field heorie y Aiyh nd Segl. Tking he r omplexe he i oje, we onru everl operd nd uoperd ou of hem, y peilizing he generl ruure o more reried one, herey onrolling he informion rried y he oordim. The mo inereing one of hee i he yli operd ARC h orrepond o urfe wih weighed r uh h ll oundry omponen hve r emning from hem. We will ll lger over he orreponding homology operd Ar lger. The impoed ondiion orrepond o open ue of he ominoril ompifiion whih onin he operor h yield he Blin Vilkoviky ruure. Moreover, hi ruure i very nurl nd i opologilly explii in len nd euiful wy. Thi operd in genu zero wih no punure n lo e emedded ino n operd in rirry genu

3 Ar Operd nd Ar Alger 53 wih n rirry numer of punure wih he help of genu generor nd punure operor, whih ulimely hould provide good onrol for ilizion. A numer of operd of urren inere [, 6, 6, ] re governed y ompoiion whih, in effe, depend upon omining fmilie of r in urfe. Our operd ompoiion on ARC depend upon n explii mehod of omining fmilie of weighed r in urfe, h i, eh omponen r of he fmily i igned poiive rel numer; we nex riefly derie hi ompoiion. Suppoe h F,F re urfe wih diinguihed oundry omponen F, F. Suppoe furher h eh urfe ome equipped wih properly emedded fmily of r, nd le i,...,i p i denoe he r in F i whih re iniden on i, for i =,, illured in pr I of figure. Idenify wih o produe urfe F. We wih o furhermore omine he r fmilie in F,F o produe orreponding r fmily in F, nd here i evidenly no well-defined wy o hieve hi wihou mking furher hoie or impoing furher ondiion on he r fmilie (uh p = p ). Figure : Gluing nd from weighed r: I, r fmilie in wo urfe, II, omining nd. Our ddiionl d required for gluing i given y n ignmen of one rel numer, weigh, o eh r in eh of he r fmilie. The weigh w i j on i j i inerpreed geomerilly he heigh of rengulr nd Ri j = [0,] [ wj i/,wi j /] whoe ore [0,] {0} i idenified wih i j, for i =, nd j =,...,p i. We hll ume h p j= w j = p j= w j for impliiy, o h he ol heigh of ll he nd iniden on gree wih h of ; in ligh of hi umpion, he nd in F n e enily hed long o he nd in F long o produe olleion of nd in he urfe F illured in pr II of figure ; noie h he horizonl edge of he

4 54 Rlph M Kufmnn, Muriel Liverne nd R C Penner rengle {Rj }p deompoe he rengle {Rj }p ino u-rengle nd onverely. The reuling fmily of u-nd, in urn, deermine weighed fmily of r in F, one r for eh u-nd wih weigh given y he widh of he u-nd; hu, he weighed r fmily in F o produed depend upon he weigh in non-rivil u ominorilly explii wy. Thi derie he i of our gluing operion on fmilie of weighed r, whih i derived from he heory of rin rk nd pril meured foliion [4]. In f, he implifying umpion h he ol heigh gree i ovied y onidering no weighed fmilie of r, u rher weighed fmilie of r modulo he nurl overll homohei ion of R >0 o-lled projeively weighed r fmilie; given projeively weighed r fmilie, we my de-projeivize in order o rrnge h he implifying umpion i in fore (uming h p 0 p ), perform he onruion ju deried, nd finlly re-projeivize. We hll prove in eion h hi onruion indue well-defined operd ompoiion on uile le of projeively weighed r. The reuling operd ruure provide ueful frmework i evidened y he f h here i n emedding of he u operd of Voronov [6] ino hi operd uoperd, we diovered. Thi how how o view he Ch Sullivn [] ring opology, whih w he inpirion for our nlyi nd o whih eion owe oviou inelleul griude, inide he ominoril model. In priulr, we reover in hi wy urfe deripion of he i whih in urn n e viewed reduion of he urfe ruure in very preie wy. In f, here i reduion of ny urfe wih r o onfigurion in he plne, whih i no neerily u nd my hve muh more omplex ruure. For he urfe whoe reduion i u in he ene of [6], one rein he nurl ion on loop pe y forgeing ome of he inernl opologil ruure of he urfe u keeping n eenil pr of he informion rried y he r. For more generl onfigurion, imilr u more omplied ruure i expeed. One virue of viewing he i urfe ined of ingulr level e i h in hi wy he rnhing ehvior i niely depied while he ingulriie of one dimenionl Feynmn grph do no pper Wien h poined ou mny ime. Furhermore, here re nurl uoperd governing he Gerenher nd he BV ruure, where he ler uoperd i genered y he former nd he -ry operion of ARC. On he level of homology, hee operion ju dd one l, h of he BV operor. For i, he iuion i muh more omplied nd i given y i roed produ [7]. I i onjeured [] h he full r omplex of urfe wih oundry i pheril nd hu will no rry muh operdi informion on he homologil

5 Ar Operd nd Ar Alger 55 level. The pheriiy of he full ompifiion n gin e ompred o he Deligne Mumford iuion where he ompifiion in he genu zero e leve no odd ohomology nd in Kozul dul wy i omplemenry o he grviy ruure of he open moduli pe. In generl he ide of oining uoperd y impoing erin ondiion n e een prllel o he philoophy of Gonhrov Mnin [5]. The Spheriiy Conjeure [] would provide he i for lulion of he homology of he operd under oniderion here, k h will e underken in [9]. One more virue of hving onree urfe i h we n lo hndle ddiionl ruure on he oje of he orreponding oordim egory, viz. he oundrie. We inorpore hee ide in he form of dire nd emi dire produ of our operd wih operd ed on irle. Thee give geomerilly nurl exenion of he lgeri ruure of BV lger. Thi view i lo inheren in [7] where he i operd re deompoed ino i roed produ. The operd uil on irle whih we onider hve he geomeri mening of mrking ddiionl poin in he oundry of urfe. Their lgeri onruion, however, i no linked o heir priulr preenion u rher relie on he lgeri ruure of S monoid. They re herefore lo of independen lgeri inere. The pper i orgnized follow: In eion we review he lien feure of he ominoril ompifiion of moduli pe nd he Spheriiy Conjeure. Uing hi kground, we define he operdi produ on urfe wih weighed r h underlie ll of our onruion. In eion we unover he Gerenher nd Blin Vilkoviky ruure of our operd on he level of hin wih explii hin homoopie. Thee hin homoopie mnifely how he ymmery of hee equion. The BV operor i given y he unique, up o homoopy, yle of r fmilie on he ylinder. Seion 3 i devoed o he inluion of he i operd ino he r operd oh in i originl verion [, 6] well in i pinele verion [7]. Thi explii mp, lled frming, lo how h he pinele i govern he Gerenher ruure while he Voronov i yield BV; hi f n lo e red off from he explii lulion of eion for he repeive uoperd of ARC, whih re lo defined in hi eion. The differene eween he wo u operd re operion orreponding o Fenhel Nielen ype deformion of he ylinder, i.e., he -ry operion of ARC. A generl onruion whih forge he opologil ruure of he underlying urfe nd rein olleion of prmeerized loop in he plne wih inidene/ngeny ondiion died y he r fmilie i onined in eion 4. Uing hi pril forgeful mp we define he ion of uoperd of ARC on loop pe of mnifold. For he priulr uoperd

6 56 Rlph M Kufmnn, Muriel Liverne nd R C Penner orreponding o i, hi operion i invere o he frming of eion 3. In eion 5 we define everl dire nd emi dire produ of our operd wih yli nd non yli operd uil on irle. One of hee produ yield for inne dgbv lger. The operd uil on irle whih we uilize re provided y our nlyi of hi ype of operd in he Appendix. The pproh i lifiion of ll operion h re liner nd lol in he oordine of he omponen o e glued. The reul re no oningen on he priulr hoie of S, u only on erin lgeri properie like eing monoid nd re hu of more generl nure. Aknowledgmen The fir uhor wihe o hnk he IHÉS in Bure ur Yvee nd he Mx Plnk Iniu für Mhemik in Bonn, where ome of he work w rried ou, for heir hopiliy. The eond uhor would like o hnk USC for i hopiliy. The finnil uppor of he NSF under grn DMS# i lo knowledged y he fir uhor i he uppor of NATO y he eond uhor. The operd of weighed r fmilie in urfe I i he purpoe of hi eion o define our i opologil operd. The ide of our operd ompoiion on projeively weighed r fmilie w lredy deried in he Inroduion. The ehnil deil of hi re omewh involved, however, nd we nex riefly urvey he meril in hi eion. To egin, we define weighed r fmilie in urfe ogeher wih everl differen geomeri model of he ommon underlying ominoril ruure. The olleion of projeively weighed r fmilie in fixed urfe i found o dmi he nurl ruure of impliil omplex, whih deend o CW deompoiion of he quoien of hi impliil omplex y he ion of he pure mpping l group of he urfe. Thi CW omplex hd rien in Penner erlier work, nd we diu i relionhip o Riemnn moduli pe in n exended remrk. The diuion in he Inroduion of nd whoe heigh re given y weigh on n r fmily i formlized y Thuron heory of pril meured foliion, nd we nex riefly rell he lien deil of hi heory. The pe underlying our opologil operd re hen inrodued; in effe, we onider r fmilie o h here i le one r in he fmily whih i iniden on ny given oundry omponen. In hi eing, we define olleion of r meure pe, one uh pe for eh oundry omponen of he urfe, oied o eh pproprie projeively weighed r fmily.

7 Ar Operd nd Ar Alger 57 We nex define he operd ompoiion of hee projeively weighed r fmilie whih w kehed in he Inroduion nd prove h hi ompoiion i well-defined. Our i operd re hen defined, nd everl exenion of he onruion re finlly diued.. Weighed r fmilie.. Definiion Le F = F g,r e fixed oriened opologil urfe of genu g 0 wih 0 punure nd r oundry omponen, where 6g 7 + 4r + 0, o he oundry F of F i neerily non-empy y hypohei. Fix n enumerion,,..., r of he oundry omponen of F one nd for ll. In eh oundry omponen i of F, hooe one nd for ll loed r W i i, lled window, for eh i =,,...,r. The pure mpping l group PMC = PMC(F) i he group of ioopy le of ll orienion-preerving homeomorphim of F whih fix eh i W i poinwie (nd fix eh W i ewie), for eh i =,,...,r. Define n eenil r in F o e n emedded ph in F whoe endpoin lie mong he window, where we demnd h i no ioopi rel endpoin o ph lying in F. Two r re id o e prllel if here i n ioopy eween hem whih fixe eh i W i poinwie (nd fixe eh W i ewie) for i =,,...,r. An r fmily in F i he ioopy l of n unordered olleion of dijoinly emedded eenil r in F, no wo of whih re prllel. Thu, here i well-defined ion of P M C on r fmilie... Severl model for r We hll ee h olleion of r fmilie in fixed urfe led o nurl impliil omplex, n open ue of whih will form he opologil pe underlying our i operd. Before urning o hi diuion, hough, le u riefly nlyze he role of he window in he definiion ove nd derie everl geomeri model of he ommon underlying ominori of r fmilie in ounded urfe in order o pu hi role ino perpeive. For he fir uh model, le u hooe diinguihed poin d i i, for i =,,...,r, nd onider he pe of ll omplee finie-re meri on

8 58 Rlph M Kufmnn, Muriel Liverne nd R C Penner u v w u v w u v w u v w I II III IV Figure : I, r running o poin on he oundry, II, r running o poin infiniy, III, r in window, IV, nd in window F of onn Gu urvure (o-lled hyperoli meri ) o h eh i = i {d i } i olly geodei (o-lled qui hyperoli meri ) on F. To explin hi, onider hyperoli meri wih geodei oundry on one-punured nnulu A nd he imple geodei r in i ympoi in oh direion o he punure; he indued meri on omponen of A give model for he qui hyperoli ruure on F = F {d i } r ner i. The fir geomeri model for n r fmily α in F i e of dijoinly emedded geodei in F, eh omponen of whih i ympoi in oh direion o ome diinguihed poin d i ; ee pr II of figure. In he homoopy l of eh i, here i unique geodei i F. Exiing from F { i }r ny omponen whih onin poin of, we oin hyperoli ruure on he urfe F F wih geodei oundry (where in he peil e of n nnulu, F ollpe o irle). Tking α F, we find olleion of geodei r onneing oundry omponen (where in he peil e of he nnulu, we find wo poin in he irle). Thi i our eond geomeri model for r fmilie. We my furhermore hooe diinguihed poin p i i nd regulr neighorhood U i of p i in i, for i =,,...,r. Provided p i / α, we my ke U i uffiienly mll h U i α =, o he r V i = i U i form nurl window onining α i. There i hen n mien ioopy of F whih hrink eh window V i down o mll r W i i, under whih α i rnpored o fmily of (non-geodei) r wih endpoin in he window W i. In e p i doe lie in α, hen le u imply move p i mll moun in he direion of he nurl orienion ( oundry omponen of F ) long i nd perform he me onruion; ee pr III of figure. Thi led o our finl geomeri model of r fmilie, nmely, he model

9 Ar Operd nd Ar Alger 59 defined in.. for he purpoe of hi pper, of r in ounded urfe wih endpoin in window. Thi hird model i in he piri of rin rk nd meured foliion (f. [4]) we hll ee nd i mo onvenien for deriing he operdi ruure...3 The r omplex Le u induively uild impliil omplex Ar = Ar (F) follow. For eh ingleon r fmily in F, here i diin verex of Ar (F). Hving hu induively onrued he (k )-keleon of Ar for k, le u dd k-implex σ(α ) o Ar for eh r fmily α in F of rdinliy k+. The impliil ruure on σ(α ) ielf i he nurl one, where fe orrepond o u-r fmilie of α, nd we my herefore idenify he proper fe of σ(α ) wih implie in he (k )-keleon of Ar. Adjoining k-implie in hi mnner for eh uh r fmily α of rdinliy k + define he k-keleon of Ar. Thi omplee he induive definiion of he impliil omplex Ar. Ar i hu impliil omplex, upon whih PMC = PMC(F) oninuouly, nd we define he quoien opologil pe o e Ar = Ar(F) = Ar (F)/PMC(F). If α = { 0,,..., k } Ar, hen he r i ome in nonil liner ordering. Nmely, he orienion of F indue n orienion on eh window, nd rvering he window in he order W,W,...,W r in hee orienion, one fir enouner n endpoin of he r 0,,..., k in ome order, whih prerie he limed liner ordering. Thu, ell in Ar nno hve finie ioropy in PMC, nd he impliil deompoiion of Ar deend o CW deompoiion of Ar ielf...4 Spheriiy Conjeure [] Fix ny urfe F = F g,r wih 6g 7 + 4r + 0. Then Ar(F g,r) i pieewie-linerly homeomorphi o phere of dimenion 6g 7 + 4r +. Reen work eem o provide proof of hi onjeure le in he e g = 0 of plnr urfe will e ken up elewhere. I i worh emphizing h he urren pper i independen of he Spheriiy Conjeure, u hi give ueful perpeive on he relionhip eween Riemnn moduli pe nd he operd udied here...5 Remrk I i he purpoe of hi remrk o explin he geomery underlying Ar(F) whih w unovered in [, 3]. Rell he diinguihed

10 50 Rlph M Kufmnn, Muriel Liverne nd R C Penner poin p i i hoen in our eond geomeri model for r fmilie. The moduli pe M = M(F) of he urfe F wih oundry i he olleion of ll omplee finie-re meri of onn Gu urvure - wih geodei oundry, ogeher wih diinguihed poin p i in eh oundry omponen, modulo puh forwrd y diffeomorphim. There i nurl ion of R + on M y imulneouly ling eh of he hyperoli lengh of he geodei oundry omponen, nd we le M/R + denoe he quoien. The min reul of [3] i h M/R + i proper homoopy equivlen o he omplemen of odimenion-wo uomplex Ar (F) of Ar(F), where Ar (F) orrepond o r fmilie α o h ome omponen of F α i oher hn polygon or one-punured polygon. I i remrkle o ugge h y dding o pe homoopy equivlen o M/R + uile impliil omplex we oin phere. There i muh known [] ou he geomery nd ominori of Ar(F) nd Ar (F). Furhermore, he Spheriiy Conjeure hould e ueful in luling he homologil operd of he r operd...6 Noion We hll lwy dop he noion h if α i he PMC-ori of n r fmily in F, hen α Ar denoe ome hoen r fmily repreening α. Furhermore, i will omeime e onvenien o peify he omponen 0,,..., k, for k 0, of n r fmily α repreening α Ar, nd we hll wrie imply α = { 0,,..., k } in hi e. Sine he liner ordering on omponen of α Ar i invrin under he ion of PMC, i deend o well-defined liner ordering on he omponen underlying he P M C-ori α. Of oure, k-dimenionl ell in he CW deompoiion of Ar i deermined y he PMC-ori of ome r fmily α = { 0,,..., k } Ar, nd (gin relying on he PMC-invrin liner ordering diued previouly) poin in he inerior of hi ell i deermined y he projeive l of orreponding (k + )-uple (w 0,w,...,w k ) of poiive rel numer. A uul, we hll le [w 0 : w : : w k ] denoe ffine oordine on he projeive le of orreponding non-negive rel (k + )-uple, nd if w i = 0, for i in proper ue I {0,,,k}, hen he poin of Ar orreponding o (α,[w 0 : w : : w k ]) i idenified wih he poin in he ell orreponding o { j α : j / I} wih projeive uple goen y deleing ll zero enrie of [w 0 : w : : w k ]. To remline he noion, if α = { 0,,..., k } i in Ar nd if (w 0,w,..., w k ) R k+ + i n ignmen of numer, lled weigh, one weigh o eh

11 Ar Operd nd Ar Alger 5 omponen of α, hen we hll omeime uppre he weigh y leing (α ) denoe he r fmily α wih orreponding weigh w(α ) = (w 0,w,...,w k ). In he me mnner, he projeivized weigh on he omponen of α will omeime e uppreed, nd we le [α ] denoe he r fmily α wih projeive weigh w[α ] = [w 0 : w :... : w k ]. Thee me noion will e ued for PMC-le of r fmilie well, o, for inne, (α) denoe he PMCori α wih weigh w(α) R k+ +, nd poin in Ar my e denoed imply [α] Ar(F), where he projeive weigh i given y w[α].. Pril meured foliion Anoher poin of view on elemen of Ar, whih i ueful in he uequen onruion, i derived from he heory of rin rk (f. [4]) follow. If α = { 0,,..., k } Ar i given weigh (w 0,w,...,w k ) R k+ +, hen we my regrd w i rnvere meure on i, for eh i = 0,,...,k o deermine meured rin rk wih op nd orreponding pril meured foliion, onidered in [4]. For he onveniene of he reder, we nex riefly rell he lien nd elemenry feure of hi onruion. Chooe for he purpoe of hi diuion ny omplee Riemnnin meri ρ of finie re on F, uppoe h eh i i mooh for ρ, nd onider for eh i he nd B i in F oniing of ll poin wihin ρ-dine w i of i. If i i neery, le he meri ρ o λρ, for λ >, o gurnee h hee nd re emedded, pirwie dijoin in F, nd hve heir endpoin lying mong he window. The nd B i ou i ome equipped wih foliion y he r prllel o i whih re fixed ρ-dine o i, nd hi foliion ome equipped wih rnvere meure inheried from ρ; hu, B i i regrded rengle of widh w i nd ome irrelevn lengh, for i = 0,,...,k. The folied nd rnverely meured nd B i, for i = 0,,..., k omine o give pril meured foliion of F, h i, foliion of loed ue of F upporing n invrin rnvere meure (f. [4]). The ioopy l in F rel F of hi pril meured foliion i independen of he hoie of meri ρ. Coninuing o uppre he hoie of meri ρ, for eh i =,,...,r, onider i ( k j=0 B j), whih i empy if α doe no mee i nd i oherwie olleion of loed inervl in W i wih dijoin inerior. Collpe o poin eh omponen omplemenry o he inerior of hee inervl in W i o oin n inervl, whih we hll denoe i (α ). Eh uh inervl i (α ) inheri n oluely oninuou meure µ i from he rnvere meure on he nd.

12 5 Rlph M Kufmnn, Muriel Liverne nd R C Penner.. Definiion Given wo repreenive (α ) nd (α ) of he me weighed PMC-ori (α), he repeive meure pe ( i (α ),µi ) nd ( i (α ),µi ) re nonilly idenified, whih llow u o onider he meure pe ( i (α),µ i ) of weighed PMC-ori (α) ielf, whih i lled he i h end of (α), for eh i =,,...,r..3 The pe underlying he opologil operd.3. Definiion An r fmily α in F i id o e exhuive if for eh oundry omponen i, for i =,,...,r, here i le one omponen r in α wih i endpoin in he window W i. Likewie, PMC-ori α of r fmilie i id o e exhuive if ome (h i, ny) repreening r fmily α i o. Define he opologil pe Ar g (n) = {[α] Ar(F g,n+ ) : α i exhuive}, Ãr g (n) = Ar g (n) (S ) n+, whih re he pe h omprie our vriou fmilie of opologil operd. In ligh of Remrk..5, Ar g(n) i idenified wih n open upe of Ar(F) properly onining pe homoopy equivlen o M(F g,n+ )/S, nd Ar(F) i pheril in le he plnr e. Enumering he oundry omponen of F 0,,..., n one nd for ll (where 0 will ply peil role in he uequen diuion) nd leing S p denoe he p h ymmeri group, here i nurl S n+ -ion on he leling of oundry omponen whih reri o nurl S n -ion on he oundry omponen leled {,,...,n}. Thu, S n nd S n+ on Ar g(n), nd exending y he digonl ion of S n+ on (S ) n+, he ymmeri group S n nd S n+ likewie on Ãr g (n), where S n y definiion rivilly on he fir oordine in (S ) n+. Coninuing wih he definiion, if [α] ( 0,,..., n ) Ãr g(n), le u hooe orreponding deprojeivizion (α), fix ome oundry omponen i, for i = 0,,...,n, nd le m i = µ i ( i (α)) denoe he ol meure. There i hen unique orienion-preerving mpping (α) i : i (α) S () whih mp he (l of he) fir poin of i (α) in he orienion of he window W i o 0 S, where he meure on he domin i π m i µ i nd on he rnge

13 Ar Operd nd Ar Alger 53 i he Hr meure on S. Of oure, eh (α) i i injeive on he inerior of i (α) while ( (α) i ) ({0}) = ( i (α) ). Furhermore, if (α ) nd (α ) re wo differen deprojeivizion of ommon projeive l, hen (α ) i ( (α ) i ) exend oninuouly o he ideniy on S..3. Remrk We do no wih o peilize o one or noher priulr e hi ge, u if F ome equipped wih n priori oluely oninuou meure (for inne, if F ome equipped wih nonil oordinizion, or if F or F ome equipped wih fixed Riemnnin meri), hen we n idenify i (α) wih i F, for eh i = 0,,...,n, in he oviou mnner (where, if he priori ol meure of i i M i, hen we ler he Riemnnin meri ρ employed in he definiion of he nd o h he µ i ol meure m i = µ i ( i (α)) gree wih M i for eh i = 0,,...,n nd finlly ollpe he endpoin of i (α) o ingle poin). Thu, he ide i h he i h end of (α) give model or oordinizion for i, u of oure, lering he underlying (α) in urn ler he oordinizion (α) i of i. The rivil produ Ãr g(n) = Ar g(n) (S ) n+ led in hi wy o fmily of oordinizion of F whih re wied y Ar g (n)..3.3 Pioril repreenion of r fmilie A explined efore, here re everl wy in whih o imgine weighed r fmilie ner he oundry. They re illured in figure. I i lo onvenien, o view r ner oundry omponen oleed ino ingle wide nd y ollping o poin eh inervl in he window omplemenry o he nd; hi inervl model i illured in figure 3, pr I. I i lo omeime onvenien o furher ke he imge under he mp o produe he irle model i depied in figure 3, pr II. w u v w u v I II Figure 3: I, nd ending on n inervl, II, nd ending on irle

14 54 Rlph M Kufmnn, Muriel Liverne nd R C Penner.4 Gluing r fmilie.4. Gluing weighed r fmilie Given wo weighed r fmilie (α ) in Fg,m+ nd (β ) in Fh,n+ o h µ i ( i (α )) = µ 0 ( 0 (β )), for ome i m, we hll nex mke hoie o define weighed r fmily in F + g+h,m+n follow. Fir of ll, le 0,,..., m denoe he oundry omponen of Fg,m+, le 0,,..., n denoe he oundry omponen of Fh,n+, nd fix ome index i m. Eh oundry omponen inheri n orienion in he ndrd mnner from he orienion of he urfe, nd we my hooe ny orienion-preerving homeomorphim ξ : i S nd η : 0 S eh of whih mp he iniil poin of he repeive window o he e-poin 0 S. Gluing ogeher i nd 0 y idenifying x S wih y S if ξ(x) = η(y) produe pe X homeomorphi o F + g+h,m+n, where he wo urve i nd 0 re hu idenified o ingle epring urve in X. There i no nurl hoie of homeomorphim of X wih F + g+h,m+n, u here re nonil inluion j : Fg,m+ X nd k : F h,n+ X. We enumere he oundry omponen of X in he order 0,,..., i,,,... n, i+, i+,... m nd re-index leing j, for j = 0,,...,m + n, denoe he oundry omponen of X in hi order. Likewie, fir enumere he punure of Fg,m+ in order nd hen hoe of F h,n+ o deermine n enumerion of hoe of X, if ny. Le u hooe n orienion-preerving homeomorphim H : X F + g+h,m+n whih preerve he leling of he oundry omponen well hoe of he punure, if ny. In order o define he required weighed r fmily, onider he pril meured foliion G in Fg,m+ nd H in F h,n+ orreponding repeively o (α ) nd (β ). By our umpion h µ i ( i (α )) = µ 0 ( 0 (β )), we my produe orreponding pril meured foliion F in X y idenifying he poin x i (α ) nd y 0 (β ) if (α) i (x) = (β) 0 (y). The reuling pril meured foliion F my hve imple loed urve leve whih we mu imply dird o produe ye noher pril meured foliion F in X. The leve of F hu run eween oundry omponen of X nd herefore, in he previou eion, deompoe ino olleion of nd B i of ome widh w i, for i =,,... I. Chooe lef of F in eh uh nd B i nd oie o i he weigh w i given y he widh of B i o deermine weighed r fmily

15 Ar Operd nd Ar Alger 55 (δ ) in X whih i evidenly exhuive. Le (γ ) = H(δ ) denoe he imge in under H of hi weighed r fmily. F + g+h,m+n.4. Lemm The PMC(F + g+h,m+n )-ori of (γ ) i well-defined (α ) vrie over PMC(F g,m+ )-ori of weighed r fmilie in F g,m+ nd (β ) vrie over PMC(F h,n+ )-ori of weighed r fmilie in F h,n+. Proof Suppoe we re given weighed r fmilie (α ) = φ(α ), for φ PMC(Fg,m+ ), nd (β ) = ψ(β ), for ψ PMC(F h,n+ ), well pir H l : X l F + g+h,m+n of homeomorphim ove ogeher wih he pir j,j : Fg,m+ X l nd k,k : Fh,n+ X l of indued inluion, for l =,. Le F l, F l denoe he pril meured foliion nd le (δ l ) nd (γ l ) denoe he orreponding weighed r fmilie in X l nd F + g+h,m+n, repeively, onrued ove from (α l ) nd (β l ), for l =,. Le l = j l ( 0 ) = k l ( i ) X l, nd remove uulr neighorhood U l of l in X l o oin he uurfe X l = X l U l, for l =,. Ioope j l,k l off of U l in he nurl wy o produe inluion j l : F g,m+ X l nd k l : F h,n+ X l wih dijoin imge, for l =,. φ indue homeomorphim Φ : X X uppored on j (F g,m+ ) o h j φ = Φ j, nd ψ indue homeomorphim Ψ : X X uppored on k (F h,n+ ) o h k ψ = Ψ k. Beue of heir dijoin uppor, Φ nd Ψ omine o give homeomorphim G : X X o h j φ = G j nd k ψ = G k. We my exend G y ny uile homeomorphim U U o produe homeomorphim G : X X. By onruion nd fer uile ioopy, G mp F X o F X, nd here i power τ of Dehn wi long uppored on he inerior of U o h K = τ G lo mp F U o F U. K hu mp F o F nd hene (δ ) o (δ ). I follow h he homeomorphim H K H : F + g+h,m+n F + g+h,m+n mp (γ ) o (γ ), o (γ ) nd (γ ) re indeed in he me PMC(F + g+h,m+n )-ori..4.3 Remrk I i worh emphizing gin h, owing o he dependene upon weigh, he r in γ re no imply deermined ju from he r in α nd β ; he r in γ depend upon he weigh. I i lo worh poining ou h he ompoiion ju deried i no well-defined on projeively weighed r fmilie u only on pure mpping l ori of uh. In f, y mking hoie of ndrd model for urfe well ndrd inluion of

16 56 Rlph M Kufmnn, Muriel Liverne nd R C Penner hee ndrd model, one n lif he ompoiion o he level of projeively weighed r fmilie..4.4 Remrk We imply dird imple loed urve omponen whih my rie in our onruion, nd J L Lody h propoed inluding hem here in nlogy o [6]. In f, hey nurlly give rie o he onjugy l of n elemen of he rel group ring of he fundmenl group of F..4.5 Definiion Given [α] Ar g (m) nd [β] Ar h (n) nd n index i m, le u hooe repeive deprojeivizion (α ) nd (β ) nd wrie he weigh w(α ) = (u 0,u,...,u m ), w(β ) = (v 0,v,...,v n ). Define ρ 0 = v i, ρ i = { β: 0 } { α: i } u i, where in eh um he weigh re ken wih mulipliiy, e.g., if h oh endpoin 0, hen here re wo orreponding erm in ρ 0. Sine oh r fmilie re exhuive, ρ i 0 ρ 0, nd we my re-le ρ 0 w(α ) = (ρ 0 u 0,ρ 0 u,...,ρ 0 u m ), ρ i w(β ) = (ρ i v 0,ρ i v,...,ρ i v n ), o h he 0 h enry of ρ i w(β ) gree wih he i h enry of ρ 0 w(α ). Thu, we my pply he ompoiion of.4. o he re-led r fmilie o produe orreponding weighed r fmily (γ ) in F + g+h,m+n, whoe projeive l i denoed [γ] Ar + g+h (m + n ). We le in order o define he ompoiion [α] i [β] = [γ], i : Ar g(m) Ar h (n) Ar+ g+h (m + n ), for ny i =,,...,m. A in Remrk.4.3, hi ompoiion i no impliil mp u ju opologil one.

17 Ar Operd nd Ar Alger A pioril repreenion of he gluing A grphil repreenion of he gluing n e found in figure 4, where we preen he gluing in hree of he differen model. More exmple of gluing in he inervl nd irle model n e found in figure 5 nd hroughou he ler eion. p q p q p p q p q = q q p q I II III Figure 4: The gluing: I, in he inervl piure, II, in he window wih nd piure nd III, in he r running o mrked poin verion..5 The i opologil operd.5. Definiion For eh n 0, le ARC p (n) = Ar 0 0 (n) (where he p nd for omp plnr), nd furhermore, define he dire limi ARC(n) of Ar g (n) g, under he nurl inluion..5. Theorem The ompoiion i of Definiion.4.5 imue he olleion of pe ARC p (n) wih he ruure of opologil operd under he nurl S n ion on lel on he oundry omponen. The operd h uni ARC p () given y he l of n r in he ylinder meeing oh oundry omponen, nd he operd i yli for he nurl S n+ ion. Proof The fir emen follow from he ndrd operdi mnipulion. The eond emen i immedie from he definiion of ompoiion. For he hird emen, noie h he ompoiion re he wo urfe ymmerilly, nd he xiom for yliiy gin follow from he ndrd operdi mnipulion. In preiely he me wy, we hve he following heorem.

18 58 Rlph M Kufmnn, Muriel Liverne nd R C Penner.5.3 Theorem The ompoiion i of Definiion.4.5 indue ompoiion i on ARC(n) whih imue hi olleion of pe wih he nurl ruure of yli opologil operd wih uni..5.4 The deprojeivized pe DARC For he following i i onvenien o inrodue deprojeivized r fmilie. Thi moun o dding for R >0 for he overll le. Le DARC(n) = ARC(n) R >0 e he pe of weighed r fmilie; i i ler h DARC(n) i homoopy equivlen o ARC(n). A he definiion.4.5 of gluing w oined y lifing o weighed r fmilie nd hen projeing k, we n promoe he ompoiion o he level of he pe DARC(n). Thi endow he pe DARC(n) wih ruure of yli operd well. Moreover, y onruion he wo operdi ruure re ompile. Thi ype of ompoiion n e ompred o he ompoiion of loop, where uh reling i lo inheren. In our e, however, he ling i performed on oh ide whih render he operd yli. In hi onex, he ol weigh given oundry omponen given y he um of he individul weigh w of iniden r mke ene, nd hu he mp n e nurlly viewed mp o irle of rdiu w..6 Noion We denoe he operd on he olleion of pe ARC(n) y ARC nd he operd on he olleion of pe DARC(n) y DARC. By n Ar lger, we men n lger over he homology operd of ARC. Likewie, ARC p nd DARC p re ompried of he pe ARC p (n) nd DARC p (n) repeively, nd n Ar p lger i n lger over he homology of ARC p.6. Remrk In f, he reriion h he r fmilie under oniderion mu e exhuive n e relxed in everl wy wih he idenil definiion reined for he ompoiion. For inne, if he projeively weighed r fmily [α] Ar g(m) fil o mee he i h oundry omponen nd [β] Ar h (n), hen we n e [α] i [β] o e [α] regrded n r fmily in Fg,m+ F + g+h,m+n, where he oundry omponen hve een re-leled. In oh formulion, we mu require h 0 [β] in order h [α] i [β] i non-empy, u hi ymmeri remen deroy yliiy. Anoher poiiliy i o inlude he empy r fmily in he operd ny r fmily wih ll weigh zero o preerve yliiy. The ompoiion hen imue

19 Ar Operd nd Ar Alger 59 he deprojeivized Ar(Fg,n+ ) hemelve wih he ruure of opologil operd, u he orreponding homology operd, in ligh of he Spheriiy Conjeure..4 would e rivil i.e., he rivil one-dimenionl S n module for eh n..6. Turning on punure nd genu When llowing genu or he numer of punure o e differen from zero, here re wo operor for he opologil operd h genere r fmilie of ll gener repeively wih ny numer of punure from r fmilie of genu zero wih no punure. Thee operor re depied in figure 5. I II Figure 5: I, he genu generor, II, he punure operor For he orreponding liner homology operd, we expe imilriie wih [0], in whih he punure ply he role of he eond e of poin. Thi men h he liner operd will on enor power of wo liner pe, one for he oundry omponen nd one for he punure. In hi exenion of he operdi frmework, here i no gluing on he punure nd he repeive liner pe hould e regrded prmeerizing deformion whih perur eh operion eprely..6.3 Oher Prop nd Operd There re reled u-operd nd u-prop of Ar(Fg,n+ ) oher hn ARC p nd ARC whih re of inere. In he generl e, one my peify ymmeri (n + )-y-(n + ) mrix A (n) well n (n + )-veor R (n) of zeroe nd one over Z/Z nd onider he upe of Ar(Fg,n+ ) where r re llowed o run eween oundry omponen i nd j if nd only if A (n) ij 0 nd re required o mee oundry omponen k if nd only if R (n) k 0. For inne, he e of inere in hi pper orrepond o A (n) he mrix nd R (n) he veor whoe enrie re ll one. In Remrk.6., we lo menioned he exmple wih A (n) he mrix oniing enirely of enrie one nd R (n) he ndrd fir uni i veor.

20 530 Rlph M Kufmnn, Muriel Liverne nd R C Penner For l of exmple, onider priion of {0,,... n} = I (n) O (n), ino inpu nd oupu, where A (n) ij = if nd only if {i,j} I (n) nd {i,j} O (n) re eh ingleon, nd R (n) i he veor whoe enrie re ll one. The orreponding prop i preumly reled o he ring prop of []. There re mny oher inereing poiiliie. For inne, he i operd of [6] nd he pinele i of [7] will e diued nd udied in eion nd 3, nd oher reled u-like exmple re udied in [7]. A furher vriion i o rify he pe y inidene mrie wih non negive ineger enrie orreponding o he numer of r eh oundry omponen. The Gerenher nd BV ruure of ARC In hi eion we will how h here i ruure of Blin-Vilkoviky lger on Ar lger nd Ar p lger. More preiely, ny lger over he ingulr hin omplex operd C (ARC p ) or C (ARC) i BV lger up o erin hin homoopie. For onveniene, C (n) will denoe C (ARC p (n)) or C (ARC(n)), ine for our lulion, we only require ARC p. An elemen in C will e lo lled n r fmily. We hll relize he underlying urfe F0,n+ 0 in he plne wih he oundry 0 eing he ouide irle. The onvenion we ue for he drwing i h ll irle re oriened ounerlokwie. Furhermore if here i only one mrked poin on he irle, i i he eginning of he window. If here re wo mrked poin on he oundry, he window i he mller r eween he wo. Vi gluing, ny r fmily in C (n) give rie o n n ry operion on r fmilie in C. Here one h o e reful wih he prmeerizion. To e ompleely explii we will lwy inlude hem if we ue priulr fmily n operion. A menioned in he Inroduion, mny of he lulion of hi eion re inpired y [].. A reminder on ome lgeri ruure In hi eion, we would like o rell ome i definiion of lger nd heir relion whih we will employ in he following. The proof in hi ueion re omied, ine hey re righforwrd ompuion. They n e found in [3, 4].

21 Ar Operd nd Ar Alger 53.. Definiion (Gerenher) A pre Lie lger i Z/Z grded veor pe V ogeher wih iliner operion h ifie (x y) z x (y z) = ( ) y z ((x z) y x (z y)) Here x denoe he Z/Z degree of x... Definiion An odd Lie lger i Z/Z grded veor pe V ogeher wih iliner operion {, } whih ifie () {, } = ( ) ( +)( +) {, } () {, {, }} = {{, }, } + ( ) ( +)( +) {, {, }}..3 Remrk Pre Lie lger of he ove ype re omeime lo lled righ ymmeri lger. There i lo he noion of lef ymmeri lger, whih ifie (x y) z x (y z) = ±(y x) z y (x z) Given lef ymmeri lger i oppoie lger i righ ymmeri nd vie ver. Here he mulipliion for he oppoie lger A opp i opp =. Hene i i mer of e, whih lger ype one regrd. To mh wih ring opology, one h o ue lef ymmeri lger, while o mh wih he Hohhild ohin, one will hve o ue righ ymmeri lger...4 Definiion A Gerenher lger or n odd Poion lger i Z/Z grded, grded ommuive oiive lger (A, ) endowed wih n odd Lie lger ruure {, } whih ifie he ompiiliy equion {, } = {, } + ( ) ( +) {, }..5 Propoiion (Gerenher) For ny pre-lie lger V, he rke {, } defined y {, } := ( ) ( +)( +) () endow V wih ruure of odd Lie lger...6 Remrk The me hold rue for righ ymmeri lger.

22 53 Rlph M Kufmnn, Muriel Liverne nd R C Penner..7 Definiion A Blin Vilkoviky (BV) lger i n oiive uper ommuive lger A ogeher wih n operor of degree h ifie = 0 () = () + ( ) () + ( ) () () ( ) () ( ) + () Here uper ommuive men uul Z/Z grded ommuive, i.e. = ( )...8 Propoiion (Gezler) For ny BV lger (A, ) define {, } := ( ) () ( ) () () (3) Then (A, {, }) i Gerenher lger...9 Definiion We ll riple (A, {, }, ) GBV lger if (A, ) i BV lger nd {, } : A A A ifie he equion (3). By he Propoiion ove (A, {, }) i Gerenher lger. The purpoe of hi definiion i h in ome e in he e of he Ar operd i hppen h rke well he BV operor pper nurlly. In our e he rke ome nurlly from pre Lie ruure whih one n lo view produ, while he BV operor pper from yle nurlly prmeerized y S = Ar(F 0 0, = ARC p(). We ue he nme GBV lger o indie h hee ruure lhough hving independen origin re indeed ompile. A we will how elow, he independen origin n e inerpreed ying h he Gerenher ruure i governed y one uoperd nd he BV ruure y noher igger uoperd whih onin he previou one. Moreover he rke of he BV ruure oinide wih he rke of he Gerenher ruure lredy preen in he mller uoperd.. Ar fmilie nd heir indued operion The poin in ARC p () re prmeerized y he irle, whih i idenified wih [0, ], where 0 i idenified o. To derie prmeerized fmily of weighed r, we hll peify weigh h depend upon he prmeer [0,]. Thu, y king [0,] figure 6 derie yle δ C () h pn H (ARC p ()).

23 Ar Operd nd Ar Alger 533 = I II Figure 6: I, he ideniy nd II, he r fmily δ yielding he BV operor A ed ove, here i n operion oied o he fmily δ. For inne, if F i ny r fmily F : k ARC p, δf i he fmily prmeerized y I k ARC p wih he mp given y he piure y inering F ino he poiion. By definiion, = δ C (). In C () we hve he i fmilie depied in figure 7 whih in urn yield operion on C. The do produ The r δ (,) Figure 7: The inry operion To fix he ign, we fix he prmeerizion we will ue for he glued fmilie follow: y he fmilie F,F re prmeerized y F : k ARC p nd F : k ARC p nd I = [0,]. Then F F i he fmily prmeerized y k k ARC p defined y figure 7 (i.e., he r fmily F inered in oundry nd he r fmily F inered in oundry ). Inerhnging lel nd nd uing hin homoopy in figure 8 yield he ommuiviy of up o hin homoopy d(f F ) = ( ) F F F F F F (4)

24 534 Rlph M Kufmnn, Muriel Liverne nd R C Penner Noie h he produ i oiive up o hin homoopy. Likewie F F i defined o e he operion given y he eond fmily of figure 7 wih I = [0,] prmeerized over k I k ARC p. By inerhnging he lel, we n produe yle {F,F } hown in figure 8 where now he whole fmily i prmeerized y k I k ARC p. {F,F } := F F ( ) ( F +)( F +) F F. * {,} ( +)( +) ( ) * Figure 8: The definiion of he Gerenher rke.. Definiion We hve defined he following elemen in C : δ nd = δ in C (); in C 0 (), whih i ommuive nd oiive up o oundry. nd {, } in C () wih d( ) = τ nd {, } = τ. Noe h δ, nd {, } re yle, where i no... Remrk We would like o poin ou h he ymol in he ndrd uper noion of odd Lie rke { }, whih i igned o hve n inrini degree of, orrepond geomerilly in our iuion o he one dimenionl inervl I.

25 Ar Operd nd Ar Alger The BV operor The operion orreponding o he r fmily δ i eily een o qure o zero in homology. I i herefore differenil nd nurl ndide for derivion or higher order differenil operor. I i eily heked h i i no derivion, u i i BV operor, we hll demonre. I i onvenien o inrodue he fmily of operion on r fmilie δ whih re defined y figure 9, where he fmilie re prmeerized over I k k n. δ() δ (,) δ (,,) n δ (,,, ) n Figure 9: The definiion of he n ry operion δ We noie he following relion whih re he rion d êre for hi definiion: δ() δ(,) + ( ) δ(,) δ() δ(,,) + ( ) ( + ) δ(,,) (5) δ( n ) +( ) ( + ) δ(,,) n ( ) σ(i,) δ( i (),..., i (n)) (6) i=0

26 536 Rlph M Kufmnn, Muriel Liverne nd R C Penner where i he yli permuion (,...,n) nd σ( i,) i he ndrd uperign of he permuion. The homoopy here i ju reprmeerizion of he vrile I. There i furher relion immedie from he definiion whih how h he only new operion i δ(,) δ(,,..., n ) δ(, 3 n ) (7) where we ue homoopy o le ll weigh of he nd no hiing he oundry o he vlue..3. Lemm δ(,,) ( ) ( +) δ(,) + δ(,) δ() (8) Proof The proof i onined in figure 0. Le : k ARC p, : k ARC p nd : k ARC p, e r fmilie hen he wo prmeer fmily filling he qure i prmeerized over I I k k k. Thi fmily give u he deired hin homoopy..3. Propoiion The operor ifie he relion of BV operor up o hin homoopy. 0 () () + ( ) () + ( ) () () ( ) () ( ) + () (9) Thu, ny Ar lger nd ny Ar p lger i BV lger. Proof The proof follow lgerilly from Lemm.3. nd equion (5). We n lo mke he hin homoopy explii. Thi h he dvnge of illuring he ymmeri nure of hi relion in C direly. Given r fmilie : k ARC p, : k ARC p nd : k ARC p, we define he wo prmeer fmily defined y he figure where he fmilie in he rengle re he depied wo prmeer fmilie prmeerized over I I k k k nd he ringle i no filled, u rher i oundry i he operion δ().

27 Ar Operd nd Ar Alger 537 ( +) ( ) δ () = δ() ( ) ( ) ( )( ) δ (,) ( +) ( ) δ(,) δ (,,) Figure 0: The i hin homoopy reponile for BV From he digrm we ge he hin homoopy oniing of hree, nd repeively welve, erm. δ() δ(,,) + ( ) ( + ) δ(,,) + ( ) ( + ) δ(,,) ( ) ( +) δ(,) + δ(,) δ() + ( ) δ(,) +( ) δ(,) ( ) δ() + ( ) ( + ) δ(,) +( ) ( + )+ δ(,) ( ) + δ() δ() + ( ) δ() + ( ) + δ() δ() ( ) δ() ( ) + δ() (0)

28 538 Rlph M Kufmnn, Muriel Liverne nd R C Penner ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) Figure : The homoopy BV equion.4 Gerenher Sruure We hve lredy defined he operion whoe odd ommuor i given y he BV operor..4. Theorem The Gerenher rke indued y i given y he operion {,} = ( ) ( +)( +) In oher word ARC i GBV Alger up o homoopy.

29 Ar Operd nd Ar Alger 539 ( +)( +) ( ) * δ ( ) δ () ( ) δ * Figure : The odd ommuor relizion of he rke Proof We onider he r fmily depied in figure, where he wo prmeer r fmilie re prmeerized vi k T k ARC p, where T i he ringle T := {(,) [0,] [0,] : + } wih indued orienion, nd where he middle loop i ( ) F δ(f F ) uily re prmeerized. Inering F in he oundry, nd F in oundry, nd ping o homology, we n red off he relion: ( ) F δ(f F ) = or wih = δ: ( ) ( F +)( F +) F F + ( ) F δ(f ) F F F + F (δf ) {F,F } = ( ) F (F F ) ( ) F (F ) F F ( F ).4. Remrk Algerilly, he Joi ideniy nd he derivion propery of he rke follow from he BV relion. For he le lgerilly inlined we n gin mke everyhing opologilly explii. Thi lo h he virue of howing how differen weigh onriue o opologilly diin gluing.

30 540 Rlph M Kufmnn, Muriel Liverne nd R C Penner Thi remen lo how h we n reri ourelve o he e of liner (Chinee) ree of eion 3 or o i wihou pine (f. eion 5 nd [7]) nd herefore hve Gerenher ruure on hi level..4.3 The oior I i inruive o do he lulion in he r fmily piure wih he operdi noion. For he gluing we oin he elemen in C () preened in figure 3 o whih we pply he homoopy of hnging he weigh on he oundry 3 from o while keeping everyhing ele fixed. We ll hi normlizion. o = ~ 3 3 Figure 3: The fir iered gluing of Unrveling he definiion for he normlized verion yield figure 4, where in he differen e he gluing of he nd i hown in figure 5. The gluing in r fmilie i impler nd yield he gluing depied in figure 6 o whih we pply normlizing homoopy y hnging he weigh on he nd emning from oundry from he pir (,( )) o (,( )) uing poinwie he homoopy ( +, + ( )) for [0,]: Comining figure 4 nd 6 while keeping in mind he prmeerizion we n red off he pre Lie relion: F (F F 3 ) (F F ) F 3 ( ) ( F +)( F +) (F (F F 3 ) (F F ) F 3 ) () whih how h he oior i ymmeri in he fir wo vrile nd hu following Gerenher [3] we oin:.4.4 Corollry The rke {, } ifie he odd Joi ideniy.

31 Ar Operd nd Ar Alger I =0 II < IV <<+ V 3 =+ 3 VII = 3 III = VI ( ) (+) 3 >+ 3 3 ( ) 3 3 Figure 4: The glued fmily fer normlizion.4.5 The Gerenher ruure The derivion propery of he rke follow from he ompiiliy equion whih re proved y he relion repreened y he wo digrm 7 nd 8. The fir e i ju lulion in he r fmily piure. In he eond e he r fmily piure lo mke i very ey o wrie down he fmily induing he hin homoopy expliily. We fix r fmilie,, prmeerized over k,k,k repeively. Fir noie h he fmily prmeerized y k I k k, whih i depied

32 54 Rlph M Kufmnn, Muriel Liverne nd R C Penner I =0 II < III = IV <<+ V =+ VI >+ VII = ( ) ( ) ( ) ( ) ( ) Figure 5: The differen e of gluing he nd ( ) o = ~ 3 3 Figure 6: The oher ierion of in figure 7, illure h () ( ) + ( ) ( +) ( ) Seond, he peil wo prmeer fmily hown in figure 8 where he wo (*) ( +) ( ) (*) ~ ~ ~ = *() Figure 7: The fir ompiiliy equion prmeer r fmily relizing he hin homoopy i prmeerized over k k T k wih T := {(,) [0,] [0,] : + } give he hin

33 Ar Operd nd Ar Alger 543 homoopy () ( ) + ( ) ( +) ( ) In oh e, we ued normlizing homoopie efore. ~ (*) ( +) ~ ( ) (*) ~ ()* Figure 8: The eond ompiiliy equion Thee wo equion imply h nd we oin: {, } {,} + ( ) ( +) {,}, ().4.6 Propoiion The rke {, } i Gerenher rke up o hin homoopy on C (ARC p ) or C (ARC) for he produ. Summing up, we oin:.5 Theorem There i BV ruure on C (ARC p ) or C (ARC) up o explii hin oundrie. The indued Gerenher rke i lo given y uh explii oundrie. Thi rke i ompile wih produ (oiive nd ommuive up o explii oundrie) given y poin in C 0 (ARC p ()).

34 544 Rlph M Kufmnn, Muriel Liverne nd R C Penner.6 Corollry All Ar p nd Ar lger re Blin-Vilkoviky lger. The Gerenher ruure indued y he BV operor oinide wih he rke indued y he pre Lie produ. Hene ll Ar p nd Ar lger re GBV lger. 3 Ci uoperd of ARC In he l eion (eion ), we exhiied GBV ruure up o hin homoopy on C (ARC). Inpeing he r fmilie relizing he relevn homoopie, we oerve h he Gerenher ruure i lredy preen in uoperd whih we hll diu here. Thi uoperd, lled liner ree, orrepond o he pinele i of [7]. Furhermore for he BV operor, we only need o dd he one more operion, o h he BV ruure i relized on he uoperd genered y pinele i nd ARC p (). Lly he uoperd genered y pinele i i onined in he uoperd genered y i nd he wo Gerenher ruure gree, i.e. he one oming from he BV operor nd he previouly defined rke. We will furhermore how h hi operd i he imge of n emedding (up o homoopy) of Voronov i [6] ino ARC. By he reul of [, 6], lger over he i operd hve BV ruure. The mp of operd we onru will hu indue he ruure of BV lger for lger over he homology of ARC. Thi indued ruure i indeed he me h defined in eion n e een from he emedding nd our explii relizion of ll relevn operion. 3. Suoperd 3.. Definiion The ree uoperd i defined for r fmilie in urfe wih g = = 0 in he noion of.6.3 y he llowed inidene mrix A (n), whoe non zero enrie re 0i = = i0, for i =,...,n, nd required inidene relion R (n), whoe enrie re ll equl o one. Thi i uoperd of ARC p, nd repreenion of i olleion of leled ree n e found in [7]. Dropping he requiremen h g = = 0, we oin uoperd of ARC lled he rooed grph or Chinee ree uoperd.

35 Ar Operd nd Ar Alger Remrk We hve lredy oerved h here i liner nd y forgeing he ring poin yli order on he e of r iniden on eh oundry omponen. In he (Chinee) ree uoperd ll nd mu hi he 0 h omponen, whih indue liner nd yli order on ll of he nd. Furhermore he yli order i repeed for ree, in he ene h he nd meeing he i h omponen form yli uhin in he yli order of ll nd, for Chinee ree, hi i n exr ondiion. And gin ll Chinee ree whih ify hi ondiion form uoperd whih we ll he yli Chinee ree. The liner order i, however, no even repeed for ree, n eily e een in ARC p () Lineriy Condiion We y h n elemen of he (yli Chinee) ree uoperd ifie he Lineriy Condiion if he liner order mh, i.e., he nd hiing eh oundry omponen in heir liner order re uhin of ll he nd in heir liner order derived from he 0 h oundry. I i ey o hek h hi ondiion i le under ompoiion. We ll he uoperd of elemen ifying he Lineriy Condiion of he (yli Chinee) ree operd he (yli Chinee) liner ree operd Propoiion The uoperd genered y (yli Chinee) liner ree nd ARC p () inide ARC oinide wih (yli Chinee) ree. Proof Given (Chinee) ree we n mke i liner y gluing on wi from ARC() he vriou oundry omponen hee wi hve he effe of moving he mrked poin of he oundry round he oundry. Sine he yli order i lredy repeed, uh wi my e pplied o rrnge h he liner order gree. Sine (Chinee) liner ree nd ARC() lie inide he (Chinee) ree operd he revere inluion i oviou. 3. Ci There re everl peie of i, whih re defined in [7], o whih we refer he reder for deil. By i, we men Voronov i defined in [6], i.e., onneed, plnr ree-like onfigurion of prmeerized loop, ogeher wih mrked poin on he onfigurion. Thi poin, lled glol zero, define n ouide irle or perimeer y king i o e he ring poin nd hen going round ll loop in ounerlokwie fhion y jumping ono he nex loop (in he indued yli order) he inereion poin. The pinele

36 546 Rlph M Kufmnn, Muriel Liverne nd R C Penner vriey of i i oined y pouling h he lol zero defined y he prmeerizion of he loop oinide wih he fir inereion poin of he perimeer wih loop (omeime lled loe ) of he u. The gluing i of wo i C nd C i done y fir ling in uh wy h he lengh of i h loe of C mhe he lengh of he ouide irle of C nd hen inering he u ino he i h loe y uing he prmeerizion gluing d. 3.. Sling of u Ci nd pinele i oh ome wih univerl ling operion of R >0 whih imulneouly le ll rdii y he me for λ R >0. Thi ion i free ion nd he gluing deend o he quoien y hi ion. 3.. Lef, Righ nd Symmeri Ci For he operdi gluing one h hree i poiiliie o le in order o mke he ize of he ouer loop of he u h i o e inered mh he ize of he loe ino whih he inerion hould e mde. () Sle down he u whih i o e inered. Thi i he originl verion we ll i he righ ling verion. () Sle up he u ino whih will e inered. We ll i he lef ling verion. (3) Sle oh i. The one whih i o e inered y he ize of he loe ino whih i will e inered nd he u ino whih he inerion i going o e king ple y he ize of he ouer loop of he u whih will e inered. We ll hi i he ymmeri ling verion. All of hee verion re of oure homoopy equivlen nd in he quoien operd of i y overll ling, he projeive i i/r >0 hey ll deend o he me glueing Frming of pinele u We will give mp of pinele i ino ARC lled frming. Fir noie h pinele u n e deompoed y he iniil poin nd he inereion poin ino equene of r following he nurl orienion given

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER Mh. Appl. 1 (2012, 91 116 ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER JIŘÍ ŠREMR Abr. The im of hi pper i o diu he bolue oninuiy of erin ompoie funion nd differeniion of Lebegue

More information

Optimally Cutting a Surface into a Disk

Optimally Cutting a Surface into a Disk Opimlly Cuing Surfe ino Dik Jeff Erikon Sriel Hr-Peled Univeriy of Illinoi Urn-Chmpign {jeffe,riel}@.uiu.edu hp://www..uiu.edu/ {jeffe,riel} ABSTRACT We onider he prolem of uing e of edge on polyhedrl

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

defines eigenvectors and associated eigenvalues whenever there are nonzero solutions ( 0

defines eigenvectors and associated eigenvalues whenever there are nonzero solutions ( 0 Chper 7. Inroduion In his hper we ll explore eigeneors nd eigenlues from geomeri perspeies, lern how o use MATLAB o lgerilly idenify hem, nd ulimely see how hese noions re fmously pplied o he digonlizion

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14 Convenions nd Noion: GeoTrig Noes 04-14 Hello ll, his revision inludes some numeri exmples s well s more rigonomery heory. This se of noes is inended o ompny oher uorils in his series: Inroduion o EDA,

More information

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits.

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits. Digil Logi/Design. L. 3 Mrh 2, 26 3 Logi Ges nd Boolen Alger 3. CMOS Tehnology Digil devises re predominnly mnufured in he Complemenry-Mel-Oide-Semionduor (CMOS) ehnology. Two ypes of swihes, s disussed

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Robust Network Coding for Bidirected Networks

Robust Network Coding for Bidirected Networks Rou Nework Coding for Bidireed Nework A. Sprinon, S. Y. El Rouyhe, nd C. N. Georghide Ar We onider he prolem of nding liner nework ode h gurnee n innneou reovery from edge filure in ommuniion nework. Wih

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

ALG 5.3 Flow Algorithms:

ALG 5.3 Flow Algorithms: ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

International ejournals

International ejournals Avilble online ww.inernionlejournl.om Inernionl ejournl Inernionl Journl of Mhemil Siene, Tehnology nd Humniie 7 (0 8-8 The Mellin Type Inegrl Trnform (MTIT in he rnge (, Rmhndr M. Pie Deprmen of Mhemi,

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

Designing A Fanlike Structure

Designing A Fanlike Structure Designing A Fnlike Sruure To proeed wih his lesson, lik on he Nex buon here or he op of ny pge. When you re done wih his lesson, lik on he Conens buon here or he op of ny pge o reurn o he lis of lessons.

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions J. Bsi. Appl. i. Res. 4-5 4 4 TeRod Publiion IN 9-44 Journl of Bsi nd Applied ienifi Reserh www.erod.om Clindrill mmeri Mrder Universe nd Is Proper Teleprllel Homohei Moions Amjd Ali * Anwr Ali uhil Khn

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS N MPROVED CREEP ND SHRNKGE BSED MODEL FOR DEFLECTONS OF COMPOSTE MEMBERS RENFORCED WTH CRBON FBER RENFORCED BRS M.. Fruqi, S. Bhdr D. Sun, nd J. Si Deprmen o Civil nd rhieurl Engineering, Tex & M Univeriy,

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1 Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Optimally Cutting a Surface into a Disk

Optimally Cutting a Surface into a Disk Opimlly Cuing Surfe ino Dik Jeff Erikon Sriel Hr-Peled Univeriy of Illinoi Urn-Chmpign {jeffe,riel}@.uiu.edu hp://www..uiu.edu/ {jeffe,riel} Sumied o Diree & Compuionl Geomery: July 2, 2002 Ar We onider

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces Compuer nd Informion Siene The Forming Theory nd Compuer Simulion of he Rory Cuing Tools wih Helil Teeh nd Comple Surfes Hurn Liu Deprmen of Mehnil Engineering Zhejing Universiy of Siene nd Tehnology Hngzhou

More information

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1 D Trnsformions Compuer Grphics COMP 770 (6) Spring 007 Insrucor: Brndon Lloyd /6/07 Geomery Geomeric eniies, such s poins in spce, exis wihou numers. Coordines re nming scheme. The sme poin cn e descried

More information

SECTION C-C PARALLEL/DEPRESSED CORNER PEDESTRIAN CURB RAMP DETAILS X"

SECTION C-C PARALLEL/DEPRESSED CORNER PEDESTRIAN CURB RAMP DETAILS X N 0 MODIIED N 0 UED WHEN RIGH-O-WY I ONRINED WLK NON-WLKLE OR WLKLE URE RIGH ORM MY E UED % MX. PLOED/REVIED://0 K O UR LOW LINE RON O GUER PERPENDIULR WLK NON-WLKLE OR WLKLE URE % MX. %-0% DIGONL HLL

More information

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

Interval Oscillation of Nonlinear Differential Equation with Damped Term

Interval Oscillation of Nonlinear Differential Equation with Damped Term Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Inerv Oiion of Noniner Differeni Equion wih Dmped Term Yun-Hui Zeng Deprmen of Mhemi nd Compuion Siene, Hengyng Norm Univeriy,Hunn,

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

Generalized Projective Synchronization Using Nonlinear Control Method

Generalized Projective Synchronization Using Nonlinear Control Method ISSN 79-3889 (prin), 79-3897 (online) Inernionl Journl of Nonliner Siene Vol.8(9) No.,pp.79-85 Generlized Projeive Synhronizion Using Nonliner Conrol Mehod Xin Li Deprmen of Mhemis, Chngshu Insiue of Tehnology

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

ECE Microwave Engineering

ECE Microwave Engineering EE 537-635 Microwve Engineering Adped from noes y Prof. Jeffery T. Willims Fll 8 Prof. Dvid R. Jcson Dep. of EE Noes Wveguiding Srucures Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

Proper Projective Symmetry in some well known Conformally flat Space-Times

Proper Projective Symmetry in some well known Conformally flat Space-Times roper rojeie Smmer in some well nown onformll fl Spe-Times Ghulm Shir Ful of Engineering Sienes GIK Insiue of Engineering Sienes nd Tehnolog Topi Swi NWF isn Emil: shir@gii.edu.p sr sud of onformll fl

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14 Mh 225-4 Week 2 coninue.-.3; lo cover pr of.4-.5, EP 7.6 Mon Nov 4.-.3 Lplce rnform, nd pplicion o DE IVP, epecilly hoe in Chper 5. Tody we'll coninue (from l Wednedy) o fill in he Lplce rnform ble (on

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

Dynamic Response of an Active Filter Using a Generalized Nonactive Power Theory

Dynamic Response of an Active Filter Using a Generalized Nonactive Power Theory Dynmi Repone of n Aive Filer Uing Generlized Nonive Power heory Yn Xu Leon M. olber John N. Chion Fng Z. Peng yxu3@uk.edu olber@uk.edu hion@uk.edu fzpeng@mu.edu he Univeriy of enneee Mihign Se Univeriy

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations Honours Inroducory Mhs Course 0 Inegrion, Differenil nd Difference Equions Reding: Ching Chper 4 Noe: These noes do no fully cover he meril in Ching, u re men o supplemen your reding in Ching. Thus fr

More information

MATH4455 Module 10 Evens, Odds and Ends

MATH4455 Module 10 Evens, Odds and Ends MATH4455 Module 10 Even, Odd nd End Min Mth Conept: Prity, Ple Vlue Nottion, Enumertion, Story Prolem Auxiliry Ide: Tournment, Undireted grph I. The Mind-Reding Clultor Prolem. How doe the mind-reding

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

A Structural Approach to the Enforcement of Language and Disjunctive Constraints

A Structural Approach to the Enforcement of Language and Disjunctive Constraints A Srucurl Aroch o he Enforcemen of Lnguge nd Disjuncive Consrins Mrin V. Iordche School of Engineering nd Eng. Tech. LeTourneu Universiy Longview, TX 7607-700 Pnos J. Ansklis Dermen of Elecricl Engineering

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c 3rd Inernionl Conferene on Mhinery, Meril nd Informion ehnology ppliion (ICMMI 05 he relizion of low order FSM mehod nd i ppliion Jii He,, Xingyng Liu,b, Chengqun Pei,3, Shool of Compuer nd Communiion,

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

Laplace Examples, Inverse, Rational Form

Laplace Examples, Inverse, Rational Form Lecure 3 Ouline: Lplce Exple, Invere, Rionl For Announceen: Rein: 6: Lplce Trnfor pp. 3-33, 55.5-56.5, 7 HW 8 poe, ue nex We. Free -y exenion OcenOne Roo Tour will e fer cl y 7 (:3-:) Lunch provie ferwr.

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information